Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 25(1): 129, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532339

RESUMO

BACKGROUND: The RNA-Recognition motif (RRM) is a protein domain that binds single-stranded RNA (ssRNA) and is present in as much as 2% of the human genome. Despite this important role in biology, RRM-ssRNA interactions are very challenging to study on the structural level because of the remarkable flexibility of ssRNA. In the absence of atomic-level experimental data, the only method able to predict the 3D structure of protein-ssRNA complexes with any degree of accuracy is ssRNA'TTRACT, an ssRNA fragment-based docking approach using ATTRACT. However, since ATTRACT parameters are not ssRNA-specific and were determined in 2010, there is substantial opportunity for enhancement. RESULTS: Here we present HIPPO, a composite RRM-ssRNA scoring potential derived analytically from contact frequencies in near-native versus non-native docking models. HIPPO consists of a consensus of four distinct potentials, each extracted from a distinct reference pool of protein-trinucleotide docking decoys. To score a docking pose with one potential, for each pair of RNA-protein coarse-grained bead types, each contact is awarded or penalised according to the relative frequencies of this contact distance range among the correct and incorrect poses of the reference pool. Validated on a fragment-based docking benchmark of 57 experimentally solved RRM-ssRNA complexes, HIPPO achieved a threefold or higher enrichment for half of the fragments, versus only a quarter with the ATTRACT scoring function. In particular, HIPPO drastically improved the chance of very high enrichment (12-fold or higher), a scenario where the incremental modelling of entire ssRNA chains from fragments becomes viable. However, for the latter result, more research is needed to make it directly practically applicable. Regardless, our approach already improves upon the state of the art in RRM-ssRNA modelling and is in principle extendable to other types of protein-nucleic acid interactions.


Assuntos
Proteínas , RNA , Humanos , Ligação Proteica , Proteínas/química , RNA/química , Simulação de Acoplamento Molecular , Conformação Proteica
2.
Biotechnol Biofuels Bioprod ; 17(1): 84, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902807

RESUMO

BACKGROUND: The holistic characterization of different microbiomes in anaerobic digestion (AD) systems can contribute to a better understanding of these systems and provide starting points for bioengineering. The present study investigates the microbiome of 80 European full-scale AD systems. Operational, chemical and taxonomic data were thoroughly collected, analysed and correlated to identify the main drivers of AD processes. RESULTS: The present study describes chemical and operational parameters for a broad spectrum of different AD systems. With this data, Spearman correlation and differential abundance analyses were applied to narrow down the role of the individual microorganisms detected. The authors succeeded in further limiting the number of microorganisms in the core microbiome for a broad range of AD systems. Based on 16S rRNA gene amplicon sequencing, MBA03, Proteiniphilum, a member of the family Dethiobacteraceae, the genus Caldicoprobacter and the methanogen Methanosarcina were the most prevalent and abundant organisms identified in all digesters analysed. High ratios for Methanoculleus are often described for agricultural co-digesters. Therefore, it is remarkable that Methanosarcina was surprisingly high in several digesters reaching ratios up to 47.2%. The various statistical analyses revealed that the microorganisms grouped according to different patterns. A purely taxonomic correlation enabled a distinction between an acetoclastic cluster and a hydrogenotrophic one. However, in the multivariate analysis with chemical parameters, the main clusters corresponded to hydrolytic and acidogenic microorganisms, with SAOB bacteria being particularly important in the second group. Including operational parameters resulted in digester-type specific grouping of microbes. Those with separate acidification stood out among the many reactor types due to their unexpected behaviour. Despite maximizing the organic loading rate in the hydrolytic pretreatments, these stages turned into extremely robust methane production units. CONCLUSIONS: From 80 different AD systems, one of the most holistic data sets is provided. A very distinct formation of microbial clusters was discovered, depending on whether taxonomic, chemical or operational parameters were combined. The microorganisms in the individual clusters were strongly dependent on the respective reference parameters.

3.
J Clin Epidemiol ; 172: 111387, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38729274

RESUMO

Clinical prediction models provide risks of health outcomes that can inform patients and support medical decisions. However, most models never make it to actual implementation in practice. A commonly heard reason for this lack of implementation is that prediction models are often not externally validated. While we generally encourage external validation, we argue that an external validation is often neither sufficient nor required as an essential step before implementation. As such, any available external validation should not be perceived as a license for model implementation. We clarify this argument by discussing 3 common misconceptions about external validation. We argue that there is not one type of recommended validation design, not always a necessity for external validation, and sometimes a need for multiple external validations. The insights from this paper can help readers to consider, design, interpret, and appreciate external validation studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA