Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Pharmacol Res ; : 107438, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39357691

RESUMO

The toxicity of tacrolimus metabolites and their potential pharmacodynamic (PD) interactions with tacrolimus might respectively explain the surprising combination of higher toxicity and lower efficacy of tacrolimus despite normal blood concentrations, described in extensive metabolizers. To evaluate such interactions, we produced tacrolimus metabolites in vitro and characterized them by high resolution mass spectrometry (HRMS, for all) and nuclear magnetic resonance (NMR, for the most abundant, M-I). We quantified tacrolimus metabolites and checked their structure in patient whole blood and peripheral blood mononuclear cells (PBMC). We explored the interactions of M-I with tacrolimus in silico, in vitro and ex vivo. In vitro metabolization produced isoforms of tacrolimus and of its metabolites M-I and M-III, whose HRMS fragmentation suggested an open-ring structure. M-I and M-III open-ring isomers were also observed in patient blood. By contrast, NMR could not detect these open-ring forms. Transplant patients expressing CYP3A5 exhibited higher M-I/TAC ratios in blood and PBMC than non-expressers. Molecular Dynamics simulations showed that: all possible tacrolimus metabolites and isomers bind FKPB12; and the hypothetical open-ring structures induce looser binding between FKBP12 and calcineurins, leading to lower CN inhibition. In vitro, tacrolimus bound FKPB12 with more affinity than purified M-I, and the pool of tacrolimus metabolites and purified M-I had only weak inhibitory activity on IL2 secretion and not at all on NFAT nuclear translocation. M-I showed no competitive effect with tacrolimus on either test. Finally, M-I or the metabolite pool did not significantly interact with tacrolimus MLR suppression, thus eliminating a pharmacodynamic interaction.

2.
Artigo em Inglês | MEDLINE | ID: mdl-29632009

RESUMO

Aspergillus fumigatus can cause pulmonary aspergillosis in immunocompromised patients and is associated with a high mortality rate due to a lack of reliable treatment options. This opportunistic pathogen requires zinc in order to grow and cause disease. Novel compounds that interfere with fungal zinc metabolism may therefore be of therapeutic interest. We screened chemical libraries containing 59,223 small molecules using a resazurin assay that compared their effects on an A. fumigatus wild-type strain grown under zinc-limiting conditions and on a zinc transporter knockout strain grown under zinc-replete conditions to identify compounds affecting zinc metabolism. After a first screen, 116 molecules were selected whose inhibitory effects on fungal growth were further tested by using luminescence assays and hyphal length measurements to confirm their activity, as well as by toxicity assays on HeLa cells and mice. Six compounds were selected following a rescreening, of which two were pyrazolones, two were porphyrins, and two were polyaminocarboxylates. All three groups showed good in vitro activity, but only one of the polyaminocarboxylates was able to significantly improve the survival of immunosuppressed mice suffering from pulmonary aspergillosis. This two-tier screening approach led us to the identification of a novel small molecule with in vivo fungicidal effects and low murine toxicity that may lead to the development of new treatment options for fungal infections by administration of this compound either as a monotherapy or as part of a combination therapy.


Assuntos
Antifúngicos/uso terapêutico , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/patogenicidade , Aspergilose Pulmonar/tratamento farmacológico , Aspergilose Pulmonar/metabolismo , Zinco/metabolismo , Animais , Modelos Animais de Doenças , Medições Luminescentes , Camundongos , Testes de Sensibilidade Microbiana , Pirazolonas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA