Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-35505496

RESUMO

The data on water pollution is scarce in developing countries, including Brazil. The water quality assessment is important implementing the monitoring and remediation programs to minimize the risk of hazardous substances in freshwaters. Thus, this study evaluated the surface water quality of a stretch of the Bois River (Brazil), based on the physicochemical, microbiological and ecotoxicological analyses conducted in 2017, using Standard Methods and fish embryo acute toxicity (FET) test with zebrafish (Danio rerio). The results indicated that the quality of water samples located close to the discharge of tannery effluents was most impaired. Total phosphorus, BOD, DO, ammoniacal nitrogen, and thermotolerant coliforms parameters in P4 were not in accordance with the standards of current Brazilian legislation. Iron, lead, and copper levels were higher than environmental standards. The physicochemical quality of water samples was lower in the dry season than the rainy season. All samples (P1, P3, and P5) in rainy and dry seasons did not induce significant acute toxicity for zebrafish early-life stage; however other trophic levels (algae and microcrustacean) should be investigated to gain a better understanding of the toxicity during water quality analysis. In conclusion, the physicochemical and microbiological changes in the water of the Bois River can affect aquatic organisms as well as humans when it is used for drinking or in agriculture.


Assuntos
Rios , Poluentes Químicos da Água , Animais , Brasil , Monitoramento Ambiental/métodos , Rios/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Qualidade da Água , Peixe-Zebra
2.
Heliyon ; 9(9): e18855, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37809487

RESUMO

Like other phthalates, diethyl phthalate (DEP) is considered as a contaminant of emerging concern (CEC) due to its ease in migrating from a package to water and food, and hence contaminate consumers, being metabolized and excreted in the urine. Its presence has a negative impact on aquatic ecosystems, especially with respect to disruption of the endocrine system and to reproductive disorders in humans. It mainly enters water bodies via sewage effluents from effluent treatment plants, due to its incomplete or inefficient removal. The objective of this work was to evaluate the toxicity of DEP at different trophic levels and to analyze data on the incidence and concentration of DEP according to its solubility. The concentrations ranged from 12.5 mg L-1 to 500 mg L-1 considering the response for toxicity at each trophic level and to determine the lethal concentration in 50% of the following organisms (LC50) (in mg L-1): Lactuca sativa seeds, Artemia salina Leach nauplii and Zebrafish embryo larval stage (Danio rerio), being 41,057.58 after 120 h; 401.77 after 48 h; and 470 after 96 h of exposure, respectively. As expected, higher organisms were more affected even at low concentrations, which shows the anthropological contribution of CECs to water bodies.

3.
Methods Mol Biol ; 2240: 175-195, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33423234

RESUMO

Historically, the ocular toxicity of manufactured consumer materials has been evaluated using the rabbit in vivo Draize rabbit eye test. The animal data obtained were used by the United Nations Globally Harmonized System of Classification and Labelling of Chemicals (UN GHS) to define the classification and labelling (C&L) for eye damage/irritation endpoint. However, the Draize test, a method which was never formally validated, has been widely criticized because of its technical limitations. In addition, ethical and economic issues and advances in scientific knowledge, and political and public pressures have made animal experimentation unsustainable. This scenario has consequently led to the development of nonanimal testing and protocols/approaches with considerable predictive value and relevance for humans. It is widely accepted that one single nonanimal method cannot cover all the criteria of damage/inflammation assessed by regulatory adopted in vivo animal testing. Thus, integrated testing strategies (ITS) have been proposed, including a tiered testing approach combining different nonanimal testing with different endpoints, which have been used for regulatory purposes, on a case-by-case basis and within integrated approaches to testing and assessment (IATA), to identify materials according to their ability to trigger eye damage. In particular, the top-down and bottom-up approaches have been recommended for the C&L of materials, which cause serious eye damage or eye irritation, respectively. This chapter describes detailed protocols for eye irritation testing based on cells (Short Time Exposure-STE, OECD No. 491/2017), a vascularized membrane (the Hen's Egg Test-Chorioallantoic Membrane-HET-CAM) and corneal tissue (Bovine Corneal Opacity and Permeability-BCOP, OECD No. 437/2017), which can be applied using top-down or bottom-up approaches. In addition, it suggests making a corneal histomorphometric evaluation as an additional parameter in the BCOP method to differentiate materials that cause serious eye tissue damage (UN GHS Cat. 1) from materials that have reversible eye irritation effects (UN GHS Cat. 2).


Assuntos
Alternativas aos Testes com Animais , Bioensaio , Membrana Corioalantoide/irrigação sanguínea , Membrana Corioalantoide/efeitos dos fármacos , Córnea/efeitos dos fármacos , Irritantes/toxicidade , Neuropatia Óptica Tóxica , Testes de Toxicidade , Animais , Bovinos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Embrião de Galinha , Córnea/patologia , Coelhos
4.
Environ Toxicol Chem ; 40(2): 333-341, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33210755

RESUMO

Thymol, a monoterpene phenol, is used as a natural biocide. To circumvent its chemical instability, we propose use of thymol-loaded biogenic silica nanoparticles (BSiO2 #THY NPs); however, the toxicity of this system for aquatic organisms is unknown. Thus, the present study aimed to evaluate the toxicogenetic effects induced by thymol, BSiO2 NP, and BSiO2 #THY on Artemia salina and zebrafish (Danio rerio) early life stages. We also investigated the impact of BSiO2 aggregation in different exposure media (saline and freshwater). Based on the median lethal concentration at 48 h (LC5048h ), BSiO2 #THY (LC5048h = 1.06 mg/L) presented similar toxic potential as thymol (LC5048h = 1.03 mg/L) for A. salina, showing that BSiO2 had no influence on BSiO2 #THY toxicity. Because BSiO2 aggregated and sedimented faster in A. salina aqueous medium than in the other medium, this NP had lower interaction with this microcrustacean. Thus, BSiO2 #THY toxicity for A. salina is probably due to the intrinsic toxicity of thymol. For zebrafish early life stages, BSiO2 #THY (LC5096h = 13.13 mg/L) was more toxic than free thymol (LC5096h = 25.60 mg/L); however, BSiO2 NP has no toxicity for zebrafish early life stages. The lower aggregation of BSiO2 in the freshwater medium compared to the saline medium may have enhanced thymol's availability for this aquatic organism. Also, BSiO2 #THY significantly induced sublethal effects as thymol, and both were genotoxic for zebrafish. In conclusion, although BSiO2 #THY still needs improvements to ensure its safety for freshwater ecosystems, BSiO2 NP seems to be a safe nanocarrier for agriculture. Environ Toxicol Chem 2021;40:333-341. © 2020 SETAC.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Animais , Ecossistema , Nanopartículas/toxicidade , Dióxido de Silício/toxicidade , Timol/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra
5.
Artigo em Inglês | MEDLINE | ID: mdl-31255230

RESUMO

Glyphosate (GLY) is the active ingredient of several herbicide formulations widely used to control weeds in agricultural and non-agricultural areas. Due to the intensive use of GLY-based herbicides and their direct application on soils, some of their components, including the active ingredient, may reach the aquatic environment through direct run-off and leaching. The present study assessed the acute toxicity and genotoxicity of the GLY-based formulation Atanor 48 (ATN) and its major constituents GLY, surfactant polyethoxylated tallow amine (POEA), as well as the main metabolite of GLY aminomethylphosphonic acid (AMPA) on non-target aquatic organisms. The toxic effects of these chemicals were evaluated in the fish embryo acute toxicity test with zebrafish (Danio rerio), while genotoxic effects were investigated in the comet assays with cells from zebrafish larvae and rainbow trout gonad-2 (RTG-2). GLY and AMPA caused no acute toxic effect, while ATN and POEA induced significant lethal effects in zebrafish (LC50-96 h 76.50 mg/L and 5.49 mg/L, respectively). All compounds were genotoxic in comet experiments with zebrafish larvae (LOEC 1.7 mg/L for GLY, ATN, AMPA and 0.4 mg/L for POEA). Unlike in vivo, only POEA induced DNA damage in RTG-2 cells (LOEC 1.6 mg/L), suggesting that it is a direct acting genotoxic agent. In summary, these data indicate that the lethal effects on zebrafish early-life stages can be ranked in the following order from most to least toxic: surfactant POEA > formulation ATN > active ingredient GLY ≈ metabolite AMPA. Genotoxic effects were observed in both RTG-2 cells (only POEA) and zebrafish (all test compounds) with the lowest tested concentrations. Therefore, it is important to evaluate different toxicological endpoints as well as use different non-target organisms to predict the hazards of GLY-based formulations and their components and breakdown product to aquatic biota.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Glicina/análogos & derivados , Herbicidas/toxicidade , Poluentes Químicos da Água/toxicidade , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/toxicidade , Aminas/toxicidade , Animais , Ensaio Cometa/métodos , Dano ao DNA/efeitos dos fármacos , Feminino , Glicina/toxicidade , Larva/efeitos dos fármacos , Masculino , Mutagênicos/toxicidade , Oncorhynchus mykiss , Compostos Organofosforados/toxicidade , Peixe-Zebra , Glifosato
6.
Sci Rep ; 7: 41326, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28145477

RESUMO

Microcystin-leucine arginine (MC-LR) is the most abundant and toxic secondary metabolite produced by freshwater cyanobacteria. This toxin has a high potential hazard health due to potential interactions with liver, kidney and the nervous system. The aim of this work was the design of a simple and environmentally friendly electrochemical system based on highly efficient nanostructured electrodes for the removal of MC-LR in tap water. Titania nanoparticles were deposited on carbon (graphite) under a simple and efficient microwave assisted approach for the design of the electrode, further utilized in the electrochemical remediation assays. Parameters including the applied voltage, time of removal and pH (natural tap water or alkaline condition) were investigated in the process, with results pointing to a high removal efficiency for MC-LR (60% in tap water and 90% in alkaline media experiments, under optimized conditions).


Assuntos
Carbono/química , Técnicas Eletroquímicas/métodos , Microcistinas/isolamento & purificação , Titânio/química , Purificação da Água/métodos , Água/química , Eletrodos , Toxinas Marinhas , Microcistinas/química , Espectrometria de Massas em Tandem
7.
Chem Biol Interact ; 277: 185-194, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28890382

RESUMO

Scientific evidences have highlighted 5-(1-(3-fluorophenyl)-1H-pyrazol-4-yl)-2H-tetrazole (LQFM021) as a promising anti-inflammatory, analgesic and antinociceptive agent due to its effects on peripheral opioid receptors associated with activation of the nitric oxide/cGMP/KATP pathway. Despite these important pharmacological findings, toxicity data of LQFM021 are scarce. Thus, this study investigated the in vitro genotoxicity of LQFM021 through cytokinesis-block micronucleus assay (OECD Nº 487/2014). Moreover, zebrafish model was used to assess the embryotoxicity potential of LQFM021 using fish embryo toxicity test (OECD Nº 236/2013) with extended exposure to evaluate subchronic larval development. In vivo subchronic toxicity of LQFM021 in rats (OECD Nº 407/2008) was also conducted. This compound at the lower concentrations tested (3.1 and 31 µg/mL) did not promote changes in micronuclei frequency in HepG2 cells. However, in the higher concentrations of LQFM021 (310 and 620 µg/mL) triggered a significant increase of micronucleated HepG2 cells, showing an alert signal of potential genotoxicity. Regarding the oral treatment of rats with LQFM021 (62.5, 125 or 250 mg/kg) for 28 days, the main findings showed that LQFM021 promoted renal and liver changes in a dose-dependent manner, being irreversible damage for kidneys while liver tissue showed a recovery after 14 days post treatment. Regarding embryotoxicity, although the lower concentrations used did not show toxicity, the concentration of LQFM021 (39.8 and 100 mg/L) promoted malformations in zebrafish embryo-larvae stage, in especial cardiac tissue changes. In conclusion, anti-inflammatory compound LQFM021 seems to have some limiting factors as a new therapeutic option to be used orally and in high repeated doses, related to those found in the non-steroidal anti-inflammatory drugs (NSAIDs).


Assuntos
Anti-Inflamatórios/toxicidade , Mutagênicos/toxicidade , Pirazóis/toxicidade , Tetrazóis/toxicidade , Animais , Embrião não Mamífero/efeitos dos fármacos , Feminino , Células Hep G2 , Humanos , Testes de Mutagenicidade , Ratos Wistar , Peixe-Zebra
8.
Environ Toxicol Chem ; 36(7): 1755-1763, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27517480

RESUMO

Glyphosate-based herbicides are the most commonly used worldwide because they are effective and relatively nontoxic to nontarget species. Unlimited and uncontrolled use of such pesticides can have serious consequences for human health and ecological balance. The present study evaluated the acute toxicity and genotoxicity of 2 glyphosate-based formulations, Roundup Original (Roundup) and Glyphosate AKB 480 (AKB), on different organisms: cucumber (Cucumis sativus), lettuce (Lactuca sativa), and tomato (Lycopersicon esculentum) seeds, and microcrustacean Artemia salina and zebrafish (Danio rerio) early life stages. For the germination endpoint, only L. esculentum presented significant sensitivity to AKB and L. sativa to Roundup, whereas both formulations significantly inhibited the root growth of all species tested. Both AKB and Roundup induced significant toxicity to A. salina; both are classified as category 3, which indicates a hazard for the aquatic environment, according to criteria of the Globally Harmonized Classification System. However, Roundup was more toxic than AKB, with 48-h median lethal concentration (LC50) values of 14.19 mg/L and 37.53 mg/L, respectively. For the embryo-larval toxicity test, Roundup proved more toxic than AKB for the mortality endpoint (96-h LC50 values of 10.17 mg/L and 27.13 mg/L, respectively), whereas for the hatching parameter, AKB was more toxic than Roundup. No significant genotoxicity to zebrafish larvae was found. We concluded that AKB and Roundup glyphosate-based formulations are phytotoxic and induce toxic effects in nontarget organisms such as A. salina and zebrafish early life stages. Environ Toxicol Chem 2017;36:1755-1763. © 2016 SETAC.


Assuntos
Artemia/efeitos dos fármacos , Cucumis sativus/efeitos dos fármacos , Glicina/análogos & derivados , Herbicidas/toxicidade , Lactuca/efeitos dos fármacos , Solanum lycopersicum/efeitos dos fármacos , Animais , Artemia/crescimento & desenvolvimento , Cucumis sativus/crescimento & desenvolvimento , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/fisiologia , Germinação/efeitos dos fármacos , Glicina/toxicidade , Humanos , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Dose Letal Mediana , Lactuca/crescimento & desenvolvimento , Solanum lycopersicum/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Testes de Toxicidade Aguda , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/fisiologia , Glifosato
9.
Toxicology ; 376: 83-93, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27129947

RESUMO

A new molecule, LQFM048, originally designed through molecular hybridization using green chemistry approach, is in development as a photoprotective agent. Eye irritation, skin toxicity and genotoxicity evaluations are mandatory for predicting health risks. In this context, the purpose of this study was to investigate the eye irritation potential of LQFM048 by combining Short Time Exposure (STE), Bovine Corneal Opacity and Permeability (BCOP) associated with corneal histomorphometry and Hen's Egg Test-Chorioallantoic Membrane (HET-CAM). Additionally, skin toxicity was evaluated by interleukin-18 production in the HaCaT keratinocyte, Local Lymph Node Assay (LLNA:BrdU-ELISA) method, 3T3 Neutral red uptake (NRU) assay and in vivo phototoxicity test. Genotoxic potential of LQFM048 was also analyzed by cytokinesis-block micronucleus assay (MNvit test-cytoB) in HepG2 cells. Our results showed that LQFM048 did not induce eye irritation and it was classified as UN GHS No Category for both STE and BCOP assays and non-irritating for HET-CAM test. LQFM048 showed non-potential skin sensitization with stimulation index (SI=0.7) in the LLNA:BrdU-ELISA method. Corroborating in vivo tests, it did not promote significant cytotoxicity in HaCaT cells and it showed similar levels of IL-18 when compared to control. Furthermore, LQFM048 induced non-phototoxic potential with photo-irritation factor (PIF) and mean photo effect (MPE) of 1 and -0.138, respectively, for 3T3 cells. Similarly, it was not phototoxic for in vivo testing with or without exposure to UVA, showing SI values of 1 and 1.2, respectively. The micronucleus test showed that LQFM048 was not genotoxic, under the conditions tested.In conclusion, LQFM048, a heterocyclic compound obtained through an environmentally acceptable simple synthetic route, seems to be safe for human use, especially for the development of a new sunscreen product, since it is neither an eye irritant, nor a contact allergen, nor mutagenic and nor phototoxic.


Assuntos
Córnea/efeitos dos fármacos , Irritantes/toxicidade , Pele/efeitos dos fármacos , Protetores Solares/toxicidade , Células 3T3 , Animais , Bovinos , Linhagem Celular Transformada , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Sobrevivência Celular/efeitos da radiação , Galinhas , Córnea/fisiologia , Córnea/efeitos da radiação , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Células Hep G2 , Humanos , Irritantes/administração & dosagem , Camundongos , Camundongos Endogâmicos BALB C , Testes de Mutagenicidade/métodos , Distribuição Aleatória , Pele/metabolismo , Pele/efeitos da radiação , Raios Ultravioleta/efeitos adversos
10.
Environ Toxicol Chem ; 35(2): 429-34, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26267709

RESUMO

Textile manufacturing is one of the most polluting industrial sectors because of the release of potentially toxic compounds, such as synthetic dyes, into the environment. Depending on the class of the dyes, their loss in wastewaters can range from 2% to 50% of the original dye concentration. Consequently, uncontrolled use of such dyes can negatively affect human health and the ecological balance. The present study assessed the toxicity of the textile dyes Direct Black 38 (DB38), Reactive Blue 15 (RB15), Reactive Orange 16 (RO16), and Vat Green 3 (VG3) using zebrafish (Danio rerio) embryos for 144 h postfertilization (hpf). At the tested conditions, none of the dyes caused significant mortality. The highest RO16 dose significantly delayed or inhibited the ability of zebrafish embryos to hatch from the chorion after 96 hpf. From 120 hpf to 144 hpf, all the dyes impaired the gas bladder inflation of zebrafish larvae, DB38 also induced curved tail, and VG3 led to yolk sac edema in zebrafish larvae. Based on these data, DB38, RB15, RO16, and VG3 can induce malformations during embryonic and larval development of zebrafish. Therefore, it is essential to remove these compounds from wastewater or reduce their concentrations to safe levels before discharging textile industry effluents into the aquatic environment.


Assuntos
Corantes/toxicidade , Resíduos Industriais/efeitos adversos , Indústria Têxtil , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/genética , Anormalidades Induzidas por Medicamentos/patologia , Animais , Relação Dose-Resposta a Droga , Edema/induzido quimicamente , Edema/patologia , Embrião não Mamífero/anormalidades , Fertilização , Larva/efeitos dos fármacos , Cauda/patologia , Eliminação de Resíduos Líquidos , Saco Vitelino/efeitos dos fármacos
12.
Toxicol In Vitro ; 28(1): 31-8, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23811265

RESUMO

Human eyes have a remarkable ability to recognize hundreds of colour shades, which has stimulated the use of colorants, especially for clothing, but toxicological studies have shown that some textile dyes can be hazardous to human health. Under conditions of intense perspiration, dyes can migrate from coloured clothes and penetrate into human skin. Garments made from cotton fabrics are the most common clothing in tropical countries, due to their high temperatures. Aiming to identify safe textile dyes for dyeing cotton fabrics, the genotoxicity [in vitro Comet assay with normal human dermal fibroblasts (NHDF), Tail Intensity] and mutagenicity [Salmonella/microsome preincubation assay (30min), tester strains TA98, TA100, YG1041 and YG1042] of Reactive Blue 2 (RB2, CAS No. 12236-82-7, C.I. 61211) and Reactive Green 19 (RG19, CAS No. 61931-49-5, C.I. 205075) were evaluated both in the formulated form and as extracted from cotton fibres using different artificial sweats. Both the dyes could migrate from cotton fibres to sweat solutions, the sweat composition and pH being important factors during this extraction. However, the dye sweat solutions showed no genotoxic/mutagenic effects, whereas a weak mutagenic potential was detected by the Ames test for both dyes in their formulated form. These findings emphasize the relevance of textile dyes assessment under conditions that more closely resemble human exposure, in order to recognize any hazard.


Assuntos
Corantes/toxicidade , Fibra de Algodão , Suor/química , Corantes/química , Ensaio Cometa , Humanos , Concentração de Íons de Hidrogênio , Testes de Mutagenicidade , Salmonella typhimurium/genética , Indústria Têxtil
13.
Front Biosci (Elite Ed) ; 4(3): 914-23, 2012 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-22201924

RESUMO

Aromatic amines are a group of chemicals whose ubiquitous presence in the environment is a result of the multitude of sources from which they originate. These compounds are widely used as raw materials or at intermediate stages in the manufacturing of industrial chemicals such as pesticides, medicines, dyestuffs, polymers, surfactants, cosmetics and corrosion inhibitors, especially in dyestuff factories. As with most chemical carcinogens, aromatic amines need to be metabolized into reactive electrophiles in order to exert their carcinogenic effects. This activation typically involves N-oxidation of arylamines to yield N-hydroxyarylamines. Since these amines are potential carcinogenic agents and are discharged into the atmosphere, water and soil, they constitute an important class of environmental pollutants of enormous concern due to the potential for human exposure.


Assuntos
Aminas/toxicidade , Poluentes Ambientais/toxicidade , Aminas/metabolismo , Aminas/farmacocinética , Biotransformação , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA