Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Regul Toxicol Pharmacol ; 150: 105631, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38648873

RESUMO

Advanced therapy medicinal products (ATMPs) are among the most complex pharmaceuticals with high human specificity. Species differences severely limit the clinical relevance of in vivo data. We conducted interviews with stakeholders involved in ATMP development about their perspective on the use of in vivo studies, the perceived hurdles and associated potential solutions regarding non-clinical development of ATMPs. In total, 17 stakeholders from 9 different countries were interviewed. A workshop was held with key stakeholders to further discuss major topics identified from the interviews. Conducting in vivo studies remains the status quo for ATMPs development. The hurdles identified included determining the amount of information required before clinical entry and effective use of limited human samples to understand a treatment or for clinical monitoring. A number of key points defined the need for future in vivo studies as well as improved application and implementation of New Approach Methodology (NAM)-based approach for products within a well-known modality or technology platform. These included data transparency, understanding of the added value of in vivo studies, and continuous advancement, evaluation, and qualification of NAMs. Based on the outcome of the discussions, a roadmap with practical steps towards a human-centric safety assessment of ATMPs was established.


Assuntos
Avaliação Pré-Clínica de Medicamentos , Humanos , Animais , Medição de Risco , Avaliação Pré-Clínica de Medicamentos/métodos
2.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36835019

RESUMO

Dopamine is present in a subgroup of neurons that are vital for normal brain functioning. Disruption of the dopaminergic system, e.g., by chemical compounds, contributes to the development of Parkinson's disease and potentially some neurodevelopmental disorders. Current test guidelines for chemical safety assessment do not include specific endpoints for dopamine disruption. Therefore, there is a need for the human-relevant assessment of (developmental) neurotoxicity related to dopamine disruption. The aim of this study was to determine the biological domain related to dopaminergic neurons of a human stem cell-based in vitro test, the human neural progenitor test (hNPT). Neural progenitor cells were differentiated in a neuron-astrocyte co-culture for 70 days, and dopamine-related gene and protein expression was investigated. Expression of genes specific for dopaminergic differentiation and functioning, such as LMX1B, NURR1, TH, SLC6A3, and KCNJ6, were increasing by day 14. From day 42, a network of neurons expressing the catecholamine marker TH and the dopaminergic markers VMAT2 and DAT was present. These results confirm stable gene and protein expression of dopaminergic markers in hNPT. Further characterization and chemical testing are needed to investigate if the model might be relevant in a testing strategy to test the neurotoxicity of the dopaminergic system.


Assuntos
Neurônios Dopaminérgicos , Células-Tronco Neurais , Humanos , Neurônios Dopaminérgicos/metabolismo , Dopamina/metabolismo , Técnicas de Cocultura , Astrócitos/metabolismo , Diferenciação Celular/fisiologia , Células-Tronco Neurais/metabolismo
3.
Differentiation ; 115: 1-10, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32738735

RESUMO

The importance of oxygen tension in in vitro cultures and its effect on embryonic stem cell (ESC) differentiation has been widely acknowledged. Research has mainly focussed on ESC maintenance or on one line of differentiation and only few studies have examined the potential relation between oxygen tension during ESC maintenance and differentiation. In this study we investigated the influence of atmospheric (20%) versus physiologic (5%) oxygen tension in ESC cultures and their differentiation within the cardiac and neural embryonic stem cell tests (ESTc, ESTn). Oxygen tension was set at 5% or 20% and cells were kept in these conditions from starting up cell culture until use for differentiation. Under these oxygen tensions, ESC culture showed no differences in proliferation and gene and protein expression levels. Differentiation was either performed in the same or in the alternative oxygen tension compared to ESC culture creating four different experimental conditions. Cardiac differentiation in 5% instead of 20% oxygen resulted in reduced development of spontaneously beating cardiomyocytes and lower expression of cardiac markers Nkx2.5, Myh6 and MF20 (myosin), regardless whether ESC had been cultured in 5% or 20% oxygen tension. As compared to the control (20% oxygen during stem cell maintenance and differentiation), neural differentiation in 5% oxygen with ESC cultured in 20% oxygen led to more cardiac and neural crest cell differentiation. The opposite experimental condition of neural differentiation in 20% oxygen with ESC cultured in 5% oxygen resulted in more glial differentiation. ESC that were maintained and differentiated in 5% oxygen showed an increase in neural crest and oligodendrocytes as compared to 20% oxygen during stem cell maintenance and differentiation. This study showed major effects on ESC differentiation in ESTc and ESTn of oxygen tension, which is an important variable to consider when designing and developing a stem cell-based in vitro system.


Assuntos
Células-Tronco Embrionárias/metabolismo , Crista Neural/metabolismo , Células-Tronco Neurais/citologia , Organogênese/genética , Diferenciação Celular/genética , Linhagem da Célula/genética , Células-Tronco Embrionárias/citologia , Humanos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Crista Neural/citologia , Crista Neural/crescimento & desenvolvimento , Células-Tronco Neurais/metabolismo , Oxigênio/metabolismo
4.
Altern Lab Anim ; 48(4): 173-183, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33034509

RESUMO

In vitro tests are increasingly applied in chemical hazard assessment. Basic culture conditions may affect the outcome of in vitro tests and should be optimised to reduce false predictions. The neural embryonic stem cell test (ESTn) can predict early neurodevelopmental effects of chemicals, as it mimics the differentiation of stem cells towards the neuroectodermal lineage. Normal early neural differentiation depends crucially on folic acid (FA) and methionine (MET), both elements of the one-carbon (1C) cycle. The aim of this study was to assess the concentration-dependent influence of FA and MET on neural differentiation in the ESTn, and its consequences for assay sensitivity to methotrexate (MTX), a compound that interferes with the 1C cycle. Neural differentiation was inhibited below 0.007 mM and above 0.22 mM FA, while both stem cell viability (< 0.097 mM, > 1.52 mM) and neural differentiation (< 0.181 mM, > 1.35 mM) were affected when changing MET concentrations. A 10-day exposure to 13 nM MTX inhibited neural differentiation, especially in FA- and MET-deficient conditions. However, a 24-hour exposure to 39 nM MTX decreased neural cell and neural crest cell differentiation markers only when the concentration of FA in the medium was three times the standard concentration, which was expected to have a protective effect against MTX. These results show the importance of nutrient concentrations, exposure scenarios and timing of read-outs for cell differentiation and compound sensitivity in the ESTn. Caution should be taken when interpreting results from a single in vitro test, especially when extrapolating to effects on complex morphogenetic processes, like neural tube development.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Ácido Fólico/farmacologia , Metionina/farmacologia , Metotrexato/toxicidade , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Animais , Linhagem Celular , Camundongos
5.
Chemosphere ; 304: 135298, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35700809

RESUMO

There is an increased awareness that the use of animals for compound-induced developmental neurotoxicity (DNT) testing has limitations. Animal-free innovations, especially the ones based on human stem cell-based models are pivotal in studying DNT since they can mimic processes relevant to human brain development. Here we present the human neural progenitor test (hNPT), a 10-day protocol in which neural progenitor cells differentiate into a neuron-astrocyte co-culture. The study aimed to characterise differentiation over time and to find neurodevelopmental processes sensitive to compound exposure using transcriptomics. 3992 genes regulated in unexposed control cultures (p ≤ 0.001, log2FC ≥ 1) showed Gene Ontology (GO-) term enrichment for neuronal and glial differentiation, neurite extension, synaptogenesis, and synaptic transmission. Exposure to known or suspected DNT compounds (acrylamide, chlorpyrifos, fluoxetine, methyl mercury, or valproic acid) at concentrations resulting in 95% cell viability each regulated unique combinations of GO-terms relating to neural progenitor proliferation, neuronal and glial differentiation, axon development, synaptogenesis, synaptic transmission, and apoptosis. Investigation of the GO-terms 'neuron apoptotic process' and 'axon development' revealed common genes that were responsive across compounds, and might be used as biomarkers for DNT. The GO-term 'synaptic signalling', on the contrary, whilst also responsive to all compounds tested, showed little overlap in gene expression regulation patterns between the conditions. This GO-term may articulate compound-specific effects that may be relevant for revealing differences in mechanism of toxicity. Given its focus on neural progenitor cell to mature multilineage neuronal cell maturation and its detailed molecular readout based on gene expression analysis, hNPT might have added value as a tool for neurodevelopmental toxicity testing in vitro. Further assessment of DNT-specific biomarkers that represent these processes needs further studies.


Assuntos
Células-Tronco Neurais , Síndromes Neurotóxicas , Animais , Biomarcadores/metabolismo , Diferenciação Celular , Humanos , Células-Tronco Neurais/metabolismo , Neurônios , RNA-Seq
6.
Toxicology ; 454: 152735, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33636252

RESUMO

Animal-free assessment of compound-induced developmental neurotoxicity will most likely be based on batteries of multiple in vitro tests. The optimal battery is built by combining tests with complementary biological domains that together ideally cover all relevant toxicity pathways. Thus, biological domain definition, i.e. which biological processes and cell types are represented, is an important assay characteristic for determining the place of assays in testing strategies. The murine neural embryonic stem cell test (ESTn) is employed to predict the developmental neurotoxicity of compounds. The aim of this study was to explore the biological domain of ESTn according to three groups of biomarker genes of early (neuro)development: morphogenetic regulators, Hox genes and cell type markers for the ectodermal and neural lineages. These biomarker groups were selected based on their crucial regulatory role in (neuro)development. Analysis of these genes in a series of previously generated whole transcriptome datasets of ESTn showed that at day 7 in culture cell differentiation resembled hindbrain/branchial/thoracic development between E6.5-E12.5 in vivo, with subsequent development into a mixed cell culture containing different neural subtypes, astrocytes and oligodendrocytes by day 13. In addition, the selected biomarkers showed common and distinct responses to compound exposure. Monitoring the biological domain of ESTn through gene expression patterns of morphogenetic regulators, Hox genes and cell type markers proved instrumental in providing mechanistic understanding of compound effects on neural differentiation in ESTn, and can aid in positioning of the test in a battery of complementary in vitro tests in integrated approaches to testing and assessment.


Assuntos
Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Síndromes Neurotóxicas/etiologia , Testes de Toxicidade/métodos , Animais , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Biomarcadores/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Conjuntos de Dados como Assunto , Células-Tronco Embrionárias/citologia , Perfilação da Expressão Gênica , Genes Homeobox/genética , Técnicas In Vitro , Camundongos , Células-Tronco Neurais/citologia , Síndromes Neurotóxicas/genética , Oligodendroglia/citologia , Oligodendroglia/efeitos dos fármacos
7.
Reprod Toxicol ; 98: 107-116, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32931842

RESUMO

Human embryonic stem cell neuronal differentiation models provide promising in vitro tools for the prediction of developmental neurotoxicity of chemicals. Such models mimic essential elements of human relevant neuronal development, including the differentiation of a variety of brain cell types and their neuronal network formation as evidenced by specific gene and protein biomarkers. However, the reproducibility and lengthy culture duration of cell models present drawbacks and delay regulatory implementation. Here we present a relatively short and robust protocol to differentiate H9-derived neural progenitor cells (NPCs) into a neuron-astrocyte co-culture. When frozen-stored NPCs were re-cultured and induced into neuron-astrocyte differentiation, they showed gene- and protein expression typical for these cells, and most notably they exhibited spontaneous electrical activity within three days of culture as measured by a multi-well micro-electrode array. Modulating the ratio of astrocytes and neurons through different growth factors including glial cell line-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF), and ciliary neurotrophic factor (CNTF) did not compromise the ability to develop spontaneous electrical activity. This robust neuronal differentiation model may serve as a functional component of a testing strategy for unravelling mechanisms of developmental neurotoxicity.


Assuntos
Astrócitos/citologia , Neurônios/citologia , Astrócitos/fisiologia , Diferenciação Celular , Células Cultivadas , Técnicas de Cocultura , Expressão Gênica , Células-Tronco Embrionárias Humanas/citologia , Humanos , Células-Tronco Neurais/citologia , Neurônios/fisiologia , Síndromes Neurotóxicas
8.
Cell Reprogram ; 22(6): 300-310, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33146557

RESUMO

Human induced pluripotent stem cells (iPSCs) can capture the diversity in the general human population as well as provide deeper insight in cellular mechanisms. This makes them suitable to study both fundamental and applied research subjects, such as disease modeling, gene-environment interactions, personalized medicine, and chemical toxicity. In an independent laboratory, we were able to generate iPSCs originating from human peripheral blood mononuclear cells according to a modified version of a temporal episomal vector (EV)-based induction method. The iPSCs could subsequently be differentiated into two different lineages: mesoderm-derived cardiomyocytes and ectoderm-derived neuron-astrocyte co-cultures. It was shown that the neuron-astrocyte culture developed a mature phenotype within the course of five weeks and depending on the medium composition, network formation and neuron-astrocyte cell ratios could be modified. Although previously it has been described that iPSCs generated with this EV-based induction protocol could differentiate to mesenchymal stem cells, hepatocytes, cardiomyocytes, and basic neuronal cultures, we now demonstrate differentiation into a culture containing both neurons and astrocytes.


Assuntos
Astrócitos/citologia , Diferenciação Celular , Reprogramação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Leucócitos Mononucleares/citologia , Miócitos Cardíacos/citologia , Neurônios/citologia , Células Cultivadas , Técnicas de Cocultura , Vetores Genéticos , Humanos
9.
Neurotoxicology ; 76: 1-9, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31593710

RESUMO

There is a need for in vitro tests for the evaluation of chemicals and pharmaceuticals that may cause developmental neurotoxicity (DNT) in humans. The neural embryonic stem cell test (ESTn) is such an in vitro test that mimics early neural differentiation. The aim of this study was to define the biological domain of ESTn based on the expression of selective markers for certain cell types, and to investigate the effects of two antidepressants, fluoxetine (FLX) and venlafaxine (VNX), on neural differentiation. A cell lineage map was made to track neural differentiation and the effects of FLX and VNX in ESTn. Whole transcriptome analysis revealed differentiation from an embryonic stem cell population to a mixed culture of neural progenitors, neurons and neural crest cells 7 days into differentiation. Maturing neurons, astrocytes and oligodendrocytes were present after 13 days. Exposure to FLX or VNX led to different expression patterns between compounds at both time points. On day 7, both compounds upregulated most of the stem cell- and immature neuron markers, but had distinct effects on neural subtype markers. FLX downregulated glycinergic markers and upregulated cholinergic markers, while VNX had the opposite effect. On day 13, FLX and VNX affected their specific therapeutic targets, represented by mainly serotonergic markers by FLX- and dopaminergic and noradrenergic markers in VNX-exposed cultures, as well as oligodendrocyte and glycinergic neuron markers. This proof of concept study shows the added value of assessing DNT in ESTn through a cell lineage map and gives mechanistic insight in the potential neurodevelopmental effects of FLX and VNX. More compounds should be tested to further evaluate the use of the cell lineage map.


Assuntos
Antidepressivos de Segunda Geração/toxicidade , Linhagem da Célula/efeitos dos fármacos , Células-Tronco Embrionárias/efeitos dos fármacos , Fluoxetina/toxicidade , Células-Tronco Neurais/efeitos dos fármacos , Testes de Toxicidade/métodos , Cloridrato de Venlafaxina/toxicidade , Animais , Astrócitos/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Oligodendroglia/efeitos dos fármacos
10.
Toxicol Lett ; 303: 28-37, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30578912

RESUMO

In vitro assays to assess developmental neurotoxicity of chemicals are highly desirable. The murine neural embryonic stem cell test (ESTn) can mimic parts of early differentiation of embryonic brain and may therefore be useful for this purpose. The aim of this study was to investigate whether this test is able to rank the toxic potencies of three valproic acid analogues and to study their mode of action by investigating their individual effects on four cell types: stem cells, neurons, astrocytes and neural crest cells. Using immunocytochemical read-outs and qPCR for cell type-specific genes, the effects of valproic acid (VPA), 2-ethylhexanoic acid (EHA) and 2-ethyl-4-methylpentanoic (EMPA) were assessed. VPA and EHA but not EMPA downregulated cell type-specific differentiation makers and upregulated stem cell related markers (Fut4, Cdh1) at different time points during differentiation. Expression of Gfap, a marker for astrocytes, was dramatically downregulated by VPA and EHA, but not by EMPA. This finding was verified using immunostainings. Based on the number and extent of genes regulated by the three compounds, relative potencies were determined as VPA > EHA > EMPA, which is consistent with in vivo developmental toxicity potency ranking of these compounds. Thus, ESTn using a combination of morphology, gene and protein expression readouts, may provide a medium-throughput system for monitoring the effects of compounds on differentiation of cell types in early brain development.


Assuntos
Células-Tronco Embrionárias/efeitos dos fármacos , Regulação da Expressão Gênica , Células-Tronco Neurais/efeitos dos fármacos , Ácido Valproico/análogos & derivados , Ácido Valproico/toxicidade , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Caproatos/toxicidade , Proteínas Cdh1/genética , Proteínas Cdh1/metabolismo , Diferenciação Celular/efeitos dos fármacos , Fucosiltransferases/genética , Fucosiltransferases/metabolismo , Camundongos , Crista Neural/efeitos dos fármacos , Crista Neural/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA