Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(31): e2207978120, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37487086

RESUMO

Loss-of-function mutations in the KCNA1(Kv1.1) gene cause episodic ataxia type 1 (EA1), a neurological disease characterized by cerebellar dysfunction, ataxic attacks, persistent myokymia with painful cramps in skeletal muscles, and epilepsy. Precision medicine for EA1 treatment is currently unfeasible, as no drug that can enhance the activity of Kv1.1-containing channels and offset the functional defects caused by KCNA1 mutations has been clinically approved. Here, we uncovered that niflumic acid (NFA), a currently prescribed analgesic and anti-inflammatory drug with an excellent safety profile in the clinic, potentiates the activity of Kv1.1 channels. NFA increased Kv1.1 current amplitudes by enhancing the channel open probability, causing a hyperpolarizing shift in the voltage dependence of both channel opening and gating charge movement, slowing the OFF-gating current decay. NFA exerted similar actions on both homomeric Kv1.2 and heteromeric Kv1.1/Kv1.2 channels, which are formed in most brain structures. We show that through its potentiating action, NFA mitigated the EA1 mutation-induced functional defects in Kv1.1 and restored cerebellar synaptic transmission, Purkinje cell availability, and precision of firing. In addition, NFA ameliorated the motor performance of a knock-in mouse model of EA1 and restored the neuromuscular transmission and climbing ability in Shaker (Kv1.1) mutant Drosophila melanogaster flies (Sh5). By virtue of its multiple actions, NFA has strong potential as an efficacious single-molecule-based therapeutic agent for EA1 and serves as a valuable model for drug discovery.


Assuntos
Mioquimia , Animais , Camundongos , Drosophila melanogaster , Ataxia , Drosophila , Canal de Potássio Kv1.2
2.
Mol Ther ; 31(1): 282-299, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36116006

RESUMO

Huntington's disease (HD) is a fatal neurodegenerative disorder with no effective cure currently available. Over the past few years our research has shown that alterations in sphingolipid metabolism represent a critical determinant in HD pathogenesis. In particular, aberrant metabolism of sphingosine-1-phosphate (S1P) has been reported in multiple disease settings, including human postmortem brains from HD patients. In this study, we investigate the potential therapeutic effect of the inhibition of S1P degradative enzyme SGPL1, by the chronic administration of the 2-acetyl-5-tetrahydroxybutyl imidazole (THI) inhibitor. We show that THI mitigated motor dysfunctions in both mouse and fly models of HD. The compound evoked the activation of pro-survival pathways, normalized levels of brain-derived neurotrophic factor, preserved white matter integrity, and stimulated synaptic functions in HD mice. Metabolically, THI restored normal levels of hexosylceramides and stimulated the autophagic and lysosomal machinery, facilitating the reduction of nuclear inclusions of both wild-type and mutant huntingtin proteins.


Assuntos
Doença de Huntington , Camundongos , Humanos , Animais , Doença de Huntington/tratamento farmacológico , Modelos Teóricos , Imidazóis/farmacologia , Glicoesfingolipídeos , Modelos Animais de Doenças , Proteína Huntingtina/genética
3.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731912

RESUMO

Prominent pathological features of Huntington's disease (HD) are aggregations of mutated Huntingtin protein (mHtt) in the brain and neurodegeneration, which causes characteristic motor (such as chorea and dystonia) and non-motor symptoms. However, the numerous systemic and peripheral deficits in HD have gained increasing attention recently, since those factors likely modulate disease progression, including brain pathology. While whole-body metabolic abnormalities and organ-specific pathologies in HD have been relatively well described, the potential mediators of compromised inter-organ communication in HD have been insufficiently characterized. Therefore, we applied an exploratory literature search to identify such mediators. Unsurprisingly, dysregulation of inflammatory factors, circulating mHtt, and many other messenger molecules (hormones, lipids, RNAs) were found that suggest impaired inter-organ communication, including of the gut-brain and muscle-brain axis. Based on these findings, we aimed to assess the risks and potentials of lifestyle interventions that are thought to improve communication across these axes: dietary strategies and exercise. We conclude that appropriate lifestyle interventions have great potential to reduce symptoms and potentially modify disease progression (possibly via improving inter-organ signaling) in HD. However, impaired systemic metabolism and peripheral symptoms warrant particular care in the design of dietary and exercise programs for people with HD.


Assuntos
Encéfalo , Doença de Huntington , Estilo de Vida , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Humanos , Encéfalo/metabolismo , Encéfalo/patologia , Exercício Físico , Animais , Proteína Huntingtina/metabolismo , Proteína Huntingtina/genética
4.
Int J Mol Sci ; 24(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36983032

RESUMO

Huntington's disease is one of the most common dominantly inherited neurodegenerative disorders caused by an expansion of a polyglutamine (polyQ) stretch in the N-terminal region of huntingtin (Htt). Among all the molecular mechanisms, affected by the mutation, emerging evidence proposes glycosphingolipid dysfunction as one of the major determinants. High levels of sphingolipids have been found to localize in the myelin sheaths of oligodendrocytes, where they play an important role in myelination stability and functions. In this study, we investigated any potential existing link between sphingolipid modulation and myelin structure by performing both ultrastructural and biochemical analyses. Our findings demonstrated that the treatment with the glycosphingolipid modulator THI preserved myelin thickness and the overall structure and reduced both area and diameter of pathologically giant axons in the striatum of HD mice. These ultrastructural findings were associated with restoration of different myelin marker protein, such as myelin-associated glycoprotein (MAG), myelin basic protein (MBP) and 2', 3' Cyclic Nucleotide 3'-Phosphodiesterase (CNP). Interestingly, the compound modulated the expression of glycosphingolipid biosynthetic enzymes and increased levels of GM1, whose elevation has been extensively reported to be associated with reduced toxicity of mutant Htt in different HD pre-clinical models. Our study further supports the evidence that the metabolism of glycosphingolipids may represent an effective therapeutic target for the disease.


Assuntos
Doença de Huntington , Bainha de Mielina , Camundongos , Animais , Bainha de Mielina/metabolismo , Glicoesfingolipídeos/metabolismo , Corpo Estriado/metabolismo , Neostriado/metabolismo , Doença de Huntington/tratamento farmacológico , Doença de Huntington/genética , Doença de Huntington/metabolismo , Proteína Huntingtina/genética , Modelos Animais de Doenças , Camundongos Transgênicos
5.
Hum Mol Genet ; 29(3): 418-431, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31875875

RESUMO

Brain cholesterol homeostasis is altered in Huntington's disease (HD), a neurodegenerative disorder caused by the expansion of a CAG nucleotide repeat in the HTT gene. Genes involved in the synthesis of cholesterol and fatty acids were shown to be downregulated shortly after the expression of mutant huntingtin (mHTT) in inducible HD cells. Nuclear levels of the transcription factors that regulate lipid biogenesis, the sterol regulatory element-binding proteins (SREBP1 and SREBP2), were found to be decreased in HD models compared to wild-type, but the underlying causes were not known. SREBPs are synthesized as inactive endoplasmic reticulum-localized precursors. Their mature forms (mSREBPs) are generated upon transport of the SREBP precursors to the Golgi and proteolytic cleavage, and are rapidly imported into the nucleus by binding to importin ß. We show that, although SREBP2 processing into mSREBP2 is not affected in YAC128 HD mice, mSREBP2 is mislocalized to the cytoplasm. Chimeric mSREBP2-and mSREBP1-EGFP proteins are also mislocalized to the cytoplasm in immortalized striatal cells expressing mHTT, in YAC128 neurons and in fibroblasts from HD patients. We further show that mHTT binds to the SREBP2/importin ß complex required for nuclear import and sequesters it in the cytoplasm. As a result, HD cells fail to upregulate cholesterogenic genes under sterol-depleted conditions. These findings provide mechanistic insight into the downregulation of genes involved in the synthesis of cholesterol and fatty acids in HD models, and have potential implications for other pathways modulated by SREBPs, including autophagy and excitotoxicity.


Assuntos
Transporte Ativo do Núcleo Celular , Núcleo Celular/patologia , Colesterol/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Proteína Huntingtina/metabolismo , Proteínas Mutantes/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Animais , Núcleo Celular/metabolismo , Proteínas de Fluorescência Verde/genética , Homeostase , Humanos , Proteína Huntingtina/genética , Camundongos , Proteínas Mutantes/genética , Mutação , Neurônios/metabolismo , Neurônios/patologia , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
7.
Int J Mol Sci ; 23(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36076963

RESUMO

Gliomas are the most common primary malignant brain tumors. Glioblastoma, IDH-wildtype (GBM, CNS WHO grade 4) is the most aggressive form of glioma and is characterized by extensive hypoxic areas that strongly correlate with tumor malignancy. Hypoxia promotes several processes, including stemness, migration, invasion, angiogenesis, and radio- and chemoresistance, that have direct impacts on treatment failure. Thus, there is still an increasing need to identify novel targets to limit GBM relapse. Polysialic acid (PSA) is a carbohydrate composed of a linear polymer of α2,8-linked sialic acids, primarily attached to the Neural Cell Adhesion Molecule (NCAM). It is considered an oncodevelopmental antigen that is re-expressed in various tumors. High levels of PSA-NCAM are associated with high-grade and poorly differentiated tumors. Here, we investigated the effect of PSA inhibition in GBM cells under low oxygen concentrations. Our main results highlight the way in which hypoxia stimulates polysialylation in U87-MG cells and in a GBM primary culture. By lowering PSA levels with the sialic acid analog, F-NANA, we also inhibited GBM cell migration and interfered with their differentiation influenced by the hypoxic microenvironment. Our findings suggest that PSA may represent a possible molecular target for the development of alternative pharmacological strategies to manage a devastating tumor like GBM.


Assuntos
Glioblastoma , Neuroblastoma , Glioblastoma/metabolismo , Humanos , Hipóxia/metabolismo , Recidiva Local de Neoplasia , Moléculas de Adesão de Célula Nervosa/genética , Moléculas de Adesão de Célula Nervosa/metabolismo , Neuroblastoma/metabolismo , Ácidos Siálicos/metabolismo , Microambiente Tumoral
8.
Hum Mol Genet ; 28(22): 3825-3841, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31600787

RESUMO

The molecular etiology linking the pathogenic mutations in the Huntingtin (Htt) gene with Huntington's disease (HD) is unknown. Prior work suggests a role for Htt in neuronal autophagic function and mutant HTT protein disrupts autophagic cargo loading. Reductions in the bioavailability of the essential metal manganese (Mn) are seen in models of HD. Excess cellular Mn impacts autophagic function, but the target and molecular basis of these changes are unknown. Thus, we sought to determine if changes in cellular Mn status impact autophagic processes in a wild-type or mutant Htt-dependent manner. We report that the HD genotype is associated with reduced Mn-induced autophagy and that acute Mn exposure increases autophagosome induction/formation. To determine if a deficit in bioavailable Mn is mechanistically linked to the autophagy-related HD cellular phenotypes, we examined autophagosomes by electron microscopy. We observed that a 24 h 100 uM Mn restoration treatment protocol attenuated an established HD 'cargo-recognition failure' in the STHdh HD model cells by increasing the percentage of filled autophagosomes. Mn restoration had no effect on HTT aggregate number, but a 72 h co-treatment with chloroquine (CQ) in GFP-72Q-expressing HEK293 cells increased the number of visible aggregates in a dose-dependent manner. As CQ prevents autophagic degradation this indicates that Mn restoration in HD cell models facilitates incorporation of aggregates into autophagosomes. Together, these findings suggest that defective Mn homeostasis in HD models is upstream of the impaired autophagic flux and provide proof-of-principle support for increasing bioavailable Mn in HD to restore autophagic function and promote aggregate clearance.


Assuntos
Autofagia/efeitos dos fármacos , Doença de Huntington/metabolismo , Manganês/farmacologia , Animais , Autofagossomos/efeitos dos fármacos , Autofagossomos/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Células HEK293 , Humanos , Proteína Huntingtina/metabolismo , Proteína Huntingtina/fisiologia , Doença de Huntington/genética , Doença de Huntington/terapia , Células-Tronco Pluripotentes Induzidas , Manganês/metabolismo , Camundongos , Microscopia Eletrônica/métodos , Mutação , Neurônios/metabolismo
9.
Int J Mol Sci ; 22(2)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33430140

RESUMO

Neurodegenerative diseases are characterized by adverse cellular environments and pathological alterations causing neurodegeneration in distinct brain regions. This development is triggered or facilitated by conditions such as hypoxia, ischemia or inflammation and is associated with disruptions of fundamental cellular functions, including metabolic and ion homeostasis. Targeting intracellular downstream consequences to specifically reverse these pathological changes proved difficult to translate to clinical settings. Here, we discuss the potential of more holistic approaches with the purpose to re-establish a healthy cellular environment and to promote cellular resilience. We review the involvement of important molecular pathways (e.g., the sphingosine, δ-opioid receptor or N-Methyl-D-aspartate (NMDA) receptor pathways) in neuroprotective hypoxic conditioning effects and how these pathways can be targeted for chemical conditioning. Despite the present scarcity of knowledge on the efficacy of such approaches in neurodegeneration, the specific characteristics of Huntington's disease may make it particularly amenable for such conditioning techniques. Not only do classical features of neurodegenerative diseases like mitochondrial dysfunction, oxidative stress and inflammation support this assumption, but also specific Huntington's disease characteristics: a relatively young age of neurodegeneration, molecular overlap of related pathologies with hypoxic adaptations and sensitivity to brain hypoxia. The aim of this review is to discuss several molecular pathways in relation to hypoxic adaptations that have potential as drug targets in neurodegenerative diseases. We will extract the relevance for Huntington's disease from this knowledge base.


Assuntos
Hipóxia Celular/genética , Doença de Huntington/genética , Degeneração Neural/genética , Estresse Oxidativo/genética , Encéfalo/metabolismo , Encéfalo/patologia , Humanos , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Mitocôndrias/genética , Mitocôndrias/metabolismo , N-Metilaspartato/metabolismo , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Fármacos Neuroprotetores/metabolismo , Transdução de Sinais/efeitos dos fármacos , Esfingosina/uso terapêutico
10.
Int J Mol Sci ; 22(7)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917593

RESUMO

Alterations in the metabolism of sphingolipids, a class of biologically active molecules in cell membranes with direct effect on vascular homeostasis, are increasingly recognized as important determinant in different vascular disorders. However, it is not clear whether sphingolipids are implicated in the pathogenesis of hypertension-related cerebrovascular and renal damage. In this study, we evaluated the existence of possible abnormalities related to the sphingolipid metabolism in the brain and kidneys of two well validated spontaneously hypertensive rat strains, the stroke-prone (SHRSP) and the stroke-resistant (SHRSR) models, as compared to the normotensive Wistar Kyoto (WKY) rat strain. Our results showed a global alteration in the metabolism of sphingolipids in both cerebral and renal tissues of both hypertensive strains as compared to the normotensive rat. However, few defects, such as reduced expression of enzymes involved in the metabolism/catabolism of sphingosine-1-phosphate and in the de novo biosynthetic pathways, were exclusively detected in the SHRSP. Although further studies are necessary to fully understand the significance of these findings, they suggest that defects in specific lipid molecules and/or their related metabolic pathways may likely contribute to the pathogenesis of hypertensive target organ damage and may eventually serve as future therapeutic targets to reduce the vascular consequences of hypertension.


Assuntos
Lesões Encefálicas/metabolismo , Encéfalo/metabolismo , Hipertensão/metabolismo , Nefropatias/metabolismo , Rim/metabolismo , Lisofosfolipídeos/metabolismo , Esfingosina/análogos & derivados , Animais , Encéfalo/patologia , Lesões Encefálicas/patologia , Hipertensão/patologia , Rim/patologia , Nefropatias/patologia , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Esfingosina/metabolismo
11.
Hum Mol Genet ; 27(14): 2490-2501, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29688337

RESUMO

Huntington's disease (HD) is the most common neurodegenerative disorder for which no effective cure is yet available. Although several agents have been identified to provide benefits so far, the number of therapeutic options remains limited with only symptomatic treatment available. Over the past few years, we have demonstrated that sphingolipid-based approaches may open the door to new and more targeted treatments for the disease. In this study, we investigated the therapeutic potential of stimulating sphingosine-1-phosphate (S1P) receptor 5 by the new selective agonist A-971432 (provided by AbbVie) in R6/2 mice, a widely used HD animal model. Chronic administration of low-dose (0.1 mg/kg) A-971432 slowed down the progression of the disease and significantly prolonged lifespan in symptomatic R6/2 mice. Such beneficial effects were associated with activation of pro-survival pathways (BDNF, AKT and ERK) and with reduction of mutant huntingtin aggregation. A-971432 also protected blood-brain barrier (BBB) homeostasis in the same mice. Interestingly, when administered early in the disease, before any overt symptoms, A-971432 completely protected HD mice from the classic progressive motor deficit and preserved BBB integrity. Beside representing a promising strategy to take into consideration for the development of alternative therapeutic options for HD, selective stimulation of S1P receptor 5 may be also seen as an effective approach to target brain vasculature defects in the disease.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Proteína Huntingtina/genética , Doença de Huntington/tratamento farmacológico , Agregação Patológica de Proteínas/tratamento farmacológico , Receptores de Lisoesfingolipídeo/genética , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Fator Neurotrófico Derivado do Encéfalo/genética , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Doença de Huntington/genética , Doença de Huntington/patologia , Camundongos , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Agregação Patológica de Proteínas/fisiopatologia , Proteínas Proto-Oncogênicas c-akt/genética , Receptores de Lisoesfingolipídeo/agonistas
12.
Int J Mol Sci ; 21(15)2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32751413

RESUMO

Mitochondrial dysfunction is crucially involved in aging and neurodegenerative diseases, such as Huntington's Disease (HD). How mitochondria become compromised in HD is poorly understood but instrumental for the development of treatments to prevent or reverse resulting deficits. In this paper, we investigate whether oxidative phosphorylation (OXPHOS) differs across brain regions in juvenile as compared to adult mice and whether such developmental changes might be compromised in the R6/2 mouse model of HD. We study OXPHOS in the striatum, hippocampus, and motor cortex by high resolution respirometry in female wild-type and R6/2 mice of ages corresponding to pre-symptomatic and symptomatic R6/2 mice. We observe a developmental shift in OXPHOS-control parameters that was similar in R6/2 mice, except for cortical succinate-driven respiration. While the LEAK state relative to maximal respiratory capacity was reduced in adult mice in all analyzed brain regions, succinate-driven respiration was reduced only in the striatum and cortex, and NADH-driven respiration was higher as compared to juvenile mice only in the striatum. We demonstrate age-related changes in respirational capacities of different brain regions with subtle deviations in R6/2 mice. Uncovering in situ oxygen conditions and potential substrate limitations during aging and HD disease progression are interesting avenues for future research to understand brain-regional vulnerability in HD.


Assuntos
Envelhecimento/metabolismo , Corpo Estriado/metabolismo , Hipocampo/metabolismo , Doença de Huntington/metabolismo , Mitocôndrias/metabolismo , Córtex Motor/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Transgênicos , Fosforilação Oxidativa
13.
Int J Mol Sci ; 21(22)2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33238365

RESUMO

Identification of molecules able to promote neuroprotective mechanisms can represent a promising therapeutic approach to neurodegenerative disorders including Huntington's disease. Curcumin is an antioxidant and neuroprotective agent, even though its efficacy is limited by its poor absorption, rapid metabolism, systemic elimination, and limited blood-brain barrier (BBB) permeability. Herein, we report on novel biodegradable curcumin-containing nanoparticles to favor the compound delivery and potentially enhance its brain bioavailability. The prepared hyaluronan-based materials able to self-assemble in stable spherical nanoparticles, consist of natural fatty acids chemically conjugated to the natural polysaccharide. The aim of this study is to provide a possible effective delivery system for curcumin with the expectation that, after having released the drug at the specific site, the biopolymer can degrade to nontoxic fragments before renal excretion, since all the starting materials are provided by natural resource. Our findings demonstrate that curcumin-encapsulated nanoparticles enter the cells and reduce their susceptibility to apoptosis in an in vitro model of Huntington's disease.


Assuntos
Curcumina/farmacologia , Sistemas de Liberação de Medicamentos , Proteína Huntingtina/genética , Doença de Huntington/tratamento farmacológico , Nanopartículas/química , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Linhagem Celular , Curcumina/química , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Doença de Huntington/genética , Doença de Huntington/patologia , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Camundongos , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Tensoativos/química , Tensoativos/farmacologia
14.
Hum Genomics ; 11(1): 30, 2017 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-29216901

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a devastating disease whose complex pathology has been associated with a strong genetic component in the context of both familial and sporadic disease. Herein, we adopted a next-generation sequencing approach to Greek patients suffering from sporadic ALS (together with their healthy counterparts) in order to explore further the genetic basis of sporadic ALS (sALS). RESULTS: Whole-genome sequencing analysis of Greek sALS patients revealed a positive association between FTO and TBC1D1 gene variants and sALS. Further, linkage disequilibrium analyses were suggestive of a specific disease-associated haplotype for FTO gene variants. Genotyping for these variants was performed in Greek, Sardinian, and Turkish sALS patients. A lack of association between FTO and TBC1D1 variants and sALS in patients of Sardinian and Turkish descent may suggest a founder effect in the Greek population. FTO was found to be highly expressed in motor neurons, while in silico analyses predicted an impact on FTO and TBC1D1 mRNA splicing for the genomic variants in question. CONCLUSIONS: To our knowledge, this is the first study to present a possible association between FTO gene variants and the genetic etiology of sALS. In addition, the next-generation sequencing-based genomics approach coupled with the two-step validation strategy described herein has the potential to be applied to other types of human complex genetic disorders in order to identify variants of clinical significance.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Esclerose Lateral Amiotrófica/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Estudos de Casos e Controles , Simulação por Computador , Efeito Fundador , Proteínas Ativadoras de GTPase/genética , Grécia , Haplótipos , Humanos , Desequilíbrio de Ligação , Neurônios Motores/patologia , Neurônios Motores/fisiologia , Polimorfismo de Nucleotídeo Único
15.
Biochim Biophys Acta Mol Basis Dis ; 1863(6): 1596-1604, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28213125

RESUMO

Huntington's disease (HD) is caused by a mutation in the huntingtin gene (HTT), resulting in profound striatal neurodegeneration through an unknown mechanism. Perturbations in the urea cycle have been reported in HD models and in HD patient blood and brain. In neurons, arginase is a central urea cycle enzyme, and the metal manganese (Mn) is an essential cofactor. Deficient biological responses to Mn, and reduced Mn accumulation have been observed in HD striatal mouse and cell models. Here we report in vivo and ex vivo evidence of a urea cycle metabolic phenotype in a prodromal HD mouse model. Further, either in vivo or in vitro Mn supplementation reverses the urea-cycle pathology by restoring arginase activity. We show that Arginase 2 (ARG2) is the arginase enzyme present in these mouse brain models, with ARG2 protein levels directly increased by Mn exposure. ARG2 protein is not reduced in the prodromal stage, though enzyme activity is reduced, indicating that altered Mn bioavailability as a cofactor leads to the deficient enzymatic activity. These data support a hypothesis that mutant HTT leads to a selective deficiency of neuronal Mn at an early disease stage, contributing to HD striatal urea-cycle pathophysiology through an effect on arginase activity.


Assuntos
Corpo Estriado/metabolismo , Doença de Huntington/metabolismo , Manganês/metabolismo , Neurônios/metabolismo , Ureia/metabolismo , Animais , Arginase/metabolismo , Corpo Estriado/patologia , Modelos Animais de Doenças , Doença de Huntington/patologia , Masculino , Camundongos , Neurônios/patologia
16.
Hum Mol Genet ; 23(9): 2251-65, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24301680

RESUMO

Huntington disease (HD) is a genetic neurodegenerative disorder for which there is currently no cure and no way to stop or even slow the brain changes it causes. In the present study, we aimed to investigate whether FTY720, the first approved oral therapy for multiple sclerosis, may be effective in HD models and eventually constitute an alternative therapeutic approach for the treatment of the disease. Here, we utilized preclinical target validation paradigms and examined the in vivo efficacy of chronic administration of FTY720 in R6/2 HD mouse model. Our findings indicate that FTY720 improved motor function, prolonged survival and reduced brain atrophy in R6/2 mice. The beneficial effect of FTY720 administration was associated with a significant strengthening of neuronal activity and connectivity and, with reduction of mutant huntingtin aggregates, and it was also paralleled by increased phosphorylation of mutant huntingtin at serine 13/16 residues that are predicted to attenuate protein toxicity.


Assuntos
Doença de Huntington/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico , Propilenoglicóis/uso terapêutico , Esfingosina/análogos & derivados , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular , Modelos Animais de Doenças , Cloridrato de Fingolimode , Doença de Huntington/metabolismo , Immunoblotting , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Transgênicos , Doenças Neurodegenerativas/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Esfingosina/uso terapêutico
17.
J Cell Mol Med ; 19(11): 2540-8, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26094900

RESUMO

Huntington disease (HD) is a neurodegenerative disorder for which new treatments are urgently needed. Pridopidine is a new dopaminergic stabilizer, recently developed for the treatment of motor symptoms associated with HD. The therapeutic effect of pridopidine in patients with HD has been determined in two double-blind randomized clinical trials, however, whether pridopidine exerts neuroprotection remains to be addressed. The main goal of this study was to define the potential neuroprotective effect of pridopidine, in HD in vivo and in vitro models, thus providing evidence that might support a potential disease-modifying action of the drug and possibly clarifying other aspects of pridopidine mode-of-action. Our data corroborated the hypothesis of neuroprotective action of pridopidine in HD experimental models. Administration of pridopidine protected cells from apoptosis, and resulted in highly improved motor performance in R6/2 mice. The anti-apoptotic effect observed in the in vitro system highlighted neuroprotective properties of the drug, and advanced the idea of sigma-1-receptor as an additional molecular target implicated in the mechanism of action of pridopidine. Coherent with protective effects, pridopidine-mediated beneficial effects in R6/2 mice were associated with an increased expression of pro-survival and neurostimulatory molecules, such as brain derived neurotrophic factor and DARPP32, and with a reduction in the size of mHtt aggregates in striatal tissues. Taken together, these findings support the theory of pridopidine as molecule with disease-modifying properties in HD and advance the idea of a valuable therapeutic strategy for effectively treating the disease.


Assuntos
Doença de Huntington/tratamento farmacológico , Atividade Motora/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Piperidinas/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Linhagem Celular Transformada , Modelos Animais de Doenças , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Doença de Huntington/metabolismo , Doença de Huntington/fisiopatologia , Camundongos
18.
Proc Natl Acad Sci U S A ; 109(9): 3528-33, 2012 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-22331905

RESUMO

Huntington disease (HD) is a progressive neurodegenerative monogenic disorder caused by expansion of a polyglutamine stretch in the huntingtin (Htt) protein. Mutant huntingtin triggers neural dysfunction and death, mainly in the corpus striatum and cerebral cortex, resulting in pathognomonic motor symptoms, as well as cognitive and psychiatric decline. Currently, there is no effective treatment for HD. We report that intraventricular infusion of ganglioside GM1 induces phosphorylation of mutant huntingtin at specific serine amino acid residues that attenuate huntingtin toxicity, and restores normal motor function in already symptomatic HD mice. Thus, our studies have identified a potential therapy for HD that targets a posttranslational modification of mutant huntingtin with critical effects on disease pathogenesis.


Assuntos
Gangliosídeo G(M1)/uso terapêutico , Atividade Motora/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Animais , Códon/efeitos dos fármacos , Corpo Estriado/metabolismo , Dimerização , Modelos Animais de Doenças , Fosfoproteína 32 Regulada por cAMP e Dopamina/biossíntese , Fosfoproteína 32 Regulada por cAMP e Dopamina/genética , Avaliação Pré-Clínica de Medicamentos , Gangliosídeo G(M1)/administração & dosagem , Proteína Huntingtina , Bombas de Infusão Implantáveis , Infusões Parenterais , Camundongos , Camundongos Mutantes Neurológicos , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Fosforilação/efeitos dos fármacos , Fosfosserina/análise , Desempenho Psicomotor/efeitos dos fármacos
19.
Artigo em Inglês | MEDLINE | ID: mdl-37949293

RESUMO

Sphingolipids exert important roles within the cardiovascular system and related diseases. Perturbed sphingolipid metabolism was previously reported in cerebral and renal tissues of spontaneously hypertensive rats (SHR). Specific defects related to the synthesis of sphingolipids and to the metabolism of Sphingosine-1-Phospahte (S1P) were exclusively identified in the stroke-prone (SHRSP) with the respect to the stroke-resistant (SHRSR) strain. In this study, we explored any existing perturbation in either protein or gene expression of enzymes involved in the sphingolipid pathways in cardiac tissue from both SHRSP and SHRSR strains, compared to the normotensive Wistar Kyoto (WKY) strain. The two hypertensive rat models showed an overall perturbation of the expression of different enzymes involved in the sphingolipid metabolism in the heart. In particular, whereas the expression of the S1P-metabolizing-enzyme, SPHK2, was significantly reduced in both SHR strains, SGPL1 protein levels were decreased only in SHRSP. The protein levels of S1P receptors 1-3 were reduced only in the cardiac tissue of SHRSP, whereas S1PR2 levels were reduced in both SHR strains. The de novo synthesis of sphingolipids was aberrant in the two hypertensive strains. A significant reduction of mRNA expression of the Sgms1 and Smpd3 enzymes, implicated in the metabolism of sphingomyelin, was found in both hypertensive strains. Interestingly, Smpd2, devoted to sphingomyelin degradation, was reduced only in the heart of SHRSP. In conclusion, alterations in the expression of sphingolipid-metabolizing enzymes may be involved in the susceptibility to cardiac damage of hypertensive rat strains. Specific differences detected in the SHRSP, however, deserve further elucidation.


Assuntos
Hipertensão , Acidente Vascular Cerebral , Ratos , Animais , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Esfingolipídeos , Esfingomielinas , Hipertensão/genética , Hipertensão/metabolismo , Acidente Vascular Cerebral/metabolismo
20.
J Neurosci ; 32(19): 6490-500, 2012 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-22573671

RESUMO

Accumulation of ß-amyloid (Aß) inside brain neurons is an early and crucial event in Alzheimer's disease (AD). Studies in brains of AD patients and mice models of AD suggested that cholesterol homeostasis is altered in neurons that accumulate Aß. Here we directly investigated the role of intracellular oligomeric Aß(42) (oAß(42)) in neuronal cholesterol homeostasis. We report that oAß(42) induces cholesterol sequestration without increasing cellular cholesterol mass. Several features of AD, such as endosomal abnormalities, brain accumulation of Aß and neurofibrillary tangles, and influence of apolipoprotein E genotype, are also present in Niemann-Pick type C, a disease characterized by impairment of intracellular cholesterol trafficking. These common features and data presented here suggest that a pathological mechanism involving abnormal cholesterol trafficking could take place in AD. Cholesterol sequestration in Aß-treated neurons results from impairment of intracellular cholesterol trafficking secondary to inhibition of protein prenylation. oAß(42) reduces sterol regulatory element-binding protein-2 (SREBP-2) cleavage, causing decrease of protein prenylation. Inhibition of protein prenylation represents a mechanism of oAß(42)-induced neuronal death. Supply of the isoprenoid geranylgeranyl pyrophosphate to oAß(42)-treated neurons recovers normal protein prenylation, reduces cholesterol sequestration, and prevents Aß-induced neurotoxicity. Significant to AD, reduced levels of protein prenylation are present in the cerebral cortex of the TgCRND8 mouse model. In conclusion, we demonstrate a significant inhibitory effect of Aß on protein prenylation and identify SREBP-2 as a target of oAß(42), directly linking Aß to cholesterol homeostasis impairment.


Assuntos
Peptídeos beta-Amiloides/fisiologia , Colesterol/metabolismo , Fragmentos de Peptídeos/fisiologia , Prenilação de Proteína/fisiologia , Proteína de Ligação a Elemento Regulador de Esterol 2/antagonistas & inibidores , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Animais , Anticolesterolemiantes/farmacologia , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Morte Celular , Células Cultivadas , Feminino , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/genética , Espaço Intracelular/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/patologia , Fragmentos de Peptídeos/antagonistas & inibidores , Prenilação de Proteína/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA