Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Nanomedicine ; 53: 102697, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37507061

RESUMO

PEGylated lipid nanoparticles (LNPs) are commonly used to deliver bioactive molecules, but the role of PEGylation in DNA-loaded LNP interactions at the cellular and subcellular levels remains poorly understood. In this study, we investigated the mechanism of action of DNA-loaded PEGylated LNPs using gene reporter technologies, dynamic light scattering (DLS), synchrotron small angle X-ray scattering (SAXS), and fluorescence confocal microscopy (FCS). We found that PEG has no significant impact on the size or nanostructure of DNA LNPs but reduces their zeta potential and interaction with anionic cell membranes. PEGylation increases the structural stability of LNPs and results in lower DNA unloading. FCS experiments revealed that PEGylated LNPs are internalized intact inside cells and largely shuttled to lysosomes, while unPEGylated LNPs undergo massive destabilization on the plasma membrane. These findings can inform the design, optimization, and validation of DNA-loaded LNPs for gene delivery and vaccine development.


Assuntos
Lipídeos , Nanopartículas , Lipídeos/química , Espalhamento a Baixo Ângulo , Difração de Raios X , Nanopartículas/química , DNA , Polietilenoglicóis/química , RNA Interferente Pequeno
2.
Int J Mol Sci ; 23(14)2022 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-35886970

RESUMO

Here we provide demonstration that fast fluorescence fluctuation spectroscopy is a fast and robust approach to extract information on the dynamics of molecules enclosed within subcellular nanostructures (e.g., organelles or vesicles) which are also moving in the complex cellular environment. In more detail, Raster Image Correlation Spectroscopy (RICS) performed at fast timescales (i.e., microseconds) reveals the fast motion of fluorescently labeled molecules within two exemplary dynamic subcellular nanostructures of biomedical interest, the lysosome and the insulin secretory granule (ISG). The measurement of molecular diffusion is then used to extract information on the average properties of subcellular nanostructures, such as macromolecular crowding or molecular aggregation. Concerning the lysosome, fast RICS on a fluorescent tracer allowed us to quantitatively assess the increase in organelle viscosity in the pathological condition of Krabbe disease. In the case of ISGs, fast RICS on two ISG-specific secreting peptides unveiled their differential aggregation propensity depending on intragranular concentration. Finally, a combination of fast RICS and feedback-based 3D orbital tracking was used to subtract the slow movement of subcellular nanostructures from the fast diffusion of molecules contained within them and independently validate the results. Results presented here not only demonstrate the acquired ability to address the dynamic behavior of molecules in moving, nanoscopic reference systems, but prove the relevance of this approach to advance our knowledge on cell function at the subcellular scale.


Assuntos
Nanoestruturas , Transporte Biológico , Difusão , Movimento (Física) , Espectrometria de Fluorescência/métodos
3.
Graefes Arch Clin Exp Ophthalmol ; 257(5): 899-903, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30617582

RESUMO

PURPOSE: To evaluate the plasma concentration of the soluble form of the urokinase-type plasminogen activator receptor ((s)uPAR), an established biomarker of chronic inflammation, in patients affected by neovascular age-related macular degeneration. METHODS: Forty consecutive patients affected by age-related macular degeneration and 52 subjects with no history of the disease were included in this case-control study. The two groups of individuals considered for the study were matched for age, sex, and class of medications taken. Plasma concentration of suPAR was measured using a specific ELISA assay (suPARnostic, Birkeroed, Denmark). RESULTS: The case and control groups were similar for age, gender distribution, weight, height, and systolic and diastolic blood pressure, as well as for dyslipidemia and high blood pressure medication (P > 0.28). The plasma concentrations of suPAR were significantly increased in patients with neovascular age-related macular degeneration when compared to controls (6.19 ± 2.2 ng/ml, vs 5.21 ± 1.5, respectively, mean ± SD P = 0.01). CONCLUSIONS: Patients with neovascular age-related macular degeneration display increased plasma levels of suPAR, suggesting that chronic inflammation may be involved in the pathogenesis of the disease.


Assuntos
Inflamação/sangue , Receptores de Ativador de Plasminogênio Tipo Uroquinase/sangue , Degeneração Macular Exsudativa/sangue , Idoso , Biomarcadores/sangue , Estudos de Casos e Controles , Progressão da Doença , Ensaio de Imunoadsorção Enzimática , Feminino , Angiofluoresceinografia , Fundo de Olho , Humanos , Inflamação/diagnóstico , Macula Lutea/patologia , Masculino , Pessoa de Meia-Idade , Prognóstico , Tomografia de Coerência Óptica , Degeneração Macular Exsudativa/diagnóstico
4.
EMBO J ; 33(21): 2458-72, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25168639

RESUMO

The urokinase-type plasminogen activator receptor (uPAR) is a non-integrin vitronectin (VN) cell adhesion receptor linked to the plasma membrane by a glycolipid anchor. Through structure-function analyses of uPAR, VN and integrins, we document that uPAR-mediated cell adhesion to VN triggers a novel type of integrin signalling that is independent of integrin-matrix engagement. The signalling is fully active on VN mutants deficient in integrin binding site and is also efficiently transduced by integrins deficient in ligand binding. Although integrin ligation is dispensable, signalling is crucially dependent upon an active conformation of the integrin and its association with intracellular adaptors such as talin. This non-canonical integrin signalling is not restricted to uPAR as it poses no structural constraints to the receptor mediating cell attachment. In contrast to canonical integrin signalling, where integrins form direct mechanical links between the ECM and the cytoskeleton, the molecular mechanism enabling the crosstalk between non-integrin adhesion receptors and integrins is dependent upon membrane tension. This suggests that for this type of signalling, the membrane represents a critical component of the molecular clutch.


Assuntos
Integrinas/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Transdução de Sinais/fisiologia , Vitronectina/metabolismo , Adesão Celular/fisiologia , Células HEK293 , Humanos , Integrinas/genética , Mutação , Receptores de Ativador de Plasminogênio Tipo Uroquinase/genética , Vitronectina/genética
5.
EMBO Rep ; 17(7): 982-98, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27189837

RESUMO

Components of the plasminogen activation system including urokinase (uPA), its inhibitor (PAI-1) and its cell surface receptor (uPAR) have been implicated in a wide variety of biological processes related to tissue homoeostasis. Firstly, the binding of uPA to uPAR favours extracellular proteolysis by enhancing cell surface plasminogen activation. Secondly, it promotes cell adhesion and signalling through binding of the provisional matrix protein vitronectin. We now report that uPA and plasmin induces a potent negative feedback on cell adhesion through specific cleavage of the RGD motif in vitronectin. Cleavage of vitronectin by uPA displays a remarkable receptor dependence and requires concomitant binding of both uPA and vitronectin to uPAR Moreover, we show that PAI-1 counteracts the negative feedback and behaves as a proteolysis-triggered stabilizer of uPAR-mediated cell adhesion to vitronectin. These findings identify a novel and highly specific function for the plasminogen activation system in the regulation of cell adhesion to vitronectin. The cleavage of vitronectin by uPA and plasmin results in the release of N-terminal vitronectin fragments that can be detected in vivo, underscoring the potential physiological relevance of the process.


Assuntos
Motivos de Aminoácidos , Adesão Celular , Plasminogênio/metabolismo , Domínios e Motivos de Interação entre Proteínas , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Vitronectina/química , Vitronectina/metabolismo , Linhagem Celular Tumoral , Retroalimentação Fisiológica , Fibrinolisina/metabolismo , Fibronectinas/metabolismo , Expressão Gênica , Humanos , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Ligação Proteica , Proteólise , Ativador de Plasminogênio Tipo Uroquinase/genética
6.
Sci Rep ; 14(1): 14235, 2024 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902357

RESUMO

Human islets of Langerhans are composed mostly of glucagon-secreting α cells and insulin-secreting ß cells closely intermingled one another. Current methods for identifying α and ß cells involve either fixing islets and using immunostaining or disaggregating islets and employing flow cytometry for classifying α and ß cells based on their size and autofluorescence. Neither approach, however, allows investigating the dynamic behavior of α and ß cells in a living and intact islet. To tackle this issue, we present a machine-learning-based strategy for identification α and ß cells in label-free infrared micrographs of living human islets without immunostaining. Intrinsic autofluorescence is stimulated by infrared light and collected both in intensity and lifetime in the visible range, dominated by NAD(P)H and lipofuscin signals. Descriptive parameters are derived from micrographs for ~ 103 cells. These parameters are used as input for a boosted decision-tree model (XGBoost) pre-trained with immunofluorescence-derived cell-type information. The model displays an optimized-metrics performance of 0.86 (i.e. area under a ROC curve), with an associated precision of 0.94 for the recognition of ß cells and 0.75 for α cells. This tool promises to enable longitudinal studies on the dynamic behavior of individual cell types at single-cell resolution within the intact tissue.


Assuntos
Células Secretoras de Insulina , Aprendizado de Máquina , Humanos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Glucagon/metabolismo , Ilhotas Pancreáticas/metabolismo , Raios Infravermelhos
7.
Sci Rep ; 13(1): 13342, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37587148

RESUMO

Pro-inflammatory cytokines contribute to ß-cell failure in both Type-1 and Type-2 Diabetes. Data collected so far allowed to dissect the genomic, transcriptomic, proteomic and biochemical landscape underlying cytokine-induced ß-cell progression through dysfunction. Yet, no report thus far complemented such molecular information with the direct optical nanoscopy of the ß-cell subcellular environment. Here we tackle this issue in Insulinoma 1E (INS-1E) ß-cells by label-free fluorescence lifetime imaging microscopy (FLIM) and fluorescence-based super resolution imaging by expansion microscopy (ExM). It is found that 24-h exposure to IL-1ß and IFN-γ is associated with a neat modification of the FLIM signature of cell autofluorescence due to the increase of either enzyme-bound NAD(P)H molecules and of oxidized lipid species. At the same time, ExM-based direct imaging unveils neat alteration of mitochondrial morphology (i.e. ~ 80% increase of mitochondrial circularity), marked degranulation (i.e. ~ 40% loss of insulin granules, with mis-localization of the surviving pool), appearance of F-actin-positive membrane blebs and an hitherto unknown extensive fragmentation of the microtubules network (e.g. ~ 37% reduction in the number of branches). Reported observations provide an optical-microscopy framework to interpret the amount of molecular information collected so far on ß-cell dysfunction and pave the way to future ex-vivo and in-vivo investigations.


Assuntos
Neoplasias Pancreáticas , Proteômica , Humanos , Citoesqueleto de Actina , Citocinas , Microscopia de Fluorescência
8.
Commun Biol ; 5(1): 1232, 2022 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-36371562

RESUMO

Here we use a combination of two-photon Fluorescence Lifetime Imaging Microscopy (FLIM) of NAD(P)H free/bound ratio in living HIs with post-fixation, immunofluorescence-based, cell-type identification. FLIM allowed to measure variations in the NAD(P)H free/bound ratio induced by glucose; immunofluorescence data allowed to identify single α and ß cells; finally, matching of the two datasets allowed to assign metabolic shifts to cell identity. 312 α and 654 ß cells from a cohort of 4 healthy donors, 15 total islets, were measured. Both α and ß cells display a wide spectrum of responses, towards either an increase or a decrease in NAD(P)H free/bound ratio. Yet, if single-cell data are averaged according to the respective donor and correlated to donor insulin secretion power, a non-random distribution of metabolic shifts emerges: robust average responses of both α and ß cells towards an increase of enzyme-bound NAD(P)H belong to the donor with the lowest insulin-secretion power; by contrast, discordant responses, with α cells shifting towards an increase of free NAD(P)H and ß cells towards an increase of enzyme-bound NAD(P)H, correspond to the donor with the highest insulin-secretion power. Overall, data reveal neat anti-correlation of tissue metabolic responses with respect to tissue insulin secretion power.


Assuntos
Glucose , Ilhotas Pancreáticas , Humanos , Glucose/metabolismo , NAD/metabolismo , NADP/metabolismo , Ilhotas Pancreáticas/metabolismo , Insulina/metabolismo
9.
ACS Appl Mater Interfaces ; 14(51): 56666-56677, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36524967

RESUMO

Lipid nanoparticles (LNPs) are currently having an increasing impact on nanomedicines as delivery agents, among others, of RNA molecules (e.g., short interfering RNA for the treatment of hereditary diseases or messenger RNA for the development of COVID-19 vaccines). Despite this, the delivery of plasmid DNA (pDNA) by LNPs in preclinical studies is still unsatisfactory, mainly due to the lack of systematic structural and functional studies on DNA-loaded LNPs. To tackle this issue, we developed, characterized, and tested a library of 16 multicomponent DNA-loaded LNPs which were prepared by microfluidics and differed in lipid composition, surface functionalization, and manufacturing factors. 8 out of 16 formulations exhibited proper size and zeta potential and passed to the validation step, that is, the simultaneous quantification of transfection efficiency and cell viability in human embryonic kidney cells (HEK-293). The most efficient formulation (LNP15) was then successfully validated both in vitro, in an immortalized adult keratinocyte cell line (HaCaT) and in an epidermoid cervical cancer cell line (CaSki), and in vivo as a nanocarrier to deliver a cancer vaccine against the benchmark target tyrosine-kinase receptor HER2 in C57BL/6 mice. Finally, by a combination of confocal microscopy, transmission electron microscopy and synchrotron small-angle X-ray scattering, we were able to show that the superior efficiency of LNP15 can be linked to its disordered nanostructure consisting of small-size unoriented layers of pDNA sandwiched between closely apposed lipid membranes that undergo massive destabilization upon interaction with cellular lipids. Our results provide new insights into the structure-activity relationship of pDNA-loaded LNPs and pave the way to the clinical translation of this gene delivery technology.


Assuntos
COVID-19 , Nanopartículas , Animais , Camundongos , Humanos , Vacinas contra COVID-19 , Células HEK293 , Lipídeos/química , Camundongos Endogâmicos C57BL , DNA/química , Nanopartículas/química , RNA Interferente Pequeno
10.
Sci Rep ; 10(1): 16809, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-33033354

RESUMO

Both onco-suppressor PREP1 and the oncogene MEIS1 bind to PBX1. This interaction stabilizes the two proteins and allows their translocation into the nucleus and thus their transcriptional activity. Here, we have combined cross-linking mass-spectrometry and systematic mutagenesis to detail the binding geometry of the PBX1-PREP1 (and PBX1-MEIS1) complexes, under native in vivo conditions. The data confirm the existence of two distinct interaction sites within the PBC domain of PBX1 and unravel differences among the highly similar binding sites of MEIS1 and PREP1. The HR2 domain has a fundamental role in binding the PBC-B domain of PBX1 in both PREP1 and MEIS1. The HR1 domain of MEIS1, however, seem to play a less stringent role in PBX1 interaction with respect to that of PREP1. This difference is also reflected by the different binding affinity of the two proteins to PBX1. Although partial, this analysis provides for the first time some ideas on the tertiary structure of the complexes not available before. Moreover, the extensive mutagenic analysis of PREP1 identifies the role of individual hydrophobic HR1 and HR2 residues, both in vitro and in vivo.


Assuntos
Proteínas de Homeodomínio/metabolismo , Fator de Transcrição 1 de Leucemia de Células Pré-B/metabolismo , Mapeamento de Interação de Proteínas , Células A549 , Sítios de Ligação , Clonagem Molecular , Ensaio de Imunoadsorção Enzimática , Humanos , Espectrometria de Massas , Mutagênese , Proteína Meis1/metabolismo , Mapeamento de Interação de Proteínas/métodos
11.
Elife ; 62017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28849762

RESUMO

The urokinase receptor (uPAR) is a glycosylphosphatidylinositol (GPI)-anchored protein that promotes tissue remodeling, tumor cell adhesion, migration and invasion. uPAR mediates degradation of the extracellular matrix through protease recruitment and enhances cell adhesion, migration and signaling through vitronectin binding and interactions with integrins. Full-length uPAR is released from the cell surface, but the mechanism and significance of uPAR shedding remain obscure. Here we identify transmembrane glycerophosphodiesterase GDE3 as a GPI-specific phospholipase C that cleaves and releases uPAR with consequent loss of function, whereas its homologue GDE2 fails to attack uPAR. GDE3 overexpression depletes uPAR from distinct basolateral membrane domains in breast cancer cells, resulting in a less transformed phenotype, it slows tumor growth in a xenograft model and correlates with prolonged survival in patients. Our results establish GDE3 as a negative regulator of the uPAR signaling network and, furthermore, highlight GPI-anchor hydrolysis as a cell-intrinsic mechanism to alter cell behavior.


Assuntos
Neoplasias da Mama/genética , Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , Diester Fosfórico Hidrolases/genética , Receptores de Ativador de Plasminogênio Tipo Uroquinase/genética , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Adesão Celular , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Feminino , Técnicas de Inativação de Genes/métodos , Células HEK293 , Humanos , Hidrólise , Isoenzimas/genética , Isoenzimas/metabolismo , Camundongos , Camundongos Nus , Modelos Moleculares , Transplante de Neoplasias , Diester Fosfórico Hidrolases/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase/antagonistas & inibidores , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Transdução de Sinais , Carga Tumoral , Vitronectina/genética , Vitronectina/metabolismo
12.
Eur J Cell Biol ; 95(1): 1-14, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26616200

RESUMO

The molecular clutch (MC) model proposes that actomyosin-driven force transmission permits integrin-dependent cell migration. To investigate the MC, we introduced diverse talin (TLN) and integrin variants into Flp-In™ T-Rex™ HEK293 cells stably expressing uPAR. Vitronectin variants served as substrate providing uPAR-mediated cell adhesion and optionally integrin binding. This particular system allowed us to selectively analyse key MC proteins and interactions, effectively from the extracellular matrix substrate to intracellular f-actin, and to therewith study mechanobiological aspects of MC engagement also uncoupled from integrin/ligand binding. With this experimental approach, we found that for the initial PIP2-dependent membrane/TLN/f-actin linkage and persistent lamellipodia formation the C-terminal TLN actin binding site (ABS) is dispensable. The establishment of an adequate MC-mediated lamellipodial tension instead depends predominantly on the coupling of this C-terminal TLN ABS to the actomyosin-driven retrograde actin flow force. This lamellipodial tension is crucial for full integrin activation eventually determining integrin-dependent cell migration. In the integrin/ligand-independent condition the frictional membrane resistance participates to these processes. Integrin/ligand binding can also contribute but is not necessarily required.


Assuntos
Movimento Celular/fisiologia , Integrinas/metabolismo , Pseudópodes/metabolismo , Actinas/metabolismo , Imunofluorescência , Adesões Focais/metabolismo , Células HEK293 , Humanos , Ligantes , Microscopia Confocal , Ligação Proteica/fisiologia , Talina/metabolismo
13.
Data Brief ; 5: 107-13, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26504891

RESUMO

The urokinase-type plasminogen activator receptor (uPAR or CD87) is a glycolipid-anchored membrane protein often expressed in the microenvironment of invasive solid cancers and high levels are generally associated with poor patient prognosis (Kriegbaum et al., 2011 [1]). uPAR is organized as a dynamic modular protein structure composed of three homologous Ly6/uPAR domains (LU).This internally flexible protein structure of uPAR enables an allosteric regulation of the interactions with its two principal ligands: the serine protease urokinase-type plasminogen activator (uPA) and the provisional matrix protein vitronectin (Vn) (Mertens et al., 2012; Gårdsvoll et al., 2011; Madsen et al., 2007 [2-4]). The data presented here relates to the non-covalent trapping of one of these biologically relevant uPAR-conformations by a novel class of monoclonal antibodies (Zhao et al., 2015 [5]) and to the general mapping of the topographic epitope landscape on uPAR. The methods required to achieve these data include: (1) recombinant expression and purification of a uPAR-hybrid protein trapped in the desired conformation [patent; WO 2013/020898 A12013]; (2) developing monoclonal antibodies with unique specificities using this protein as antigen; (3) mapping the functional epitope on uPAR for these mAbs by surface plasmon resonance with a complete library of purified single-site uPAR mutants (Zhao et al., 2015; Gårdsvoll et al., 2006 [5,6]); and finally (4) solving the three-dimensional structures for one of these mAbs by X-ray crystallography alone and in complex with uPAR [deposited in the PDB database as 4QTH and 4QTI, respectively].

14.
J Mol Biol ; 427(6 Pt B): 1389-1403, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25659907

RESUMO

The urokinase-type plasminogen activator receptor (uPAR) is a multidomain glycolipid-anchored membrane protein, which facilitates extracellular matrix remodeling by focalizing plasminogen activation to cell surfaces via its high-affinity interaction with uPA. The modular assembly of its three LU (Ly6/uPAR-like) domains is inherently flexible and binding of uPA drives uPAR into its closed conformation, which presents the higher-affinity state for vitronectin thus providing an allosteric regulatory mechanism. Using a new class of epitope-mapped anti-uPAR monoclonal antibodies (mAbs), we now demonstrate that the reciprocal stabilization is indeed also possible. By surface plasmon resonance studies, we show that these mAbs and vitronectin have overlapping binding sites on uPAR and that they share Arg91 as hotspot residue in their binding interfaces. The crystal structure solved for one of these uPAR·mAb complexes at 3.0Å clearly shows that this mAb preselects the closed uPAR conformation with an empty but correctly assembled large hydrophobic binding cavity for uPA. Accordingly, these mAbs inhibit the uPAR-dependent lamellipodia formation and migration on vitronectin-coated matrices irrespective of the conformational status of uPAR and its occupancy with uPA. This is the first study to the best of our knowledge, showing that the dynamic assembly of the three LU domains in uPARwt can be driven toward the closed form by an external ligand, which is not engaging the hydrophobic uPA binding cavity. As this binding interface is also exploited by the somatomedin B domain of vitronectin, therefore, this relationship should be taken into consideration when exploring uPAR-dependent cell adhesion and migration in vitronectin-rich environments.


Assuntos
Conformação Proteica , Receptores de Ativador de Plasminogênio Tipo Uroquinase/química , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Somatomedinas/metabolismo , Vitronectina/metabolismo , Sequência de Aminoácidos , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Sítios de Ligação , Adesão Celular , Cristalografia por Raios X , Mapeamento de Epitopos , Humanos , Cinética , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Pseudópodes/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase/imunologia , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Ressonância de Plasmônio de Superfície , Ativador de Plasminogênio Tipo Uroquinase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA