RESUMO
Selfish genetic elements contribute to hybrid incompatibility and bias or 'drive' their own transmission1,2. Chromosomal drive typically functions in asymmetric female meiosis, whereas gene drive is normally post-meiotic and typically found in males. Here, using single-molecule and single-pollen genome sequencing, we describe Teosinte Pollen Drive, an instance of gene drive in hybrids between maize (Zea mays ssp. mays) and teosinte mexicana (Z. mays ssp. mexicana) that depends on RNA interference (RNAi). 22-nucleotide small RNAs from a non-coding RNA hairpin in mexicana depend on Dicer-like 2 (Dcl2) and target Teosinte Drive Responder 1 (Tdr1), which encodes a lipase required for pollen viability. Dcl2, Tdr1 and the hairpin are in tight pseudolinkage on chromosome 5, but only when transmitted through the male. Introgression of mexicana into early cultivated maize is thought to have been critical to its geographical dispersal throughout the Americas3, and a tightly linked inversion in mexicana spans a major domestication sweep in modern maize4. A survey of maize traditional varieties and sympatric populations of teosinte mexicana reveals correlated patterns of admixture among unlinked genes required for RNAi on at least four chromosomes that are also subject to gene drive in pollen from synthetic hybrids. Teosinte Pollen Drive probably had a major role in maize domestication and diversification, and offers an explanation for the widespread abundance of 'self' small RNAs in the germ lines of plants and animals.
Assuntos
Domesticação , Tecnologia de Impulso Genético , Interferência de RNA , Zea mays , Introgressão Genética/genética , Genoma de Planta/genética , Hibridização Genética/genética , Pólen/enzimologia , Pólen/genética , Zea mays/classificação , Zea mays/genética , Lipase/genética , Lipase/metabolismo , Imagem Individual de MoléculaRESUMO
Developmental epigenetic modifications in plants and animals are mostly reset during gamete formation but some are inherited from the germline. Small RNAs guide these epigenetic modifications but how inherited small RNAs are distinguished in plants and animals is unknown. Pseudouridine (Ψ) is the most abundant RNA modification but has not been explored in small RNAs. Here, we develop assays to detect Ψ in short RNA sequences, demonstrating its presence in mouse and Arabidopsis microRNAs. Germline small RNAs, namely epigenetically activated small interfering RNAs (easiRNAs) in Arabidopsis pollen and Piwi-interacting RNAs in mouse testes, are enriched for Ψ. In pollen, pseudouridylated easiRNAs are transported to sperm cells from the vegetative nucleus, and PAUSED/HEN5 (PSD), the plant homolog of Exportin-t, interacts genetically with Ψ and is required for this transport. We further show that Exportin-t is required for the triploid block: small RNA dosage-dependent seed lethality that is epigenetically inherited from pollen. Thus, Ψ has a conserved role in marking inherited small RNAs in the germline.
RESUMO
Meiotic drivers subvert Mendelian expectations by manipulating reproductive development to bias their own transmission. Chromosomal drive typically functions in asymmetric female meiosis, while gene drive is normally postmeiotic and typically found in males. Using single molecule and single-pollen genome sequencing, we describe Teosinte Pollen Drive, an instance of gene drive in hybrids between maize (Zea mays ssp. mays) and teosinte mexicana (Zea mays ssp. mexicana), that depends on RNA interference (RNAi). 22nt small RNAs from a non-coding RNA hairpin in mexicana depend on Dicer-Like 2 (Dcl2) and target Teosinte Drive Responder 1 (Tdr1), which encodes a lipase required for pollen viability. Dcl2, Tdr1, and the hairpin are in tight pseudolinkage on chromosome 5, but only when transmitted through the male. Introgression of mexicana into early cultivated maize is thought to have been critical to its geographical dispersal throughout the Americas, and a tightly linked inversion in mexicana spans a major domestication sweep in modern maize. A survey of maize landraces and sympatric populations of teosinte mexicana reveals correlated patterns of admixture among unlinked genes required for RNAi on at least 4 chromosomes that are also subject to gene drive in pollen from synthetic hybrids. Teosinte Pollen Drive likely played a major role in maize domestication and diversification, and offers an explanation for the widespread abundance of "self" small RNAs in the germlines of plants and animals.
RESUMO
Epigenetic modifications that arise during plant and animal development, such as DNA and histone modification, are mostly reset during gamete formation, but some are inherited from the germline including those marking imprinted genes1. Small RNAs guide these epigenetic modifications, and some are also inherited by the next generation2,3. In C. elegans, these inherited small RNAs have poly (UG) tails4, but how inherited small RNAs are distinguished in other animals and plants is unknown. Pseudouridine (Ψ) is the most abundant RNA modification but has not been explored in small RNAs. Here, we develop novel assays to detect Ψ in short RNA sequences, demonstrating its presence in mouse and Arabidopsis microRNAs and their precursors. We also detect substantial enrichment in germline small RNAs, namely epigenetically activated siRNAs (easiRNAs) in Arabidopsis pollen, and piwi-interacting piRNAs in mouse testis. In pollen, pseudouridylated easiRNAs are localized to sperm cells, and we found that PAUSED/HEN5 (PSD), the plant homolog of Exportin-t, interacts genetically with Ψ and is required for transport of easiRNAs into sperm cells from the vegetative nucleus. We further show that Exportin-t is required for the triploid block: chromosome dosage-dependent seed lethality that is epigenetically inherited from pollen. Thus, Ψ has a conserved role in marking inherited small RNAs in the germline.
RESUMO
We present the genome of the living fossil, Wollemia nobilis, a southern hemisphere conifer morphologically unchanged since the Cretaceous. Presumed extinct until rediscovery in 1994, the Wollemi pine is critically endangered with less than 60 wild adults threatened by intensifying bushfires in the Blue Mountains of Australia. The 12 Gb genome is among the most contiguous large plant genomes assembled, with extremely low heterozygosity and unusual abundance of DNA transposons. Reduced representation and genome re-sequencing of individuals confirms a relictual population since the last major glacial/drying period in Australia, 120 ky BP. Small RNA and methylome sequencing reveal conservation of ancient silencing mechanisms despite the presence of thousands of active and abundant transposons, including some transferred horizontally to conifers from arthropods in the Jurassic. A retrotransposon burst 8-6 my BP coincided with population decline, possibly as an adaptation enhancing epigenetic diversity. Wollemia, like other conifers, is susceptible to Phytophthora, and a suite of defense genes, similar to those in loblolly pine, are targeted for silencing by sRNAs in leaves. The genome provides insight into the earliest seed plants, while enabling conservation efforts.