Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Low Genit Tract Dis ; 22(2): 147-151, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29474232

RESUMO

OBJECTIVES: The aim of the study was to compare, using a proteomic approach, cervicovaginal fluid (CVF) proteins of women with bacterial vaginosis (BV) with those presenting normal microbiota. MATERIALS AND METHODS: A total of 309 reproductive-aged women were cross-sectionally enrolled. Participants were tested for vaginal candidosis, Trichomonas vaginalis, Chlamydia trachomatis, and Neisseria gonorrhoeae and excluded if positive. Vaginal microbiota was classified microscopically according to Nugent criteria in normal, intermediate, and BV. Randomly selected CVF samples of 29 women with BV and an equal number with normal microbiota were subjected to proteomic analysis. Thus, a total of 58 CVF samples were evaluated using shotgun liquid chromatography-tandem mass spectrometry in a Q-Tof PREMIER API mass spectrometer (MicroMass/Waters) for peptide detection and relative quantification. RESULTS: Of the 309 women enrolled, 63 (20.4%) were excluded after testing positive for at least one of the tested co-infections or because of low-quality samples. Microscopic classification of vaginal microbiota on the remaining 246 samples revealed that 132 women (53.6%) had normal microbiota, 33 (13.4%) had intermediate microbiota, and 81 (33.0%) had BV. Proteomic analysis of CVF of 58 randomly selected women with normal microbiota (n = 29) or BV (n = 29) successfully identified 74 proteins. In addition, the comparison of abundance of those proteins between the groups showed that the following five (6.7%) were enriched in BV: neutrophil elastase, kaliocin-1, neutrophil defensin-1, Ig lambda-2 chain C regions, and protein S100-A7. All of which have a recognized role in host's immunity. CONCLUSIONS: Exclusive finding of BV affects immunity-related CVF components of reproductive-aged women.


Assuntos
Muco do Colo Uterino/química , Proteínas/análise , Vagina/metabolismo , Vaginose Bacteriana/metabolismo , Brasil , Muco do Colo Uterino/microbiologia , Estudos Transversais , Feminino , Humanos , Espectrometria de Massas , Proteômica , Vagina/microbiologia , Esfregaço Vaginal , Vaginose Bacteriana/microbiologia
2.
Sci Rep ; 13(1): 8060, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37198208

RESUMO

Despite all efforts to combat the pandemic of COVID-19, we are still living with high numbers of infected persons, an overburdened health care system, and the lack of an effective and definitive treatment. Understanding the pathophysiology of the disease is crucial for the development of new technologies and therapies for the best clinical management of patients. Since the manipulation of the whole virus requires a structure with an adequate level of biosafety, the development of alternative technologies, such as the synthesis of peptides from viral proteins, is a possible solution to circumvent this problem. In addition, the use and validation of animal models is of extreme importance to screen new drugs and to compress the organism's response to the disease. Peptides derived from recombinant S protein from SARS-CoV-2 were synthesized and validated by in silico, in vitro and in vivo methodologies. Macrophages and neutrophils were challenged with the peptides and the production of inflammatory mediators and activation profile were evaluated. These peptides were also inoculated into the swim bladder of transgenic zebrafish larvae at 6 days post fertilization (dpf) to mimic the inflammatory process triggered by the virus, which was evaluated by confocal microscopy. In addition, toxicity and oxidative stress assays were also developed. In silico and molecular dynamics assays revealed that the peptides bind to the ACE2 receptor stably and interact with receptors and adhesion molecules, such as MHC and TCR, from humans and zebrafish. Macrophages stimulated with one of the peptides showed increased production of NO, TNF-α and CXCL2. Inoculation of the peptides in zebrafish larvae triggered an inflammatory process marked by macrophage recruitment and increased mortality, as well as histopathological changes, similarly to what is observed in individuals with COVID-19. The use of peptides is a valuable alternative for the study of host immune response in the context of COVID-19. The use of zebrafish as an animal model also proved to be appropriate and effective in evaluating the inflammatory process, comparable to humans.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , Peixe-Zebra , Macrófagos , Peptídeos
4.
J Proteomics ; 214: 103625, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31881347

RESUMO

Biological properties of natural products are an important research target and essential oils (EO) from aromatic plants with antimicrobial properties are well documented. However, their uses are limited, and the mechanisms underlying their antibacterial activity are still not well known. Therefore, our objective was to evaluate the antibacterial activities of Origanum vulgare EO, thymol and carvacrol against Salmonella Enteritidis ATCC 13076 strain, particularly regarding the bacterial proteic profile, enzymatic activities and DNA synthesis. Bacterial expressed proteins were evaluated using an untreated assay control and treatments with sublethal concentrations of oregano EO, carvacrol and thymol. The same protein extracts were also assayed for oxidative stress and energy metabolism enzyme activities, as well as effect on DNA synthesis. Protein expression outcomes revealed by 2D-SDS-PAGE, from antimicrobial actions, showed a stress response with differential expressions of chaperones and cellular protein synthesis mediated by the bacterial signaling system. In addition, Salmonella used a similar mechanism in defense against oxidative stress, for its survival. Thus, the antibacterial inhibitory activity of EO was preferentially associated with the presence of thymol and there was interference in protein regulation as well as DNA synthesis affected by these compounds. SIGNIFICANCE: Antimicrobial activity of essential oils (EO) is already known. In this way, the understanding of how this activity occurs is a fundamental part to provide the practical and rational use of these substances. In the current scenario, where the emergence of resistant bacteria or even multiresistant bacteria against conventional antimicrobials, the search for alternatives becomes essential, since the discovery of new inhibitory substances does not occur at the same speed. The anti-Salmonella action allied to the knowledge about the biological processes affected by O. vulgare EO contribute to these bioactive compounds being effectively used as agents in the safety and shelf life of food in a future product, packaging or process where the antibacterial activity is safe and best used.


Assuntos
Óleos Voláteis , Origanum , Antibacterianos/farmacologia , Cimenos , Testes de Sensibilidade Microbiana , Óleos Voláteis/farmacologia , Proteômica , Salmonella enteritidis , Timol/farmacologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-32528536

RESUMO

BACKGROUND: Extracellular vesicles (EVs) are small membrane-bound vesicles of growing interest in vetetinary parasitology. The aim of the present report was to provide the first isolation, quantification and protein characterization of EVs from buffalo (Bubalus bubalis) sera infected with Theileria spp. METHODS: Infected animals were identified through optical microscopy and PCR. EVs were isolated from buffalo sera by size-exclusion chromatography and characterized using western blotting analysis, nanoparticle tracking analysis and transmission electron microscopy. Subsequently, the proteins from isolated vesicles were characterized by mass spectrometry. RESULTS: EVs from buffalo sera have shown sizes in the 124-140 nm range and 306 proteins were characterized. The protein-protein interaction analysis has evidenced biological processes and molecular function associated with signal transduction, binding, regulation of metabolic processes, transport, catalytic activity and response to acute stress. Five proteins have been shown to be differentially expressed between the control group and that infected with Theileria spp., all acting in the oxidative stress pathway. CONCLUSIONS: EVs from buffaloes infected with Theileria spp. were successfully isolated and characterized. This is an advance in the knowledge of host-parasite relationship that contributes to the understanding of host immune response and theileriosis evasion mechanisms. These findings may pave the way for searching new EVs candidate-markers for a better production of safe biological products derived from buffaloes.

6.
J Proteomics ; 192: 280-290, 2019 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-30261322

RESUMO

Chronic venous ulcers affect the quality of life of patients around the world. The aims of this study were to identify the proteins expressed in chronic venous ulcer exudates, to categorize them according to their roles and to correlate them with the clinical and epidemiological aspects of the disease. The study population consisted of 37 ulcers from 28 patients, and the inflammatory exudates of these thirty-seven ulcers were subjected to tryptic digestion and mass spectrometry analysis. Twenty-three patients were female (62.2%), and five (37.8%) were male. The patients had a mean age of 70 (±10.1) years. Of the patients, 73% adhered to compression and rest, 81.1% reported a history of primary varices, 54.1% reported a history of systemic arterial hypertension, 54.1% reported a history of devitalized tissue in the wound bed and 64.9% reported ulcers with more than ten years of evolution. Seventy-six proteins were identified, and they were grouped according to their primary role in the healing process. Eight correlations between clinical and epidemiological data and protein expression were noteworthy: diabetes mellitus vs. Ig gamma-2 and apolipoprotein-A1 and albumin; congestive heart failure vs. Ig lambda-2; colonization vs. actin; compressive therapy vs. Ig kappa; systemic arterial hypertension vs. alpha-2-macroglobulin and apolipoprotein-A1; area of ulcer vs. apolipoprotein-A1; race vs. heavy chain Ig and Ig γ-1 chain; age and race vs. Ig γ-1 chain. These associations may help to elucidate the prognosis and chronicity of chronic venous ulcers based on secreted proteins.


Assuntos
Proteínas Sanguíneas/metabolismo , Regulação da Expressão Gênica , Proteoma/metabolismo , Úlcera Varicosa/sangue , Idoso , Idoso de 80 Anos ou mais , Doença Crônica , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
8.
Proteomics Clin Appl ; 11(9-10)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28452126

RESUMO

The proteomic approach has aroused the interest of veterinary medicine researchers, especially regarding the production of biopharmaceuticals and diagnosis of diseases in farm animals. Water buffaloes have gained prominence in the world economy due to the quality of their milk, meat, and leather, in addition to being an important donor of blood components. This work aimed to identify and characterize the proteins present in the blood plasma of Murrah buffaloes (Bubalus bubalis) through 2D electrophoresis, in gel protein digestion followed by mass spectrometry technique and for albumin depletion, in solution protein digestion followed by shotgun analysis. Our results showed the identification of 112 protein spots and 35 individual proteins, respectively. The abundant proteins were represented by albumin, fibrinogen-α, fibrinogen-ß, fibrinogen-γ, immunoglobulins in general, α-1-antiproteinase, α-1B-glycoprotein, α-2-HS-glycoprotein, α-macroglobulin, apolipoprotein A1, antithrombin-III, endopin 2B, fetuin-B, retinol-binding protein, serotransferrin, transthyretin and vitamin D-binding protein. Most of these proteins are related to the signaling pathways of the complement system and coagulation cascade. The results allowed a better understanding of the protein composition of these blood components, thus promoting studies on animal health in the search for molecular markers of zoonotic diseases in buffaloes.


Assuntos
Proteínas Sanguíneas/metabolismo , Búfalos/sangue , Búfalos/metabolismo , Proteômica , Animais
9.
Artigo em Inglês | MEDLINE | ID: mdl-28396682

RESUMO

Hemostatic and adhesive agents date back to World War II, when homologous fibrin sealant came onto scene. Considering that infectious diseases can be transmitted via human blood, a new heterologous fibrin sealant was standardized in the 1990s. Its components were a serine protease (a thrombin-like enzyme) extracted from the venom of Crotalus durissus terrificus snakes and a fibrinogen-rich cryoprecipitate extracted from the blood of Bubalus bubalis buffaloes. This new bioproduct has been used as a coagulant, sealant, adhesive and recently as a candidate scaffold for mesenchymal stem cells and bone and cartilage repair. This review discusses the composition of a new heterologous fibrin sealant, and cites published articles related to its preclinical applications aiming at repairing nervous system traumas and regenerating bone marrow. Finally, we present an innovative safety trial I/II that found the product to be a safe and clinically promising candidate for treating chronic venous ulcers. A multicenter clinical trial, phase II/III, with a larger number of participants will be performed to prove the efficacy of an innovative biopharmaceutical product derived from animal venom.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA