Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(14)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37511377

RESUMO

The biological production of hydrogen is an appealing approach to mitigating the environmental problems caused by the diminishing supply of fossil fuels and the need for greener energy. Escherichia coli is one of the best-characterized microorganisms capable of consuming glycerol-a waste product of the biodiesel industry-and producing H2 and ethanol. However, the natural capacity of E. coli to generate these compounds is insufficient for commercial or industrial purposes. Metabolic engineering allows for the rewiring of the carbon source towards H2 production, although the strategies for achieving this aim are difficult to foresee. In this work, we use metabolomics platforms through GC-MS and FT-IR techniques to detect metabolic bottlenecks in the engineered ΔldhΔgndΔfrdBC::kan (M4) and ΔldhΔgndΔfrdBCΔtdcE::kan (M5) E. coli strains, previously reported as improved H2 and ethanol producers. In the M5 strain, increased intracellular citrate and malate were detected by GC-MS. These metabolites can be redirected towards acetyl-CoA and formate by the overexpression of the citrate lyase (CIT) enzyme and by co-overexpressing the anaplerotic human phosphoenol pyruvate carboxykinase (hPEPCK) or malic (MaeA) enzymes using inducible promoter vectors. These strategies enhanced specific H2 production by up to 1.25- and 1.49-fold, respectively, compared to the reference strains. Other parameters, such as ethanol and H2 yields, were also enhanced. However, these vectors may provoke metabolic burden in anaerobic conditions. Therefore, alternative strategies for a tighter control of protein expression should be addressed in order to avoid undesirable effects in the metabolic network.


Assuntos
Escherichia coli , Engenharia Metabólica , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Etanol/metabolismo , Hidrogênio/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Metabolômica
2.
Int J Mol Sci ; 21(22)2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33198293

RESUMO

D-DIBOA (4-hydroxy-(2H)-1,4-benzoxazin-3-(4H)-one) is an allelopathic-derived compound with interesting herbicidal, fungicidal, and insecticide properties whose production has been successfully achieved by biocatalysis using a genetically engineered Escherichia coli strain. However, improvement and scaling-up of this process are hampered by the current methodology for D-DIBOA quantification, which is based on high-performance liquid chromatographic (HPLC), a time-consuming technique that requires expensive equipment and the use of environmentally unsafe solvents. In this work, we established and validated a rapid, simple, and sensitive spectrophotometric method for the quantification of the D-DIBOA produced by whole-cell biocatalysis, with limits of detection and quantification of 0.0165 and 0.0501 µmol·mL-1 respectively. This analysis takes place in only a few seconds and can be carried out using 100 µL of the sample in a microtiter plate reader. We performed several whole-cell biocatalysis strategies to optimize the process by monitoring D-DIBOA production every hour to keep control of both precursor and D-DIBOA concentrations in the bioreactor. These experiments allowed increasing the D-DIBOA production from the previously reported 5.01 mM up to 7.17 mM (43% increase). This methodology will facilitate processes such as the optimization of the biocatalyst, the scaling up, and the downstream purification.


Assuntos
Benzoxazinas/metabolismo , Biocatálise , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Nitrorredutases/metabolismo , Espectrofotometria/métodos , Reatores Biológicos , Biotransformação , Cromatografia Líquida de Alta Pressão , Meios de Cultura , Engenharia Genética , Ácidos Hidroxâmicos/metabolismo , Limite de Detecção , Reprodutibilidade dos Testes
3.
Microb Cell Fact ; 18(1): 86, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-31109333

RESUMO

BACKGROUND: The use of chemical herbicides has helped to improve agricultural production, although its intensive use has led to environmental damages. Plant allelochemicals are interesting alternatives due to their diversity and degradability in the environment. However, the main drawback of this option is their low natural production, which could be overcome by its chemical synthesis. In the case of the allelochemical DIBOA ((2,4-dihydroxy-2H)-1,4-benzoxazin-3(4H)-one), the synthesis of the analogous compound D-DIBOA (2-deoxy-DIBOA) has been achieved in two steps. However, the scale up of this synthesis is hindered by the second step, which uses an expensive catalyst and is an exothermic reaction, with hydrogen release and a relatively low molar yield (70%). We have previously explored the "Green Chemistry" alternative of using E. coli strains overexpressing the nitroreductase NfsB as a whole-cell-biocatalyst to replace this second step, although the molar yield in this case was lower than that of the chemical synthesis. RESULTS: In this work, we engineered an E. coli strain capable of carrying out this reaction with 100% molar yield and reaching a D-DIBOA concentration up to 379% respect to the highest biotransformation yield previously reported. This was achieved by a screening of 34 E. coli mutant strains in order to improve D-DIBOA production that led to the construction of the ΔlapAΔfliQ double mutant as an optimum genetic background for overexpression of the NfsB enzyme and D-DIBOA synthesis. Also, the use of a defined medium instead of a complex one, the optimization of the culture conditions and the development of processes with several substrate loads allowed obtaining maxima yields and concentrations. CONCLUSIONS: The high yields and concentrations of D-DIBOA reached by the microbial-cell-factory approach developed in this work will facilitate its application to industrial scale. Also, the use of an optimized defined medium with only an organic molecule (glucose as carbon and energy source) in its composition will also facilitate the downstream processes.


Assuntos
Benzoxazinas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli , Herbicidas/metabolismo , Microrganismos Geneticamente Modificados/metabolismo , Nitrorredutases/metabolismo , Biotransformação , Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia Genética
4.
N Biotechnol ; 72: 48-57, 2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36155894

RESUMO

Herbicides play a vital role in agriculture, contributing to increased crop productivity by minimizing weed growth, but their low degradability presents a threat to the environment and human health. Allelochemicals, such as DIBOA (2,4-dihydroxy-(2H)-1,4-benzoxazin-3(4 H)-one), are secondary metabolites released by certain plants that affect the survival or growth of other organisms. Although these metabolites have an attractive potential for use as herbicides, their low natural production is a critical hurdle. Previously, the synthesis of the biologically active analog D-DIBOA (4-hydroxy-(2H)-1,4-benzoxazin-3(4H)-one) was achieved, using an engineered E. coli strain as a whole-cell biocatalyst, capable of transforming a precursor compound into D-DIBOA and exporting it into the culture medium, although it cannot be directly applied to crops. Here a chromatographic method to purify D-DIBOA from this cell culture medium without producing organic solvent wastes is described. The purification of D-DIBOA from a filtered culture medium to the pure compound could also be automated. Biological tests with the purified compound on weed models showed that it has virtually the same activity than the chemically synthesized D-DIBOA.


Assuntos
Escherichia coli , Herbicidas , Humanos , Escherichia coli/metabolismo , Benzoxazinas/química , Ácidos Hidroxâmicos/metabolismo , Herbicidas/farmacologia , Herbicidas/química , Herbicidas/metabolismo
5.
N Biotechnol ; 50: 9-19, 2019 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-30630092

RESUMO

Benzohydroxamic acids, such as DIBOA (2,4-dihydroxy-2 H)-1,4-benzoxazin-3(4 H)-one), are plant products that exhibit interesting herbicidal, fungicidal and bactericidal properties. A feasible alternative to their purification from natural sources is the synthesis of analogous compounds such as D-DIBOA (2-deoxy-DIBOA) and their chlorinated derivatives. Their chemical synthesis has been simplified into two steps. However, the second step is an exothermic reaction and involves hydrogen release, which makes this methodology expensive and difficult to scale up. The study reported here concerns the possibility of producing chlorobenzoxazinones by a whole-cell biocatalytic process using the ability of the engineered E. coli nfsB-/pBAD-NfsB to catalyse the synthesis of 6-Cl-D-DIBOA and 8-Cl-D-DIBOA from their respective precursors (PCs). The results show that this strain is able to grow in media that contain these compounds and to produce the target molecules with 59.3% and 46.7% biotransformation yields, respectively. Moreover, the strain is capable of processing non-purified PCs from the first chemical step to give similar yields to those obtained from the purified PCs. The kinetics of the reaction in vitro with purified recombinant NfsB nitroreductase were studied to characterise the catalysis further and evaluate the effects that several components of the non-purified PCs have on the process. The results revealed that the kinetics are that of an allosteric enzyme. The inhibitory effect of the substrate of the first step of the chemical synthesis, which is present in some non-purified PCs, was also demonstrated.


Assuntos
Benzoxazinas/metabolismo , Produtos Biológicos/metabolismo , Proteínas de Escherichia coli/biossíntese , Escherichia coli/enzimologia , Nitrorredutases/biossíntese , Benzoxazinas/química , Biocatálise , Produtos Biológicos/química , Biotransformação , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Halogenação , Cinética , Estrutura Molecular , Nitrorredutases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA