Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cancer ; 128(5): 1004-1014, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34726773

RESUMO

BACKGROUND: The clinical benefit of cusatuzumab, a CD70-directed monoclonal antibody with enhanced effector functions, was investigated in patients with relapsed/refractory (R/R) cutaneous T-cell lymphoma (CTCL). METHODS: In this cohort expansion of the ARGX-110-1201 study, 27 patients with R/R CTCL received cusatuzumab at 1 (n = 11) or 5 mg/kg (n = 16) once every 3 weeks to investigate its safety, dose, and exploratory efficacy. The pharmacokinetics, immunogenicity, CD70 expression, and CD70/CD27 biology were also assessed. RESULTS: The most common adverse events included infusion-related reactions, pyrexia, and asthenia. Eighteen serious adverse events (grade 1-3) were reported in 11 patients; 1 of these (vasculitis) was considered drug-related. For 8 of the 11 patients receiving 1 mg/kg, anti-drug antibodies (ADAs) affected the minimal concentration, and this resulted in undetectable cusatuzumab concentrations at the end of treatment and, in some cases, a loss of response. This effect was greatly reduced in the patients receiving 5 mg/kg. The overall response rate was 23%; this included 1 complete response and 5 partial responses (PRs) in 26 of the 27 evaluable patients. In addition, 9 patients achieved stable disease. The mean duration on cusatuzumab was 5.2 months, and the median duration was 2.5 months. Patients with Sézary syndrome (SS) achieved a 60% PR rate with a dosage of 5 mg/kg and a 33% PR rate with a dosage of 1 mg/kg; this resulted in an overall response rate of 50% for patients with SS at both doses. CONCLUSIONS: Cusatuzumab was well tolerated, and antitumor activity was observed at both 1 and 5 mg/kg in highly pretreated patients with R/R CTCL. The observed dose-dependent effect on exposure supports the use of 5 mg/kg for future development.


Assuntos
Anticorpos Monoclonais , Antineoplásicos , Linfoma Cutâneo de Células T , Neoplasias Cutâneas , Anticorpos Monoclonais/efeitos adversos , Antineoplásicos/uso terapêutico , Ligante CD27 , Humanos , Linfoma Cutâneo de Células T/tratamento farmacológico , Recidiva Local de Neoplasia/patologia , Neoplasias Cutâneas/tratamento farmacológico , Resultado do Tratamento
2.
J Immunol ; 205(12): 3456-3467, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33188070

RESUMO

Abs of the IgG isotype mediate effector functions like Ab-dependent cellular cytotoxicity and Ab-dependent cellular phagocytosis by Fc interactions with FcγRs and complement-dependent cytotoxicity upon IgG-Fc binding to C1q. In this study, we describe the crucial role of the highly conserved dual glycines at position 236-237 in the lower hinge region of human IgG, including the lack of one glycine as found in IgG2. We found several permutations in this region that either silence or largely abrogate FcγR binding and downstream FcγR effector functions, as demonstrated by surface plasmon resonance, Ab-dependent cellular phagocytosis, and Ab-dependent cellular cytotoxicity assays. Although the binding regions of FcγRs and C1q on the IgG-Fc largely overlap, IgG1 with a deletion of G236 only silences FcγR-mediated effector functions without affecting C1q-binding or activation. Several mutations resulted in only residual FcγRI binding with differing affinities that are either complement competent or silenced. Interestingly, we also found that IgG2, naturally only binding FcγRIIa, gains binding to FcγRI and FcγRIIIa after insertion of G236, highlighting the crucial importance of G236 in IgG for FcγR interaction. These mutants may become invaluable tools for FcγR-related research as well as for therapeutic purposes in which only complement-mediated functions are required without the involvement of FcγR.


Assuntos
Sequência de Aminoácidos , Ativação do Complemento , Complemento C1q , Imunoglobulina G , Receptores de IgG , Deleção de Sequência , Ressonância de Plasmônio de Superfície , Complemento C1q/química , Complemento C1q/genética , Complemento C1q/imunologia , Glicina/química , Glicina/genética , Glicina/imunologia , Células HEK293 , Humanos , Imunoglobulina G/química , Imunoglobulina G/genética , Imunoglobulina G/imunologia , Receptores de IgG/química , Receptores de IgG/genética , Receptores de IgG/imunologia
3.
J Allergy Clin Immunol ; 147(4): 1420-1429.e7, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32926878

RESUMO

BACKGROUND: Activation of the classical and lectin pathway of complement may contribute to tissue damage and organ dysfunction of antibody-mediated diseases and ischemia-reperfusion conditions. Complement factors are being considered as targets for therapeutic intervention. OBJECTIVE: We sought to characterize ARGX-117, a humanized inhibitory monoclonal antibody against complement C2. METHODS: The mode-of-action and binding characteristics of ARGX-117 were investigated in detail. Furthermore, its efficacy was analyzed in in vitro complement cytotoxicity assays. Finally, a pharmacokinetic/pharmacodynamic study was conducted in cynomolgus monkeys. RESULTS: Through binding to the Sushi-2 domain of C2, ARGX-117 prevents the formation of the C3 proconvertase and inhibits classical and lectin pathway activation upstream of C3 activation. As ARGX-117 does not inhibit the alternative pathway, it is expected not to affect the antimicrobial activity of this complement pathway. ARGX-117 prevents complement-mediated cytotoxicity in in vitro models for autoimmune hemolytic anemia and antibody-mediated rejection of organ transplants. ARGX-117 exhibits pH- and calcium-dependent target binding and is Fc-engineered to increase affinity at acidic pH to the neonatal Fc receptor, and to reduce effector functions. In cynomolgus monkeys, ARGX-117 dose-dependently reduces free C2 levels and classical pathway activity. A 2-dose regimen of 80 and 20 mg/kg separated by a week, resulted in profound reduction of classical pathway activity lasting for at least 7 weeks. CONCLUSIONS: ARGX-117 is a promising new complement inhibitor that is uniquely positioned to target both the classical and lectin pathways while leaving the alternative pathway intact.


Assuntos
Anticorpos Monoclonais/farmacologia , Complemento C2/antagonistas & inibidores , Inativadores do Complemento/farmacologia , Animais , Anticorpos Monoclonais/sangue , Anticorpos Monoclonais/farmacocinética , Cálcio , Ativação do Complemento/efeitos dos fármacos , Complemento C2/análise , Complemento C2/metabolismo , Inativadores do Complemento/sangue , Inativadores do Complemento/farmacocinética , Mapeamento de Epitopos , Feminino , Humanos , Concentração de Íons de Hidrogênio , Macaca fascicularis , Masculino
4.
Am J Hematol ; 95(2): 178-187, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31821591

RESUMO

Primary immune thrombocytopenia (ITP) is an acquired autoimmune bleeding disorder, characterized by a low platelet count (<100 × 109 /L) in the absence of other causes associated with thrombocytopenia. In most patients, IgG autoantibodies directed against platelet receptors can be detected. They accelerate platelet clearance and destruction, inhibit platelet production, and impair platelet function, resulting in increased risk of bleeding and impaired quality of life. Efgartigimod is a human IgG1 antibody Fc-fragment, a natural ligand of the neonatal Fc receptor (FcRn), engineered for increased affinity to FcRn, while preserving its characteristic pH-dependent binding. Efgartigimod blocks FcRn, preventing IgG recycling, and causing targeted IgG degradation. In this Phase 2 study, 38 patients were randomized 1:1:1 to receive four weekly intravenous infusions of either placebo (N = 12) or efgartigimod at a dose of 5 mg/kg (N = 13) or 10 mg/kg (N = 13). This short treatment cycle of efgartigimod in patients with ITP, predominantly refractory to previous lines of therapy, was shown to be well tolerated, and demonstrated a favorable safety profile consistent with Phase 1 data. Efgartigimod induced a rapid reduction of total IgG levels (up to 63.7% mean change from baseline), which was associated with clinically relevant increases in platelet counts (46% patients on efgartigimod vs 25% on placebo achieved a platelet count of ≥50 × 109 /L on at least two occasions, and 38% vs 0% achieved ≥50 × 109 /L for at least 10 cumulative days), and a reduced proportion of patients with bleeding. Taken together, these data warrant further evaluation of FcRn antagonism as a novel therapeutic approach in ITP.


Assuntos
Fragmentos Fc das Imunoglobulinas/uso terapêutico , Imunoglobulina G/uso terapêutico , Púrpura Trombocitopênica Idiopática , Receptores Fc/antagonistas & inibidores , Adulto , Idoso , Método Duplo-Cego , Feminino , Seguimentos , Antígenos de Histocompatibilidade Classe I/sangue , Humanos , Masculino , Pessoa de Meia-Idade , Contagem de Plaquetas , Púrpura Trombocitopênica Idiopática/sangue , Púrpura Trombocitopênica Idiopática/tratamento farmacológico , Receptores Fc/sangue
5.
Mol Pharmacol ; 96(6): 753-764, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31481460

RESUMO

Dysregulation of the chemokine system is implicated in a number of autoimmune and inflammatory diseases, as well as cancer. Modulation of chemokine receptor function is a very promising approach for therapeutic intervention. Despite interest from academic groups and pharmaceutical companies, there are currently few approved medicines targeting chemokine receptors. Monoclonal antibodies (mAbs) and antibody-based molecules have been successfully applied in the clinical therapy of cancer and represent a potential new class of therapeutics targeting chemokine receptors belonging to the class of G protein-coupled receptors (GPCRs). Besides conventional mAbs, single-domain antibodies and antibody scaffolds are also gaining attention as promising therapeutics. In this review, we provide an extensive overview of mAbs, single-domain antibodies, and other antibody fragments targeting CXCR4 and ACKR3, formerly referred to as CXCR7. We discuss their unique properties and advantages over small-molecule compounds, and also refer to the molecules in preclinical and clinical development. We focus on single-domain antibodies and scaffolds and their utilization in GPCR research. Additionally, structural analysis of antibody binding to CXCR4 is discussed. SIGNIFICANCE STATEMENT: Modulating the function of GPCRs, and particularly chemokine receptors, draws high interest. A comprehensive review is provided for monoclonal antibodies, antibody fragments, and variants directed at CXCR4 and ACKR3. Their advantageous functional properties, versatile applications as research tools, and use in the clinic are discussed.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/metabolismo , Receptores CXCR4/metabolismo , Receptores CXCR/metabolismo , Anticorpos de Domínio Único/administração & dosagem , Anticorpos de Domínio Único/metabolismo , Animais , Sistemas de Liberação de Medicamentos/métodos , Humanos , Receptores CXCR/antagonistas & inibidores , Receptores CXCR4/antagonistas & inibidores
6.
J Allergy Clin Immunol ; 142(4): 1185-1193.e4, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29890236

RESUMO

BACKGROUND: Asthma is a chronic inflammatory airway disease in which innate and adaptive immune cells act together to cause eosinophilic inflammation, goblet cell metaplasia (GCM), and bronchial hyperreactivity (BHR). In clinical trials using biologicals against IL-4 receptor (IL-4R) α or IL-5, only a subset of patients with moderate-to-severe asthma responded favorably, suggesting that distinct pathophysiologic mechanisms are at play in subgroups of patients called endotypes. However, the effect of multiple cytokine blockade using bispecific antibodies has not been tested. OBJECTIVE: We sought to target simultaneously the IL-4, IL-13, and IL-5 signaling pathways with a novel IL-4Rα/IL-5-bispecific antibody in a murine house dust mite (HDM) model of asthma. METHODS: Two mAbs neutralizing IL-4Rα and IL-5 were generated by using a llama-based antibody platform. Their heavy and light chains were then cotransfected in mammalian cells, resulting in a heterogeneous antibody mixture from which the bispecific antibody was isolated by using a dual anti-idiotypic purification process. C57BL/6J mice were finally sensitized and challenged to HDM extracts and treated during challenge with the antibodies. RESULTS: We successfully generated and characterized the monospecific and bispecific antibodies targeting IL-4Rα and IL-5. The monospecific antibodies could suppress eosinophilia, IgE synthesis, or both, whereas only the IL-4Rα/IL-5-bispecific antibody and the combination of monospecific antibodies additionally inhibited GCM and BHR. CONCLUSION: Type 2 cytokines act synergistically to cause GCM and BHR in HDM-exposed mice. These preclinical results show the feasibility of generating bispecific antibodies that target multiple cytokine signaling pathways as superior inhibitors of asthma features, including the difficult-to-treat GCM.


Assuntos
Anticorpos Biespecíficos/uso terapêutico , Anticorpos Neutralizantes/uso terapêutico , Asma/tratamento farmacológico , Citocinas/antagonistas & inibidores , Eosinofilia/tratamento farmacológico , Animais , Anticorpos Monoclonais/uso terapêutico , Asma/imunologia , Asma/patologia , Asma/fisiopatologia , Camelídeos Americanos , Linhagem Celular , Citocinas/imunologia , Eosinofilia/imunologia , Eosinofilia/patologia , Eosinofilia/fisiopatologia , Escherichia coli , Feminino , Células Caliciformes/efeitos dos fármacos , Células Caliciformes/patologia , Humanos , Camundongos Endogâmicos C57BL , Pyroglyphidae/imunologia
7.
J Biol Chem ; 291(26): 13846-54, 2016 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-27129274

RESUMO

Interleukin 6 plays a key role in mediating inflammatory reactions in autoimmune diseases and cancer, where it is also involved in metastasis and tissue invasion. Neutralizing antibodies against IL-6 and its receptor have been approved for therapeutic intervention or are in advanced stages of clinical development. Here we describe the crystal structures of the complexes of IL-6 with two Fabs derived from conventional camelid antibodies that antagonize the interaction between the cytokine and its receptor. The x-ray structures of these complexes provide insights into the mechanism of neutralization by the two antibodies and explain the very high potency of one of the antibodies. It effectively competes for binding to the cytokine with IL-6 receptor (IL-6R) by using side chains of two CDR residues filling the site I cavities of IL-6, thus mimicking the interactions of Phe(229) and Phe(279) of IL-6R. In the first antibody, a HCDR3 tryptophan binds similarly to hot spot residue Phe(279) Mutation of this HCDR3 Trp residue into any other residue except Tyr or Phe significantly weakens binding of the antibody to IL-6, as was also observed for IL-6R mutants of Phe(279) In the second antibody, the side chain of HCDR3 valine ties into site I like IL-6R Phe(279), whereas a LCDR1 tyrosine side chain occupies a second cavity within site I and mimics the interactions of IL-6R Phe(229).


Assuntos
Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/imunologia , Interleucina-6/antagonistas & inibidores , Receptores de Interleucina-6/química , Receptores de Interleucina-6/imunologia , Animais , Camelus , Humanos , Interleucina-6/química , Interleucina-6/imunologia , Camundongos , Estrutura Quaternária de Proteína
8.
J Biol Chem ; 288(35): 25173-25182, 2013 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-23836909

RESUMO

Chemokine receptors and their ligands play a prominent role in immune regulation but many have also been implicated in inflammatory diseases such as multiple sclerosis, rheumatoid arthritis, allograft rejection after transplantation, and also in cancer metastasis. Most approaches to therapeutically target the chemokine system involve targeting of chemokine receptors with low molecular weight antagonists. Here we describe the selection and characterization of an unprecedented large and diverse panel of neutralizing Nanobodies (single domain camelid antibodies fragment) directed against several chemokines. We show that the Nanobodies directed against CCL2 (MCP-1), CCL5 (RANTES), CXCL11 (I-TAC), and CXCL12 (SDF-1α) bind the chemokines with high affinity (at nanomolar concentration), thereby blocking receptor binding, inhibiting chemokine-induced receptor activation as well as chemotaxis. Together, we show that neutralizing Nanobodies can be selected efficiently for effective and specific therapeutic treatment against a wide range of immune and inflammatory diseases.


Assuntos
Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/farmacologia , Quimiocinas/metabolismo , Anticorpos de Domínio Único/farmacologia , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/imunologia , Camelídeos Americanos , Quimiocinas/química , Quimiocinas/genética , Quimiocinas/imunologia , Humanos , Doenças do Sistema Imunitário/tratamento farmacológico , Doenças do Sistema Imunitário/imunologia , Inflamação/tratamento farmacológico , Inflamação/imunologia , Camundongos , Células NIH 3T3 , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/imunologia
9.
Retrovirology ; 11: 83, 2014 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-25700025

RESUMO

BACKGROUND: Direct cell-cell spread of HIV-1 is a very efficient mode of viral dissemination, with increasing evidence suggesting that it may pose a considerable challenge to controlling viral replication in vivo. Much current vaccine research involves the study of broadly neutralising antibodies (bNabs) that arise during natural infection with the aims of eliciting such antibodies by vaccination or incorporating them into novel therapeutics. However, whether cell-cell spread of HIV-1 can be effectively targeted by bNabs remains unclear, and there is much interest in identifying antibodies capable of efficiently neutralising virus transmitted by cell-cell contact. RESULTS: In this study we have tested a panel of bNAbs for inhibition of cell-cell spread, including some not previously evaluated for inhibition of this mode of HIV-1 transmission. We found that three CD4 binding site antibodies, one from an immunised llama (J3) and two isolated from HIV-1-positive patients (VRC01 and HJ16) neutralised cell-cell spread between T cells, while antibodies specific for glycan moieties (2G12, PG9, PG16) and the MPER (2F5) displayed variable efficacy. Notably, while J3 displayed a high level of potency during cell-cell spread we found that the small size of the llama heavy chain-only variable region (VHH) J3 is not required for efficient neutralisation since recombinant J3 containing a full-length human heavy chain Fc domain was significantly more potent. J3 and J3-Fc also neutralised cell-cell spread of HIV-1 from primary macrophages to CD4+ T cells. CONCLUSIONS: In conclusion, while bNabs display variable efficacy at preventing cell-cell spread of HIV-1, we find that some CD4 binding site antibodies can inhibit this mode of HIV-1 dissemination and identify the recently described llama antibody J3 as a particularly potent inhibitor. Effective neutralisation of cell-cell spread between physiologically relevant cell types by J3 and J3-Fc supports the development of VHH J3 nanobodies for therapeutic or prophylactic applications.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/prevenção & controle , HIV-1/imunologia , Linfócitos T/virologia , Animais , Antígenos CD4/metabolismo , Camelídeos Americanos , Infecções por HIV/transmissão , Humanos , Macrófagos/virologia , Reação em Cadeia da Polimerase em Tempo Real
10.
JCI Insight ; 9(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713534

RESUMO

The homeostasis of IgG is maintained by the neonatal Fc receptor, FcRn. Consequently, antagonism of FcRn to reduce endogenous IgG levels is an emerging strategy for treating antibody-mediated autoimmune disorders using either FcRn-specific antibodies or an engineered Fc fragment. For certain FcRn-specific antibodies, this approach has resulted in reductions in the levels of serum albumin, the other major ligand transported by FcRn. Cellular and molecular analyses of a panel of FcRn antagonists have been carried out to elucidate the mechanisms leading to their differential effects on albumin homeostasis. These analyses have identified 2 processes underlying decreases in albumin levels during FcRn blockade: increased degradation of FcRn and competition between antagonist and albumin for FcRn binding. These findings have potential implications for the design of drugs to modulate FcRn function.


Assuntos
Antígenos de Histocompatibilidade Classe I , Receptores Fc , Receptores Fc/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Imunoglobulina G/metabolismo , Animais , Transporte Proteico/efeitos dos fármacos , Albumina Sérica/metabolismo , Camundongos , Ligação Proteica
11.
Proc Natl Acad Sci U S A ; 107(47): 20565-70, 2010 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-21059953

RESUMO

The important family of G protein-coupled receptors has so far not been targeted very successfully with conventional monoclonal antibodies. Here we report the isolation and characterization of functional VHH-based immunoglobulin single variable domains (or nanobodies) against the chemokine receptor CXCR4. Two highly selective monovalent nanobodies, 238D2 and 238D4, were obtained using a time-efficient whole cell immunization, phage display, and counterselection method. The highly selective VHH-based immunoglobulin single variable domains competitively inhibited the CXCR4-mediated signaling and antagonized the chemoattractant effect of the CXCR4 ligand CXCL12. Epitope mapping showed that the two nanobodies bind to distinct but partially overlapping sites in the extracellular loops. Short peptide linkage of 238D2 with 238D4 resulted in significantly increased affinity for CXCR4 and picomolar activity in antichemotactic assays. Interestingly, the monovalent nanobodies behaved as neutral antagonists, whereas the biparatopic nanobodies acted as inverse agonists at the constitutively active CXCR4-N3.35A. The CXCR4 nanobodies displayed strong antiretroviral activity against T cell-tropic and dual-tropic HIV-1 strains. Moreover, the biparatopic nanobody effectively mobilized CD34-positive stem cells in cynomolgus monkeys. Thus, the nanobody platform may be highly effective at generating extremely potent and selective G protein-coupled receptor modulators.


Assuntos
Anticorpos/farmacologia , Quimiotaxia/efeitos dos fármacos , HIV-1 , Receptores CXCR4/imunologia , Replicação Viral/efeitos dos fármacos , Animais , Anticorpos/isolamento & purificação , Antígenos CD34 , Benzilaminas , Sítios de Ligação/genética , Células COS , Chlorocebus aethiops , Ciclamos , Ensaio de Imunoadsorção Enzimática , Mapeamento de Epitopos , Células HEK293 , Mobilização de Células-Tronco Hematopoéticas , Compostos Heterocíclicos , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
12.
EJNMMI Radiopharm Chem ; 8(1): 8, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37093350

RESUMO

BACKGROUND: CD70-CD27 is a costimulatory ligand-receptor pair in the tumor necrosis factor receptor family. With only limited expression in normal tissues, CD70 is constitutively expressed in a variety of solid tumors and hematologic malignancies, facilitating immunosuppression through CD27 signaling in the tumor microenvironment by enhanced survival of regulatory T cells, induction of T cell apoptosis, and T cell exhaustion. Consequently, CD70 is an increasingly recognized target for developing antibody-based therapies, but its expression patterns vary among different tumor types in spatial distribution, magnitude of expression and percentage of positive cells. In that regard, individual confirmation of CD70 expression at screening and during treatment could enhance the successful implementation of anti-CD70 therapies. Here, we developed a gallium-68 (68Ga) radiolabeled single-domain antibody-fragment targeting CD70 for in vivo positron emission tomography (PET) imaging. RESULTS: An anti-CD70 VHH construct containing a C-direct-tag with a free thiol was developed to enable site-specific conjugation to a NOTA bifunctional chelator for 68Ga radiolabeling. [68Ga]Ga-NOTA-anti-CD70 VHH was obtained in good radiochemical yield of 30.4 ± 1.7% and high radiochemical purity (> 94%). The radiolabeled VHH showed excellent in vitro and in vivo stability. Specific binding of [68Ga]Ga-NOTA-anti-CD70 VHH was observed on CD70high 786-O cells, showing significantly higher cell-associated activity when compared to the blocking condition (p < 0.0001) and CD70low NCl-H1975 cells (p < 0.0001). PET imaging showed specific radiotracer accumulation in CD70 expressing human tumor xenografts, which was efficiently blocked by prior injection of unlabeled anti-CD70 VHH (p = 0.0029). In addition, radiotracer uptake in CD70high tumors was significantly higher when compared with CD70low tumors (p < 0.0001). The distribution of the radioactivity in the tumors using autoradiography was spatially matched with immunohistochemistry analysis of CD70 expression. CONCLUSION: [68Ga]Ga-NOTA-anti-CD70 VHH showed excellent in vivo targeting of CD70 in human cancer xenografts. PET imaging using this radioimmunoconjugate holds promise as a non-invasive method to identify and longitudinally follow-up patients who will benefit most from anti-CD70 therapies.

13.
Autoimmunity ; 55(8): 620-631, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36036539

RESUMO

Antagonism of the neonatal Fc receptor (FcRn) by efgartigimod has been studied in several autoimmune diseases mediated by immunoglobulin G (IgG) as a therapeutic approach to remove pathogenic IgGs. Whereas reduction of pathogenic titres has demonstrated efficacy in multiple autoimmune diseases, reducing total IgG could potentially increase infection risk in patients receiving FcRn antagonists. The objective of this study was to analyse the effect of FcRn antagonism with efgartigimod on existing protective antibody titres and the ability to mount an immune response after vaccine challenge. Serum levels of total IgG and protective antibodies against tetanus toxoid (TT), varicella zoster virus (VZV), and pneumococcal capsular polysaccharide (PCP) were measured in all patients enrolled in an open-label trial of efgartigimod for the treatment of pemphigus. Vaccine specific-responses were assessed by measuring changes in IgG titres in patients with generalised myasthenia gravis (gMG) who were treated with efgartigimod and who received influenza, pneumococcal, or coronavirus disease 2019 (COVID-19) vaccines during participation in the double-blind trial ADAPT or open-label extension, ADAPT+ (n = 17). FcRn antagonism reduced levels of protective anti-TT, anti-VZV, and anti-PCP antibodies and total IgG to a similar extent; anti-TT and anti-VZV titres remained above minimally protective thresholds for the majority of patients, (10/12) 83% and (14/15) 93% respectively. Protective antibodies returned to baseline values upon treatment cessation. Antigen-specific IgG responses to influenza, pneumococcal, and COVID-19 immunisation were detected in patients with gMG who received these vaccines while undergoing therapy with efgartigimod. In conclusion, FcRn antagonism with efgartigimod did not hamper generation of IgG responses but did transiently reduce IgG titres of all specificities.


Assuntos
COVID-19 , Influenza Humana , Miastenia Gravis , Pênfigo , Humanos , Imunoglobulina G , Recém-Nascido , Polissacarídeos , Ensaios Clínicos Controlados Aleatórios como Assunto , Toxoide Tetânico/uso terapêutico
14.
J Exp Clin Cancer Res ; 41(1): 12, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34991665

RESUMO

The immune checkpoint molecule CD70 and its receptor CD27 are aberrantly expressed in many hematological and solid malignancies. Dysregulation of the CD70-CD27 axis within the tumor and its microenvironment is associated with tumor progression and immunosuppression. This is in contrast to physiological conditions, where tightly controlled expression of CD70 and CD27 plays a role in co-stimulation in immune responses. In hematological malignancies, cancer cells co-express CD70 and CD27 promoting stemness, proliferation and survival of malignancy. In solid tumors, only expression of CD70 is present on the tumor cells which can facilitate immune evasion through CD27 expression in the tumor microenvironment. The discovery of these tumor promoting and immunosuppressive effects of the CD70-CD27 axis has unfolded a novel target in the field of oncology, CD70.In this review, we thoroughly discuss current insights into expression patterns and the role of the CD70-CD27 axis in hematological and solid malignancies, its effect on the tumor microenvironment and (pre)clinical therapeutic strategies.


Assuntos
Ligante CD27/metabolismo , Neoplasias Hematológicas/genética , Hematopoese/genética , Oncologia/métodos , Humanos
15.
Oncoimmunology ; 11(1): 2144669, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36387055

RESUMO

Combining immunogenic cell death-inducing chemotherapies and PD-1 blockade can generate remarkable tumor responses. It is now well established that TGF-ß1 signaling is a major component of treatment resistance and contributes to the cancer-related immunosuppressive microenvironment. However, whether TGF-ß1 remains an obstacle to immune checkpoint inhibitor efficacy when immunotherapy is combined with chemotherapy is still to be determined. Several syngeneic murine models were used to investigate the role of TGF-ß1 neutralization on the combinations of immunogenic chemotherapy (FOLFOX: 5-fluorouracil and oxaliplatin) and anti-PD-1. Cancer-associated fibroblasts (CAF) and immune cells were isolated from CT26 and PancOH7 tumor-bearing mice treated with FOLFOX, anti-PD-1 ± anti-TGF-ß1 for bulk and single cell RNA sequencing and characterization. We showed that TGF-ß1 neutralization promotes the therapeutic efficacy of FOLFOX and anti-PD-1 combination and induces the recruitment of antigen-specific CD8+ T cells into the tumor. TGF-ß1 neutralization is required in addition to chemo-immunotherapy to promote inflammatory CAF infiltration, a chemokine production switch in CAF leading to decreased CXCL14 and increased CXCL9/10 production and subsequent antigen-specific T cell recruitment. The immune-suppressive effect of TGF-ß1 involves an epigenetic mechanism with chromatin remodeling of CXCL9 and CXCL10 promoters within CAF DNA in a G9a and EZH2-dependent fashion. Our results strengthen the role of TGF-ß1 in the organization of a tumor microenvironment enriched in myofibroblasts where chromatin remodeling prevents CXCL9/10 production and limits the efficacy of chemo-immunotherapy.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias , Camundongos , Animais , Fibroblastos Associados a Câncer/patologia , Linfócitos T CD8-Positivos , Imunoterapia/métodos , Quimiocinas/uso terapêutico , Neoplasias/tratamento farmacológico , Microambiente Tumoral
16.
Nat Commun ; 13(1): 6073, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36241613

RESUMO

Binding to the neonatal Fc receptor (FcRn) extends serum half-life of IgG, and antagonizing this interaction is a promising therapeutic approach in IgG-mediated autoimmune diseases. Fc-MST-HN, designed for enhanced FcRn binding capacity, has not been evaluated in the context of a full-length antibody, and the structural properties of the attached Fab regions might affect the FcRn-mediated intracellular trafficking pathway. Here we present a comprehensive comparative analysis of the IgG salvage pathway between two full-size IgG1 variants, containing wild type and MST-HN Fc fragments, and their Fc-only counterparts. We find no evidence of Fab-regions affecting FcRn binding in cell-free assays, however, cellular assays show impaired binding of full-size IgG to FcRn, which translates into improved intracellular FcRn occupancy and intracellular accumulation of Fc-MST-HN compared to full size IgG1-MST-HN. The crystal structure of Fc-MST-HN in complex with FcRn provides a plausible explanation why the Fab disrupts the interaction only in the context of membrane-associated FcRn. Importantly, we find that Fc-MST-HN outperforms full-size IgG1-MST-HN in reducing IgG levels in cynomolgus monkeys. Collectively, our findings identify the cellular membrane context as a critical factor in FcRn biology and therapeutic targeting.


Assuntos
Anticorpos Monoclonais , Doenças Autoimunes , Animais , Doenças Autoimunes/tratamento farmacológico , Antígenos de Histocompatibilidade Classe I , Fragmentos Fc das Imunoglobulinas/química , Imunoglobulina G , Macaca fascicularis/metabolismo , Ligação Proteica , Receptores Fc
17.
Sci Rep ; 12(1): 13413, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35927444

RESUMO

While vaccination against HIV-1 has been so far unsuccessful, recently broadly neutralizing antibodies (bNAbs) against HIV-1 envelope glycoprotein were shown to induce long-term suppression in the absence of antiretroviral therapy in patients with antibody-sensitive viral reservoirs. The requirement of neutralizing antibodies indicates that the antibody mediated removal (clearance) of HIV-1 in itself is not efficient enough in these immune compromised patients. Here we present a novel, alternative approach that is independent of a functional immune system to clear HIV-1, by capturing the virus and redirecting it to non-target cells where it is internalized and degraded. We use bispecific antibodies with domains derived from small single chain Llama antibodies (VHHs). These bind with one domain to HIV-1 envelope proteins and with the other domain direct the virus to cells expressing epidermal growth factor receptor (EGFR), a receptor that is ubiquitously expressed in the body. We show that HIV envelope proteins, virus-like particles and HIV-1 viruses (representing HIV-1 subtypes A, B and C) are efficiently recruited to EGFR, internalized and degraded in the lysosomal pathway at low nM concentrations of bispecific VHHs. This directed degradation in non-target cells may provide a clearance platform for the removal of viruses and other unwanted agents from the circulation, including toxins, and may thus provide a novel method for curing.


Assuntos
Camelídeos Americanos , Infecções por HIV , Soropositividade para HIV , HIV-1 , Anticorpos de Cadeia Única , Animais , Anticorpos Neutralizantes , Receptores ErbB , Anticorpos Anti-HIV , Humanos
18.
Artigo em Inglês | MEDLINE | ID: mdl-34759020

RESUMO

BACKGROUND AND OBJECTIVES: To determine the role of complement in the disease pathology of multifocal motor neuropathy (MMN), we investigated complement activation, and inhibition, on binding of MMN patient-derived immunoglobulin M (IgM) antibodies in an induced pluripotent stem cell (iPSC)-derived motor neuron (MN) model for MMN. METHODS: iPSC-derived MNs were characterized for the expression of complement receptors and membrane-bound regulators, for the binding of circulating IgM anti-GM1 from patients with MMN, and for subsequent fixation of C4 and C3 on incubation with fresh serum. The potency of ARGX-117, a novel inhibitory monoclonal antibody targeting C2, to inhibit fixation of complement was assessed. RESULTS: iPSC-derived MNs moderately express the complement regulatory proteins CD46 and CD55 and strongly expressed CD59. Furthermore, MNs express C3aR, C5aR, and complement receptor 1. IgM anti-GM1 antibodies in serum from patients with MMN bind to MNs and induce C3 and C4 fixation on incubation with fresh serum. ARGX-117 inhibits complement activation downstream of C4 induced by patient-derived anti-GM1 antibodies bound to MNs. DISCUSSION: Binding of IgM antibodies from patients with MMN to iPSC-derived MNs induces complement activation. By expressing complement regulatory proteins, particularly CD59, MNs are protected against complement-mediated lysis. Yet, because of expressing C3aR, the function of these cells may be affected by complement activation upstream of membrane attack complex formation. ARGX-117 inhibits complement activation upstream of C3 in this disease model for MMN and therefore represents an intervention strategy to prevent harmful effects of complement in MMN.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Ativação do Complemento/imunologia , Complemento C2/efeitos dos fármacos , Neurônios Motores , Polineuropatias/tratamento farmacológico , Polineuropatias/imunologia , Células Cultivadas , Humanos , Imunoglobulina M , Células-Tronco Pluripotentes Induzidas
19.
J Biol Chem ; 285(25): 19116-24, 2010 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-20400507

RESUMO

Recently, we described llama antibody fragments (VHH) that can neutralize human immunodeficiency virus, type 1 (HIV-1). These VHH were obtained after selective elution of phages carrying an immune library raised against gp120 of HIV-1 subtype B/C CN54 with soluble CD4. We describe here a new, family-specific approach to obtain the largest possible diversity of related VHH that compete with soluble CD4 for binding to the HIV-1 envelope glycoprotein. The creation of this family-specific library of homologous VHH has enabled us to isolate phages carrying similar nucleotide sequences as the parental VHH. These VHH displayed varying binding affinities and neutralization phenotypes to a panel of different strains and subtypes of HIV-1. Sequence analysis of the homologs showed that the C-terminal three amino acids of the CDR3 loop were crucial in determining the specificity of these VHH for different subtype C HIV-1 strains. There was a positive correlation between affinity of VHH binding to gp120 of HIV-1 IIIB and the breadth of neutralization of diverse HIV-1 envelopes. The family-specific approach has therefore allowed us to better understand the interaction of the CD4-binding site antibodies with virus strain specificity and has potential use for the bioengineering of antibodies and HIV-1 vaccine development.


Assuntos
HIV-1/metabolismo , Anticorpos de Cadeia Única/química , Vacinas contra a AIDS/química , Anticorpos/química , Sequência de Bases , Sítios de Ligação , Antígenos CD4/metabolismo , Proteína gp120 do Envelope de HIV/química , Humanos , Cinética , Dados de Sequência Molecular , Mutação , Biblioteca de Peptídeos , Homologia de Sequência do Ácido Nucleico
20.
Nat Struct Mol Biol ; 13(1): 85-9, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16327804

RESUMO

Lactococcus lactis is a Gram-positive bacterium used extensively by the dairy industry for the manufacture of fermented milk products. The double-stranded DNA bacteriophage p2 infects specific L. lactis strains using a receptor-binding protein (RBP) located at the tip of its noncontractile tail. We have solved the crystal structure of phage p2 RBP, a homotrimeric protein composed of three domains: the shoulders, a beta-sandwich attached to the phage; the neck, an interlaced beta-prism; and the receptor-recognition head, a seven-stranded beta-barrel. We used the complex of RBP with a neutralizing llama VHH domain to identify the receptor-binding site. Structural similarity between the recognition-head domain of phage p2 and those of adenoviruses and reoviruses, which invade mammalian cells, suggests that these viruses, despite evolutionary distant targets, lack of sequence similarity and the different chemical nature of their genomes (DNA versus RNA), might have a common ancestral gene.


Assuntos
Bacteriófago P2/química , Bacteriófago P2/genética , Lactococcus lactis/virologia , Mamíferos/virologia , Proteínas Virais/química , Proteínas Virais/genética , Sequência de Aminoácidos , Animais , Bacteriófago P2/metabolismo , Bacteriófago P2/ultraestrutura , Sítios de Ligação , Cristalografia por Raios X , Internet , Microscopia Imunoeletrônica , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Estrutura Quaternária de Proteína , Alinhamento de Sequência , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA