Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Hum Brain Mapp ; 43(1): 167-181, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-32420672

RESUMO

Left-right asymmetry of the human brain is one of its cardinal features, and also a complex, multivariate trait. Decades of research have suggested that brain asymmetry may be altered in psychiatric disorders. However, findings have been inconsistent and often based on small sample sizes. There are also open questions surrounding which structures are asymmetrical on average in the healthy population, and how variability in brain asymmetry relates to basic biological variables such as age and sex. Over the last 4 years, the ENIGMA-Laterality Working Group has published six studies of gray matter morphological asymmetry based on total sample sizes from roughly 3,500 to 17,000 individuals, which were between one and two orders of magnitude larger than those published in previous decades. A population-level mapping of average asymmetry was achieved, including an intriguing fronto-occipital gradient of cortical thickness asymmetry in healthy brains. ENIGMA's multi-dataset approach also supported an empirical illustration of reproducibility of hemispheric differences across datasets. Effect sizes were estimated for gray matter asymmetry based on large, international, samples in relation to age, sex, handedness, and brain volume, as well as for three psychiatric disorders: autism spectrum disorder was associated with subtly reduced asymmetry of cortical thickness at regions spread widely over the cortex; pediatric obsessive-compulsive disorder was associated with altered subcortical asymmetry; major depressive disorder was not significantly associated with changes of asymmetry. Ongoing studies are examining brain asymmetry in other disorders. Moreover, a groundwork has been laid for possibly identifying shared genetic contributions to brain asymmetry and disorders.


Assuntos
Transtorno do Espectro Autista/patologia , Córtex Cerebral/anatomia & histologia , Transtorno Depressivo Maior/patologia , Substância Cinzenta/anatomia & histologia , Imageamento por Ressonância Magnética , Neuroimagem , Transtorno Obsessivo-Compulsivo/patologia , Transtorno do Espectro Autista/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Transtorno Depressivo Maior/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Humanos , Estudos Multicêntricos como Assunto , Transtorno Obsessivo-Compulsivo/diagnóstico por imagem
2.
PLoS Genet ; 11(5): e1005226, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25950944

RESUMO

Genetic generalised epilepsy (GGE) is the most common form of genetic epilepsy, accounting for 20% of all epilepsies. Genomic copy number variations (CNVs) constitute important genetic risk factors of common GGE syndromes. In our present genome-wide burden analysis, large (≥ 400 kb) and rare (< 1%) autosomal microdeletions with high calling confidence (≥ 200 markers) were assessed by the Affymetrix SNP 6.0 array in European case-control cohorts of 1,366 GGE patients and 5,234 ancestry-matched controls. We aimed to: 1) assess the microdeletion burden in common GGE syndromes, 2) estimate the relative contribution of recurrent microdeletions at genomic rearrangement hotspots and non-recurrent microdeletions, and 3) identify potential candidate genes for GGE. We found a significant excess of microdeletions in 7.3% of GGE patients compared to 4.0% in controls (P = 1.8 x 10-7; OR = 1.9). Recurrent microdeletions at seven known genomic hotspots accounted for 36.9% of all microdeletions identified in the GGE cohort and showed a 7.5-fold increased burden (P = 2.6 x 10-17) relative to controls. Microdeletions affecting either a gene previously implicated in neurodevelopmental disorders (P = 8.0 x 10-18, OR = 4.6) or an evolutionarily conserved brain-expressed gene related to autism spectrum disorder (P = 1.3 x 10-12, OR = 4.1) were significantly enriched in the GGE patients. Microdeletions found only in GGE patients harboured a high proportion of genes previously associated with epilepsy and neuropsychiatric disorders (NRXN1, RBFOX1, PCDH7, KCNA2, EPM2A, RORB, PLCB1). Our results demonstrate that the significantly increased burden of large and rare microdeletions in GGE patients is largely confined to recurrent hotspot microdeletions and microdeletions affecting neurodevelopmental genes, suggesting a strong impact of fundamental neurodevelopmental processes in the pathogenesis of common GGE syndromes.


Assuntos
Epilepsia Generalizada/genética , Transtornos do Neurodesenvolvimento/genética , Deleção de Sequência , Adolescente , Adulto , Estudos de Casos e Controles , Criança , Estudos de Coortes , Variações do Número de Cópias de DNA , Feminino , Rearranjo Gênico , Estudos de Associação Genética , Genoma Humano , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Domínios e Motivos de Interação entre Proteínas , Adulto Jovem
3.
J Med Genet ; 53(12): 850-858, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27358180

RESUMO

BACKGROUND: Mutations in the KIAA2022 gene have been reported in male patients with X-linked intellectual disability, and related female carriers were unaffected. Here, we report 14 female patients who carry a heterozygous de novo KIAA2022 mutation and share a phenotype characterised by intellectual disability and epilepsy. METHODS: Reported females were selected for genetic testing because of substantial developmental problems and/or epilepsy. X-inactivation and expression studies were performed when possible. RESULTS: All mutations were predicted to result in a frameshift or premature stop. 12 out of 14 patients had intractable epilepsy with myoclonic and/or absence seizures, and generalised in 11. Thirteen patients had mild to severe intellectual disability. This female phenotype partially overlaps with the reported male phenotype which consists of more severe intellectual disability, microcephaly, growth retardation, facial dysmorphisms and, less frequently, epilepsy. One female patient showed completely skewed X-inactivation, complete absence of RNA expression in blood and a phenotype similar to male patients. In the six other tested patients, X-inactivation was random, confirmed by a non-significant twofold to threefold decrease of RNA expression in blood, consistent with the expected mosaicism between cells expressing mutant or normal KIAA2022 alleles. CONCLUSIONS: Heterozygous loss of KIAA2022 expression is a cause of intellectual disability in females. Compared with its hemizygous male counterpart, the heterozygous female disease has less severe intellectual disability, but is more often associated with a severe and intractable myoclonic epilepsy.


Assuntos
Epilepsia Resistente a Medicamentos/metabolismo , Mutação da Fase de Leitura , Deficiência Intelectual/metabolismo , Mosaicismo , Proteínas do Tecido Nervoso/genética , Inativação do Cromossomo X , Adolescente , Adulto , Criança , Pré-Escolar , Cromossomos Humanos X , Códon sem Sentido , Epilepsia Resistente a Medicamentos/genética , Feminino , Genes Ligados ao Cromossomo X , Heterozigoto , Humanos , Deficiência Intelectual/genética , Pessoa de Meia-Idade , Síndrome
4.
Hum Mol Genet ; 23(22): 6081-7, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24957906

RESUMO

Birdshot chorioretinopathy (BSCR) is a rare form of autoimmune uveitis that can lead to severe visual impairment. Intriguingly, >95% of cases carry the HLA-A29 allele, which defines the strongest documented HLA association for a human disease. We have conducted a genome-wide association study in 96 Dutch and 27 Spanish cases, and 398 unrelated Dutch and 380 Spanish controls. Fine-mapping the primary MHC association through high-resolution imputation at classical HLA loci, identified HLA-A*29:02 as the principal MHC association (odds ratio (OR) = 157.5, 95% CI 91.6-272.6, P = 6.6 × 10(-74)). We also identified two novel susceptibility loci at 5q15 near ERAP2 (rs7705093; OR = 2.3, 95% CI 1.7-3.1, for the T allele, P = 8.6 × 10(-8)) and at 14q32.31 in the TECPR2 gene (rs150571175; OR = 6.1, 95% CI 3.2-11.7, for the A allele, P = 3.2 × 10(-8)). The association near ERAP2 was confirmed in an independent British case-control samples (combined meta-analysis P = 1.7 × 10(-9)). Functional analyses revealed that the risk allele of the polymorphism near ERAP2 is strongly associated with high mRNA and protein expression of ERAP2 in B cells. This study further defined an extremely strong MHC risk component in BSCR, and detected evidence for a novel disease mechanism that affects peptide processing in the endoplasmic reticulum.


Assuntos
Aminopeptidases/genética , Coriorretinite/genética , Estudo de Associação Genômica Ampla , Alelos , Aminopeptidases/metabolismo , Coriorretinopatia de Birdshot , Estudos de Casos e Controles , Coriorretinite/metabolismo , Feminino , Antígenos HLA-A/genética , Haplótipos , Humanos , Masculino , População Branca/genética
5.
Brain ; 138(Pt 11): 3238-50, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26384929

RESUMO

The epileptic encephalopathies are a clinically and aetiologically heterogeneous subgroup of epilepsy syndromes. Most epileptic encephalopathies have a genetic cause and patients are often found to carry a heterozygous de novo mutation in one of the genes associated with the disease entity. Occasionally recessive mutations are identified: a recent publication described a distinct neonatal epileptic encephalopathy (MIM 615905) caused by autosomal recessive mutations in the SLC13A5 gene. Here, we report eight additional patients belonging to four different families with autosomal recessive mutations in SLC13A5. SLC13A5 encodes a high affinity sodium-dependent citrate transporter, which is expressed in the brain. Neurons are considered incapable of de novo synthesis of tricarboxylic acid cycle intermediates; therefore they rely on the uptake of intermediates, such as citrate, to maintain their energy status and neurotransmitter production. The effect of all seven identified mutations (two premature stops and five amino acid substitutions) was studied in vitro, using immunocytochemistry, selective western blot and mass spectrometry. We hereby demonstrate that cells expressing mutant sodium-dependent citrate transporter have a complete loss of citrate uptake due to various cellular loss-of-function mechanisms. In addition, we provide independent proof of the involvement of autosomal recessive SLC13A5 mutations in the development of neonatal epileptic encephalopathies, and highlight teeth hypoplasia as a possible indicator for SLC13A5 screening. All three patients who tried the ketogenic diet responded well to this treatment, and future studies will allow us to ascertain whether this is a recurrent feature in this severe disorder.


Assuntos
Anodontia/genética , Ácido Cítrico/metabolismo , Deficiências do Desenvolvimento/genética , Epilepsia/genética , Simportadores/genética , Adolescente , Encefalopatias/genética , Criança , Feminino , Genes Recessivos , Predisposição Genética para Doença , Células HEK293 , Humanos , Masculino , Mutação , Linhagem , Simportadores/metabolismo
6.
Brain ; 138(Pt 5): 1198-207, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25783594

RESUMO

Photosensitivity is a heritable abnormal cortical response to flickering light, manifesting as particular electroencephalographic changes, with or without seizures. Photosensitivity is prominent in a very rare epileptic encephalopathy due to de novo CHD2 mutations, but is also seen in epileptic encephalopathies due to other gene mutations. We determined whether CHD2 variation underlies photosensitivity in common epilepsies, specific photosensitive epilepsies and individuals with photosensitivity without seizures. We studied 580 individuals with epilepsy and either photosensitive seizures or abnormal photoparoxysmal response on electroencephalography, or both, and 55 individuals with photoparoxysmal response but no seizures. We compared CHD2 sequence data to publicly available data from 34 427 individuals, not enriched for epilepsy. We investigated the role of unique variants seen only once in the entire data set. We sought CHD2 variants in 238 exomes from familial genetic generalized epilepsies, and in other public exome data sets. We identified 11 unique variants in the 580 individuals with photosensitive epilepsies and 128 unique variants in the 34 427 controls: unique CHD2 variation is over-represented in cases overall (P = 2.17 × 10(-5)). Among epilepsy syndromes, there was over-representation of unique CHD2 variants (3/36 cases) in the archetypal photosensitive epilepsy syndrome, eyelid myoclonia with absences (P = 3.50 × 10(-4)). CHD2 variation was not over-represented in photoparoxysmal response without seizures. Zebrafish larvae with chd2 knockdown were tested for photosensitivity. Chd2 knockdown markedly enhanced mild innate zebrafish larval photosensitivity. CHD2 mutation is the first identified cause of the archetypal generalized photosensitive epilepsy syndrome, eyelid myoclonia with absences. Unique CHD2 variants are also associated with photosensitivity in common epilepsies. CHD2 does not encode an ion channel, opening new avenues for research into human cortical excitability.


Assuntos
Proteínas de Ligação a DNA/genética , Epilepsia Reflexa/genética , Predisposição Genética para Doença , Mutação/genética , Animais , Eletroencefalografia , Técnicas de Silenciamento de Genes/métodos , Humanos , Estimulação Luminosa/métodos , Fatores de Risco , Peixe-Zebra
7.
Int J Eat Disord ; 48(7): 814-25, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26171770

RESUMO

BACKGROUND: Even though the evidence supporting the presence of a heritable component in the aetiology of anorexia nervosa (AN) is strong, the underlying genetic mechanisms remain poorly understood. The recent publication of a genome-wide association study (GWAS) of AN (Boraska, Mol Psychiatry, 2014) was an important step in genetic research in AN. OBJECTIVE: To briefly sum up strengths and weaknesses of candidate-gene and genome-wide approaches, to discuss the genome-wide association studies of AN and to make predictions about the genetic architecture of AN by comparing it to that of schizophrenia (since the diseases share some similarities and genetic research in schizophrenia is more advanced). METHOD: Descriptive literature review. RESULTS: Despite remarkable efforts, the gene-association studies in AN did not advance our knowledge as much as had been hoped, although some results still await replication. DISCUSSION: Continuous effort of participants, clinicians and researchers remains necessary to ensure that genetic research in AN follows a similarly successful path as in schizophrenia. Identification of genetic susceptibility loci provides a basis for follow-up studies.


Assuntos
Anorexia Nervosa/genética , Estudo de Associação Genômica Ampla/métodos , Feminino , Pesquisa em Genética , Humanos , Masculino
8.
Hum Mol Genet ; 21(24): 5359-72, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22949513

RESUMO

Genetic generalized epilepsies (GGEs) have a lifetime prevalence of 0.3% and account for 20-30% of all epilepsies. Despite their high heritability of 80%, the genetic factors predisposing to GGEs remain elusive. To identify susceptibility variants shared across common GGE syndromes, we carried out a two-stage genome-wide association study (GWAS) including 3020 patients with GGEs and 3954 controls of European ancestry. To dissect out syndrome-related variants, we also explored two distinct GGE subgroups comprising 1434 patients with genetic absence epilepsies (GAEs) and 1134 patients with juvenile myoclonic epilepsy (JME). Joint Stage-1 and 2 analyses revealed genome-wide significant associations for GGEs at 2p16.1 (rs13026414, P(meta) = 2.5 × 10(-9), OR[T] = 0.81) and 17q21.32 (rs72823592, P(meta) = 9.3 × 10(-9), OR[A] = 0.77). The search for syndrome-related susceptibility alleles identified significant associations for GAEs at 2q22.3 (rs10496964, P(meta) = 9.1 × 10(-9), OR[T] = 0.68) and at 1q43 for JME (rs12059546, P(meta) = 4.1 × 10(-8), OR[G] = 1.42). Suggestive evidence for an association with GGEs was found in the region 2q24.3 (rs11890028, P(meta) = 4.0 × 10(-6)) nearby the SCN1A gene, which is currently the gene with the largest number of known epilepsy-related mutations. The associated regions harbor high-ranking candidate genes: CHRM3 at 1q43, VRK2 at 2p16.1, ZEB2 at 2q22.3, SCN1A at 2q24.3 and PNPO at 17q21.32. Further replication efforts are necessary to elucidate whether these positional candidate genes contribute to the heritability of the common GGE syndromes.


Assuntos
Epilepsia Generalizada/genética , Estudo de Associação Genômica Ampla , Alelos , Epilepsia Tipo Ausência/genética , Predisposição Genética para Doença/genética , Proteínas de Homeodomínio/genética , Humanos , Epilepsia Mioclônica Juvenil/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Proteínas Serina-Treonina Quinases/genética , Receptor Muscarínico M3/genética , Proteínas Repressoras/genética , Homeobox 2 de Ligação a E-box com Dedos de Zinco
9.
Am J Hum Genet ; 86(6): 970-7, 2010 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-20560212

RESUMO

Celiac disease (CD) is an intolerance to dietary proteins of wheat, barley, and rye. CD may have substantial morbidity, yet it is quite common with a prevalence of 1%-2% in Western populations. It is not clear why the CD phenotype is so prevalent despite its negative effects on human health, especially because appropriate treatment in the form of a gluten-free diet has only been available since the 1950s, when dietary gluten was discovered to be the triggering factor. The high prevalence of CD might suggest that genes underlying this disease may have been favored by the process of natural selection. We assessed signatures of selection for ten confirmed CD-associated loci in several genome-wide data sets, comprising 8154 controls from four European populations and 195 individuals from a North African population, by studying haplotype lengths via the integrated haplotype score (iHS) method. Consistent signs of positive selection for CD-associated derived alleles were observed in three loci: IL12A, IL18RAP, and SH2B3. For the SH2B3 risk allele, we also show a difference in allele frequency distribution (Fst) between HapMap phase II populations. Functional investigation of the effect of the SH2B3 genotype in response to lipopolysaccharide and muramyl dipeptide revealed that carriers of the SH2B3 rs3184504*A risk allele showed stronger activation of the NOD2 recognition pathway. This suggests that SH2B3 plays a role in protection against bacteria infection, and it provides a possible explanation for the selective sweep on SH2B3, which occurred sometime between 1200 and 1700 years ago.


Assuntos
Infecções Bacterianas/genética , Doença Celíaca/genética , Suscetibilidade a Doenças , Proteína Adaptadora de Sinalização NOD2/genética , Polimorfismo de Nucleotídeo Único , Proteínas/genética , Seleção Genética , Proteínas Adaptadoras de Transdução de Sinal , África do Norte , Europa (Continente) , Evolução Molecular , Genética Populacional , Humanos , Peptídeos e Proteínas de Sinalização Intracelular
10.
Epilepsia ; 54(2): 265-71, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23350840

RESUMO

PURPOSE: Structural variations disrupting the gene encoding the neuron-specific splicing regulator RBFOX1 have been reported in three patients exhibiting epilepsy in comorbidity with other neuropsychiatric disorders. Consistently, the Rbfox1 knockout mouse model showed an increased susceptibility of seizures. The present candidate gene study tested whether exon-disrupting deletions of RBFOX1 increase the risk of idiopathic generalized epilepsies (IGEs), representing the largest group of genetically determined epilepsies. METHODS: Screening of microdeletions (size: >40 kb, coverage >20 markers) affecting the genomic sequence of the RBFOX1 gene was carried out by high-resolution single-nucleotide polymorphism (SNP) arrays in 1,408 European patients with idiopathic generalized epilepsy (IGE) and 2,256 population controls. Validation of RBFOX1 deletions and familial segregation analysis were performed by quantitative polymerase chain reaction (qPCR). KEY FINDINGS: We detected five exon-disrupting RBFOX1 deletions in the IGE patients, whereas none was observed in the controls (p = 0.008, Fisher's exact test). The size of the exonic deletions ranged from 68 to 896 kb and affected the untranslated 5'-terminal RBFOX1 exons. Segregation analysis in four families indicated that the deletions were inherited, display incomplete penetrance, and heterogeneous cosegregation patterns with IGE. SIGNIFICANCE: Rare deletions affecting the untranslated 5'-terminal RBFOX1 exons increase risk of common IGE syndromes. Variable expressivity, incomplete penetrance, and heterogeneous cosegregation patterns suggest that RBFOX1 deletions act as susceptibility factor in a genetically complex etiology, where heterogeneous combinations of genetic factors determine the disease phenotype.


Assuntos
Epilepsia Generalizada/genética , Éxons/genética , Deleção de Genes , Proteínas de Ligação a RNA/genética , Regiões 5' não Traduzidas , Idade de Início , Estudos de Casos e Controles , Criança , Comorbidade , DNA/genética , Epilepsia Generalizada/epidemiologia , Feminino , Humanos , Masculino , Linhagem , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único/genética , Fatores de Processamento de RNA , População Branca
11.
Epilepsy Behav ; 28 Suppl 1: S69-71, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23756485

RESUMO

Heritable EEG traits are often associated with epilepsy, and photoparoxysmal EEG response (PPR) is the most notable example of this observation in JME. Such EEG traits may be a subclinical expression of the defective mechanism that leads to epilepsy. Therefore, these traits can be used to map epilepsy genes by dissecting the complex epilepsy phenotype in endophenotypic sections that on their own have a presumed monogenic cause. Two characteristics make PPR particularly interesting as a useful endophenotype for epilepsy gene mapping. First, it shows an increased comorbidity with some but not all forms of epilepsy. Second, its mode of inheritance is compatible with a monogenic cause, which promises relative straightforward gene identification through positional cloning. Here, we summarize the current state of affairs.


Assuntos
Epilepsia Mioclônica Juvenil/genética , Epilepsia Mioclônica Juvenil/fisiopatologia , Fenótipo , Eletroencefalografia , Estudos de Associação Genética , Humanos , Estimulação Luminosa
12.
J Med Genet ; 49(8): 539-43, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22889856

RESUMO

BACKGROUND: We present a large Dutch family with seven males affected by a novel syndrome of X-linked intellectual disability, hypogonadism, gynaecomastia, truncal obesity, short stature and recognisable craniofacial manifestations resembling but not identical to Wilson-Turner syndrome. Seven female relatives show a much milder expression of the phenotype. METHODS AND RESULTS: We performed X chromosome exome (X-exome) sequencing in five individuals from this family and identified a novel intronic variant in the histone deacetylase 8 gene (HDAC8), c.164+5G>A, which disturbs the normal splicing of exon 2 resulting in exon skipping, and introduces a premature stop at the beginning of the histone deacetylase catalytic domain. The identified variant completely segregates in this family and was absent in 96 Dutch controls and available databases. Affected female carriers showed a notably skewed X-inactivation pattern in lymphocytes in which the mutated X-chromosome was completely inactivated. CONCLUSIONS: HDAC8 is a member of the protein family of histone deacetylases that play a major role in epigenetic gene silencing during development. HDAC8 specifically controls the patterning of the skull with the mouse HDAC8 knock-out showing craniofacial deformities of the skull. The present family provides the first evidence for involvement of HDAC8 in a syndromic form of intellectual disability.


Assuntos
Ginecomastia/genética , Histona Desacetilases/genética , Hipogonadismo/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Obesidade Abdominal/genética , Proteínas Repressoras/genética , Estudos de Casos e Controles , Cromossomos Humanos X/genética , Anormalidades Craniofaciais/genética , Análise Mutacional de DNA , Exoma , Éxons , Feminino , Loci Gênicos , Testes Genéticos/métodos , Heterozigoto , Humanos , Íntrons , Masculino , Deficiência Intelectual Ligada ao Cromossomo X/patologia , Mutação , Países Baixos , Linhagem , Fenótipo , Síndrome , Inativação do Cromossomo X
13.
PLoS One ; 18(9): e0290013, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37672513

RESUMO

Colour agnosia is a disorder that impairs colour knowledge (naming, recognition) despite intact colour perception. Previously, we have identified the first and only-known family with hereditary developmental colour agnosia. The aim of the current study was to explore genomic regions and candidate genes that potentially cause this trait in this family. For three family members with developmental colour agnosia and three unaffected family members CGH-array analysis and exome sequencing was performed, and linkage analysis was carried out using DominantMapper, resulting in the identification of 19 cosegregating chromosomal regions. Whole exome sequencing resulted in 11 rare coding variants present in all affected family members with developmental colour agnosia and absent in unaffected members. These variants affected genes that have been implicated in neural processes and functions (CACNA2D4, DDX25, GRINA, MYO15A) or that have an indirect link to brain function, development or disease (MAML2, STAU1, TMED3, RABEPK), and a remaining group lacking brain expression or involved in non-neural traits (DEPDC7, OR1J1, OR8D4). Although this is an explorative study, the small set of candidate genes that could serve as a starting point for unravelling mechanisms of higher level cognitive functions and cortical specialization, and disorders therein such as developmental colour agnosia.


Assuntos
Agnosia , Humanos , Agnosia/genética , Encéfalo , Cor , Proteínas do Citoesqueleto , Proteínas de Ligação a RNA , Proteínas de Transporte Vesicular
14.
BMC Genomics ; 13: 636, 2012 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-23157493

RESUMO

BACKGROUND: The predominant model for regulation of gene expression through DNA methylation is an inverse association in which increased methylation results in decreased gene expression levels. However, recent studies suggest that the relationship between genetic variation, DNA methylation and expression is more complex. RESULTS: Systems genetic approaches for examining relationships between gene expression and methylation array data were used to find both negative and positive associations between these levels. A weighted correlation network analysis revealed that i) both transcriptome and methylome are organized in modules, ii) co-expression modules are generally not preserved in the methylation data and vice-versa, and iii) highly significant correlations exist between co-expression and co-methylation modules, suggesting the existence of factors that affect expression and methylation of different modules (i.e., trans effects at the level of modules). We observed that methylation probes associated with expression in cis were more likely to be located outside CpG islands, whereas specificity for CpG island shores was present when methylation, associated with expression, was under local genetic control. A structural equation model based analysis found strong support in particular for a traditional causal model in which gene expression is regulated by genetic variation via DNA methylation instead of gene expression affecting DNA methylation levels. CONCLUSIONS: Our results provide new insights into the complex mechanisms between genetic markers, epigenetic mechanisms and gene expression. We find strong support for the classical model of genetic variants regulating methylation, which in turn regulates gene expression. Moreover we show that, although the methylation and expression modules differ, they are highly correlated.


Assuntos
Células Sanguíneas/metabolismo , Metilação de DNA/genética , Regulação da Expressão Gênica/genética , Variação Genética , Transcriptoma/genética , Células Sanguíneas/química , Ilhas de CpG/genética , Genótipo , Humanos , Modelos Lineares , Modelos Genéticos , Polimorfismo de Nucleotídeo Único/genética
15.
Epilepsia ; 53(2): 308-18, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22242659

RESUMO

PURPOSE: Genetic generalized epilepsies (GGEs) have a lifetime prevalence of 0.3% with heritability estimates of 80%. A considerable proportion of families with siblings affected by GGEs presumably display an oligogenic inheritance. The present genome-wide linkage meta-analysis aimed to map: (1) susceptibility loci shared by a broad spectrum of GGEs, and (2) seizure type-related genetic factors preferentially predisposing to either typical absence or myoclonic seizures, respectively. METHODS: Meta-analysis of three genome-wide linkage datasets was carried out in 379 GGE-multiplex families of European ancestry including 982 relatives with GGEs. To dissect out seizure type-related susceptibility genes, two family subgroups were stratified comprising 235 families with predominantly genetic absence epilepsies (GAEs) and 118 families with an aggregation of juvenile myoclonic epilepsy (JME). To map shared and seizure type-related susceptibility loci, both nonparametric loci (NPL) and parametric linkage analyses were performed for a broad trait model (GGEs) in the entire set of GGE-multiplex families and a narrow trait model (typical absence or myoclonic seizures) in the subgroups of JME and GAE families. KEY FINDINGS: For the entire set of 379 GGE-multiplex families, linkage analysis revealed six loci achieving suggestive evidence for linkage at 1p36.22, 3p14.2, 5q34, 13q12.12, 13q31.3, and 19q13.42. The linkage finding at 5q34 was consistently supported by both NPL and parametric linkage results across all three family groups. A genome-wide significant nonparametric logarithm of odds score of 3.43 was obtained at 2q34 in 118 JME families. Significant parametric linkage to 13q31.3 was found in 235 GAE families assuming recessive inheritance (heterogeneity logarithm of odds = 5.02). SIGNIFICANCE: Our linkage results support an oligogenic predisposition of familial GGE syndromes. The genetic risk factor at 5q34 confers risk to a broad spectrum of familial GGE syndromes, whereas susceptibility loci at 2q34 and 13q31.3 preferentially predispose to myoclonic seizures or absence seizures, respectively. Phenotype- genotype strategies applying narrow trait definitions in phenotypic homogeneous subgroups of families improve the prospects of disentangling the genetic basis of common familial GGE syndromes.


Assuntos
Cromossomos Humanos Par 13/genética , Cromossomos Humanos Par 2/genética , Epilepsia Generalizada/genética , Predisposição Genética para Doença/genética , Mapeamento Cromossômico , Família , Feminino , Ligação Genética , Loci Gênicos , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Linhagem , Fenótipo
16.
Am J Hum Genet ; 82(6): 1316-33, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18519066

RESUMO

Copy-number variation (CNV) is a major contributor to human genetic variation. Recently, CNV associations with human disease have been reported. Many genome-wide association (GWA) studies in complex diseases have been performed with sets of biallelic single-nucleotide polymorphisms (SNPs), but the available CNV methods are still limited. We present a new method (TriTyper) that can infer genotypes in case-control data sets for deletion CNVs, or SNPs with an extra, untyped allele at a high-resolution single SNP level. By accounting for linkage disequilibrium (LD), as well as intensity data, calling accuracy is improved. Analysis of 3102 unrelated individuals with European descent, genotyped with Illumina Infinium BeadChips, resulted in the identification of 1880 SNPs with a common untyped allele, and these SNPs are in strong LD with neighboring biallelic SNPs. Simulations indicate our method has superior power to detect associations compared to biallelic SNPs that are in LD with these SNPs, yet without increasing type I errors, as shown in a GWA analysis in celiac disease. Genotypes for 1204 triallelic SNPs could be fully imputed, with only biallelic-genotype calls, permitting association analysis of these SNPs in many published data sets. We estimate that 682 of the 1655 unique loci reflect deletions; this is on average 99 deletions per individual, four times greater than those detected by other methods. Whereas the identified loci are strongly enriched for known deletions, 61% have not been reported before. Genes overlapping with these loci more often have paralogs (p = 0.006) and biologically interact with fewer genes than expected (p = 0.004).


Assuntos
Deleção de Genes , Dosagem de Genes , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Algoritmos , Alelos , Estudos de Casos e Controles , Doença Celíaca/genética , Bases de Dados Genéticas , Variação Genética , Humanos , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único
17.
Brain ; 133(Pt 1): 23-32, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19843651

RESUMO

Idiopathic generalized epilepsies account for 30% of all epilepsies. Despite a predominant genetic aetiology, the genetic factors predisposing to idiopathic generalized epilepsies remain elusive. Studies of structural genomic variations have revealed a significant excess of recurrent microdeletions at 1q21.1, 15q11.2, 15q13.3, 16p11.2, 16p13.11 and 22q11.2 in various neuropsychiatric disorders including autism, intellectual disability and schizophrenia. Microdeletions at 15q13.3 have recently been shown to constitute a strong genetic risk factor for common idiopathic generalized epilepsy syndromes, implicating that other recurrent microdeletions may also be involved in epileptogenesis. This study aimed to investigate the impact of five microdeletions at the genomic hotspot regions 1q21.1, 15q11.2, 16p11.2, 16p13.11 and 22q11.2 on the genetic risk to common idiopathic generalized epilepsy syndromes. The candidate microdeletions were assessed by high-density single nucleotide polymorphism arrays in 1234 patients with idiopathic generalized epilepsy from North-western Europe and 3022 controls from the German population. Microdeletions were validated by quantitative polymerase chain reaction and their breakpoints refined by array comparative genomic hybridization. In total, 22 patients with idiopathic generalized epilepsy (1.8%) carried one of the five novel microdeletions compared with nine controls (0.3%) (odds ratio = 6.1; 95% confidence interval 2.8-13.2; chi(2) = 26.7; 1 degree of freedom; P = 2.4 x 10(-7)). Microdeletions were observed at 1q21.1 [Idiopathic generalized epilepsy (IGE)/control: 1/1], 15q11.2 (IGE/control: 12/6), 16p11.2 IGE/control: 1/0, 16p13.11 (IGE/control: 6/2) and 22q11.2 (IGE/control: 2/0). Significant associations with IGEs were found for the microdeletions at 15q11.2 (odds ratio = 4.9; 95% confidence interval 1.8-13.2; P = 4.2 x 10(-4)) and 16p13.11 (odds ratio = 7.4; 95% confidence interval 1.3-74.7; P = 0.009). Including nine patients with idiopathic generalized epilepsy in this cohort with known 15q13.3 microdeletions (IGE/control: 9/0), parental transmission could be examined in 14 families. While 10 microdeletions were inherited (seven maternal and three paternal transmissions), four microdeletions occurred de novo at 15q13.3 (n = 1), 16p13.11 (n = 2) and 22q11.2 (n = 1). Eight of the transmitting parents were clinically unaffected, suggesting that the microdeletion itself is not sufficient to cause the epilepsy phenotype. Although the microdeletions investigated are individually rare (<1%) in patients with idiopathic generalized epilepsy, they collectively seem to account for a significant fraction of the genetic variance in common idiopathic generalized epilepsy syndromes. The present results indicate an involvement of microdeletions at 15q11.2 and 16p13.11 in epileptogenesis and strengthen the evidence that recurrent microdeletions at 15q11.2, 15q13.3 and 16p13.11 confer a pleiotropic susceptibility effect to a broad range of neuropsychiatric disorders.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 15/genética , Cromossomos Humanos Par 16/genética , Epilepsia Generalizada/genética , Predisposição Genética para Doença/genética , Adolescente , Criança , Pré-Escolar , Estudos de Coortes , Epilepsia Generalizada/etiologia , Feminino , Humanos , Masculino , Linhagem , Adulto Jovem
18.
Transl Psychiatry ; 10(1): 100, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32198361

RESUMO

This review summarizes the last decade of work by the ENIGMA (Enhancing NeuroImaging Genetics through Meta Analysis) Consortium, a global alliance of over 1400 scientists across 43 countries, studying the human brain in health and disease. Building on large-scale genetic studies that discovered the first robustly replicated genetic loci associated with brain metrics, ENIGMA has diversified into over 50 working groups (WGs), pooling worldwide data and expertise to answer fundamental questions in neuroscience, psychiatry, neurology, and genetics. Most ENIGMA WGs focus on specific psychiatric and neurological conditions, other WGs study normal variation due to sex and gender differences, or development and aging; still other WGs develop methodological pipelines and tools to facilitate harmonized analyses of "big data" (i.e., genetic and epigenetic data, multimodal MRI, and electroencephalography data). These international efforts have yielded the largest neuroimaging studies to date in schizophrenia, bipolar disorder, major depressive disorder, post-traumatic stress disorder, substance use disorders, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, autism spectrum disorders, epilepsy, and 22q11.2 deletion syndrome. More recent ENIGMA WGs have formed to study anxiety disorders, suicidal thoughts and behavior, sleep and insomnia, eating disorders, irritability, brain injury, antisocial personality and conduct disorder, and dissociative identity disorder. Here, we summarize the first decade of ENIGMA's activities and ongoing projects, and describe the successes and challenges encountered along the way. We highlight the advantages of collaborative large-scale coordinated data analyses for testing reproducibility and robustness of findings, offering the opportunity to identify brain systems involved in clinical syndromes across diverse samples and associated genetic, environmental, demographic, cognitive, and psychosocial factors.


Assuntos
Transtorno Depressivo Maior , Encéfalo/diagnóstico por imagem , Transtorno Depressivo Maior/genética , Humanos , Imageamento por Ressonância Magnética , Neuroimagem , Reprodutibilidade dos Testes
19.
Sci Rep ; 9(1): 5986, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30980028

RESUMO

Hand preference is a prominent behavioural trait linked to human brain asymmetry. A handful of genetic variants have been reported to associate with hand preference or quantitative measures related to it. Most of these reports were on the basis of limited sample sizes, by current standards for genetic analysis of complex traits. Here we performed a genome-wide association analysis of hand preference in the large, population-based UK Biobank cohort (N = 331,037). We used gene-set enrichment analysis to investigate whether genes involved in visceral asymmetry are particularly relevant to hand preference, following one previous report. We found no evidence supporting any of the previously suggested variants or genes, nor that genes involved in visceral laterality have a role in hand preference. It remains possible that some of the previously reported genes or pathways are relevant to hand preference as assessed in other ways, or else are relevant within specific disorder populations. However, some or all of the earlier findings are likely to be false positives, and none of them appear relevant to hand preference as defined categorically in the general population. Our analysis did produce a small number of novel, significant associations, including one implicating the microtubule-associated gene MAP2 in handedness.


Assuntos
Lateralidade Funcional/genética , Estudos de Coortes , Lateralidade Funcional/fisiologia , Loci Gênicos , Estudo de Associação Genômica Ampla , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Polimorfismo de Nucleotídeo Único
20.
Sci Rep ; 9(1): 584, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30679750

RESUMO

Hand preference is a conspicuous variation in human behaviour, with a worldwide proportion of around 90% of people preferring to use the right hand for many tasks, and 10% the left hand. We used the large cohort of the UK biobank (~500,000 participants) to study possible relations between early life factors and adult hand preference. The probability of being left-handed was affected by the year and location of birth, likely due to cultural effects. In addition, hand preference was affected by birthweight, being part of a multiple birth, season of birth, breastfeeding, and sex, with each effect remaining significant after accounting for all others. Analysis of genome-wide genotype data showed that left-handedness was very weakly heritable, but shared no genetic basis with birthweight. Although on average left-handers and right-handers differed for a number of early life factors, all together these factors had only a minimal predictive value for individual hand preference.


Assuntos
Lateralidade Funcional , Mãos/fisiologia , Feminino , Geografia , Humanos , Masculino , Psicologia , Desempenho Psicomotor , Reino Unido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA