Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Vaccine ; 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38880691

RESUMO

Vaccination is the best strategy to control Paratuberculosis (PTB), which is a significant disease in cattle and sheep. Previously we showed the humoral and cellular immune response induced by a novel vaccine candidate against PTB based on the Argentinian Mycobacterium avium subspecies paratuberculosis (Map) 6611 strain. To improve 6611 immunogenicity and efficacy, we evaluated this vaccine candidate in mice with two different adjuvants and a heterologous boost with a recombinant modified vaccinia Ankara virus (MVA) expressing the antigen 85A (MVA85A). We observed that boosting with MVA85A did not improve total IgG or specific isotypes in serum induced by one or two doses of 6611 formulated with incomplete Freund's adjuvant (IFA). However, when 6611 was formulated with ISA201 adjuvant, MVA85A boost enhanced the production of IFNγ, Th1/Th17 cytokines (IL-2, TNF, IL-17A) and IL-6, IL-4 and IL-10. Also, this group showed the highest levels of IgG2b and IgG3 isotypes, both important for better protection against Map infection in the murine model. Finally, the heterologous scheme elicited the highest levels of protection after Map challenge (lowest CFU count and liver lesion score). In conclusion, our results encourage further evaluation of 6611 strain + ISA201 prime and MVA85A boost in bovines.

2.
J Biol Chem ; 286(46): 40219-31, 2011 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-21949126

RESUMO

The search for antituberculosis drugs active against persistent bacilli has led to our interest in metallodependent class II fructose-1,6-bisphosphate aldolase (FBA-tb), a key enzyme of gluconeogenesis absent from mammalian cells. Knock-out experiments at the fba-tb locus indicated that this gene is required for the growth of Mycobacterium tuberculosis on gluconeogenetic substrates and in glucose-containing medium. Surface labeling and enzymatic activity measurements revealed that this enzyme was exported to the cell surface of M. tuberculosis and produced under various axenic growth conditions including oxygen depletion and hence by non-replicating bacilli. Importantly, FBA-tb was also produced in vivo in the lungs of infected guinea pigs and mice. FBA-tb bound human plasmin(ogen) and protected FBA-tb-bound plasmin from regulation by α(2)-antiplasmin, suggestive of an involvement of this enzyme in host/pathogen interactions. The crystal structures of FBA-tb in the native form and in complex with a hydroxamate substrate analog were determined to 2.35- and 1.9-Å resolution, respectively. Whereas inhibitor attachment had no effect on the plasminogen binding activity of FBA-tb, it competed with the natural substrate of the enzyme, fructose 1,6-bisphosphate, and substantiated a previously unknown reaction mechanism associated with metallodependent aldolases involving recruitment of the catalytic zinc ion by the substrate upon active site binding. Altogether, our results highlight the potential of FBA-tb as a novel therapeutic target against both replicating and non-replicating bacilli.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Frutose-Bifosfato Aldolase/química , Frutose-Bifosfato Aldolase/metabolismo , Gluconeogênese , Mycobacterium tuberculosis/enzimologia , Tuberculose Pulmonar/enzimologia , Animais , Proteínas de Bactérias/genética , Cristalografia por Raios X , Fibrinolisina/genética , Fibrinolisina/metabolismo , Frutose-Bifosfato Aldolase/genética , Frutosedifosfatos/química , Frutosedifosfatos/genética , Frutosedifosfatos/metabolismo , Técnicas de Silenciamento de Genes , Cobaias , Interações Hospedeiro-Patógeno/genética , Humanos , Camundongos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidade , Ligação Proteica , Tuberculose Pulmonar/genética , alfa 2-Antiplasmina/genética , alfa 2-Antiplasmina/metabolismo
3.
Tuberculosis (Edinb) ; 86(3-4): 263-7, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16644283

RESUMO

A good candidate antigen to create a therapeutic vaccine against TB is the ESAT-6 protein. Antigens produced in plants have already been successfully used as experimental vaccines, and small single-stranded RNA plant viruses have emerged as promising tools to rapidly express large amounts of foreign proteins in susceptible host plants. Here, we present the expression of ESAT-6 protein in Nicotiana tabacum using a vector based on potato virus X (PVX). The complete ESAT-6 open reading frame is expressed as a fusion protein with the 2A peptide of Foot and Mouth Disease Virus and the amino terminal of the PVX coat protein (CP) (PVXESAT-6). This strategy allows the production of free CP and ESAT-6 as well as fused ESAT-2A-CP to obtain recombinant chimaeric virions expressing ESAT-6 at the surface to be used as particulate antigen in vaccination. ESAT-6 expression was tested in agroinfiltrated tobacco leaves and products of the expected molecular masses corresponding to cleaved CP and ESAT-2A-CP fusion protein were observed, with ESAT-6 yields ranging from 0.5% to 1% of total soluble protein. Our study describes for the first time the expression of the ESAT-6 protein in tobacco plants using a PVX-derived vector. This strategy should serve as a convenient, rapid, low-cost expression system and can also be used for the assessment of ESAT-6 production and function prior to stable plant transformation.


Assuntos
Antígenos de Bactérias/biossíntese , Proteínas de Bactérias/biossíntese , Vetores Genéticos , Mycobacterium tuberculosis/imunologia , Nicotiana/metabolismo , Potexvirus/genética , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Folhas de Planta/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética
4.
Virulence ; 4(1): 3-66, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23076359

RESUMO

The Mycobacterium tuberculosis complex (MTBC) consists of closely related species that cause tuberculosis in both humans and animals. This illness, still today, remains to be one of the leading causes of morbidity and mortality throughout the world. The mycobacteria enter the host by air, and, once in the lungs, are phagocytated by macrophages. This may lead to the rapid elimination of the bacillus or to the triggering of an active tuberculosis infection. A large number of different virulence factors have evolved in MTBC members as a response to the host immune reaction. The aim of this review is to describe the bacterial genes/proteins that are essential for the virulence of MTBC species, and that have been demonstrated in an in vivo model of infection. Knowledge of MTBC virulence factors is essential for the development of new vaccines and drugs to help manage the disease toward an increasingly more tuberculosis-free world.


Assuntos
Mycobacterium tuberculosis/patogenicidade , Tuberculose/microbiologia , Tuberculose/veterinária , Fatores de Virulência , Animais , Interações Hospedeiro-Patógeno , Humanos , Evasão da Resposta Imune
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA