Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 157(3): 740-52, 2014 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-24766815

RESUMO

To understand regulatory systems, it would be useful to uniformly determine how different components contribute to the expression of all other genes. We therefore monitored mRNA expression genome-wide, for individual deletions of one-quarter of yeast genes, focusing on (putative) regulators. The resulting genetic perturbation signatures reflect many different properties. These include the architecture of protein complexes and pathways, identification of expression changes compatible with viability, and the varying responsiveness to genetic perturbation. The data are assembled into a genetic perturbation network that shows different connectivities for different classes of regulators. Four feed-forward loop (FFL) types are overrepresented, including incoherent type 2 FFLs that likely represent feedback. Systematic transcription factor classification shows a surprisingly high abundance of gene-specific repressors, suggesting that yeast chromatin is not as generally restrictive to transcription as is often assumed. The data set is useful for studying individual genes and for discovering properties of an entire regulatory system.


Assuntos
Regulação Fúngica da Expressão Gênica , Redes Reguladoras de Genes , Técnicas Genéticas , Saccharomyces cerevisiae/genética , Transcriptoma , Deleção de Genes , Técnicas de Inativação de Genes
2.
Cell ; 143(6): 991-1004, 2010 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-21145464

RESUMO

To understand relationships between phosphorylation-based signaling pathways, we analyzed 150 deletion mutants of protein kinases and phosphatases in S. cerevisiae using DNA microarrays. Downstream changes in gene expression were treated as a phenotypic readout. Double mutants with synthetic genetic interactions were included to investigate genetic buffering relationships such as redundancy. Three types of genetic buffering relationships are identified: mixed epistasis, complete redundancy, and quantitative redundancy. In mixed epistasis, the most common buffering relationship, different gene sets respond in different epistatic ways. Mixed epistasis arises from pairs of regulators that have only partial overlap in function and that are coupled by additional regulatory links such as repression of one by the other. Such regulatory modules confer the ability to control different combinations of processes depending on condition or context. These properties likely contribute to the evolutionary maintenance of paralogs and indicate a way in which signaling pathways connect for multiprocess control.


Assuntos
Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Epistasia Genética , Perfilação da Expressão Gênica , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação , Fosfotransferases/genética , Fosfotransferases/metabolismo
3.
BMC Cancer ; 23(1): 310, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37020198

RESUMO

BACKGROUND: Pediatric cancer is the leading cause of disease-related death in children and the need for better therapeutic options remains urgent. Due to the limited number of patients, target and drug development for pediatrics is often supplemented by data from studies focused on adult cancers. Recent evidence shows that pediatric cancers possess different vulnerabilities that should be explored independently from adult cancers. METHODS: Using the publicly available Genomics of Drug Sensitivity in Cancer database, we explore therapeutic targets and biomarkers specific to the pediatric solid malignancies Ewing sarcoma, medulloblastoma, neuroblastoma, osteosarcoma, and rhabdomyosarcoma. Results are validated using cell viability assays and high-throughput drug screens are used to identify synergistic combinations. RESULTS: Using published drug screening data, PARP is identified as a drug target of interest across multiple different pediatric malignancies. We validate these findings, and we show that efficacy can be improved when combined with conventional chemotherapeutics, namely topoisomerase inhibitors. Additionally, using gene set enrichment analysis, we identify ribosome biogenesis as a potential biomarker for PARP inhibition in pediatric cancer cell lines. CONCLUSION: Collectively, our results provide evidence to support the further development of PARP inhibition and the combination with TOP1 inhibition as a therapeutic approach in solid pediatric malignancies. Additionally, we propose ribosome biogenesis as a component to PARP inhibitor sensitivity that should be further investigated to help maximize the potential utility of PARP inhibition and combinations across pediatric solid malignancies.


Assuntos
Antineoplásicos , Neoplasias Cerebelares , Neuroblastoma , Sarcoma de Ewing , Humanos , Criança , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Antineoplásicos/uso terapêutico , Sarcoma de Ewing/tratamento farmacológico , Neuroblastoma/patologia , Neoplasias Cerebelares/tratamento farmacológico , Linhagem Celular Tumoral
4.
Int J Cancer ; 144(2): 366-371, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30151914

RESUMO

Patient-derived xenograft (PDX) models have become an important asset in translational cancer research. However, to provide a robust preclinical platform, PDXs need to accommodate the tumor heterogeneity that is observed in patients. Colorectal cancer (CRC) can be stratified into four consensus molecular subtypes (CMS) with distinct biological and clinical features. Surprisingly, using a set of CRC patients, we revealed the partial representation of tumor heterogeneity in PDX models. The epithelial subtypes, the largest subgroups of CRC subtype, were very ineffective in establishing PDXs, indicating the need for further optimization to develop an effective personalized therapeutic approach to CRC. Moreover, we showed that tumor cell proliferation was associated with successful PDX establishment and able to distinguish patient with poor clinical outcomes within CMS2 group.


Assuntos
Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Xenoenxertos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Animais , Humanos , Camundongos
5.
Mol Cell ; 42(4): 536-49, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21596317

RESUMO

Packaging of DNA into chromatin has a profound impact on gene expression. To understand how changes in chromatin influence transcription, we analyzed 165 mutants of chromatin machinery components in Saccharomyces cerevisiae. mRNA expression patterns change in 80% of mutants, always with specific effects, even for loss of widespread histone marks. The data are assembled into a network of chromatin interaction pathways. The network is function based, has a branched, interconnected topology, and lacks strict one-to-one relationships between complexes. Chromatin pathways are not separate entities for different gene sets, but share many components. The study evaluates which interactions are important for which genes and predicts additional interactions, for example between Paf1C and Set3C, as well as a role for Mediator in subtelomeric silencing. The results indicate the presence of gene-dependent effects that go beyond context-dependent binding of chromatin factors and provide a framework for understanding how specificity is achieved through regulating chromatin.


Assuntos
Cromatina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Regulação Fúngica da Expressão Gênica , Inativação Gênica , Histona Desacetilases/metabolismo , Histonas/metabolismo , Complexo Mediador/metabolismo , Redes e Vias Metabólicas , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Telômero/metabolismo , Transcrição Gênica
6.
BMC Biol ; 13: 112, 2015 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-26700642

RESUMO

BACKGROUND: Genetic interactions, or non-additive effects between genes, play a crucial role in many cellular processes and disease. Which mechanisms underlie these genetic interactions has hardly been characterized. Understanding the molecular basis of genetic interactions is crucial in deciphering pathway organization and understanding the relationship between genotype, phenotype and disease. RESULTS: To investigate the nature of genetic interactions between gene-specific transcription factors (GSTFs) in Saccharomyces cerevisiae, we systematically analyzed 72 GSTF pairs by gene expression profiling double and single deletion mutants. These pairs were selected through previously published growth-based genetic interactions as well as through similarity in DNA binding properties. The result is a high-resolution atlas of gene expression-based genetic interactions that provides systems-level insight into GSTF epistasis. The atlas confirms known genetic interactions and exposes new ones. Importantly, the data can be used to investigate mechanisms that underlie individual genetic interactions. Two molecular mechanisms are proposed, "buffering by induced dependency" and "alleviation by derepression". CONCLUSIONS: These mechanisms indicate how negative genetic interactions can occur between seemingly unrelated parallel pathways and how positive genetic interactions can indirectly expose parallel rather than same-pathway relationships. The focus on GSTFs is important for understanding the transcription regulatory network of yeast as it uncovers details behind many redundancy relationships, some of which are completely new. In addition, the study provides general insight into the complex nature of epistasis and proposes mechanistic models for genetic interactions, the majority of which do not fall into easily recognizable within- or between-pathway relationships.


Assuntos
Epigênese Genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Perfilação da Expressão Gênica , Biblioteca Gênica , Ontologia Genética , Anotação de Sequência Molecular , Mutação , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo
7.
Nucleic Acids Res ; 40(3): 996-1008, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21976730

RESUMO

TATA-binding protein (TBP) is central to the regulation of eukaryotic transcription initiation. Recruitment of TBP to target genes can be positively regulated by one of two basal transcription factor complexes: SAGA or TFIID. Negative regulation of TBP promoter association can be performed by Mot1p or the NC2 complex. Recent evidence suggests that Mot1p, NC2 and TBP form a DNA-dependent protein complex. Here, we compare the functions of Mot1p and NC2ßduring basal and activated transcription using the anchor-away technique for conditional nuclear depletion. Genome-wide expression analysis indicates that both proteins regulate a highly similar set of genes. Upregulated genes were enriched for SAGA occupancy, while downregulated genes preferred TFIID binding. Mot1p and NC2ß depletion during heat shock resulted in failure to downregulate gene expression after initial activation, which was accompanied by increased TBP and RNA pol II promoter occupancies. Depletion of Mot1p or NC2ß displayed preferential synthetic lethality with the TBP-interaction module of SAGA. Our results support the model that Mot1p and NC2ß directly cooperate in vivo to regulate TBP function, and that they are involved in maintaining basal expression levels as well as in resetting gene expression after induction by stress.


Assuntos
Adenosina Trifosfatases/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Transcrição Gênica , Adenosina Trifosfatases/genética , Núcleo Celular/metabolismo , Genoma Fúngico , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , Proteínas Repressoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores Associados à Proteína de Ligação a TATA/genética , Transativadores/genética
8.
Trends Cancer ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39019673

RESUMO

Gastrointestinal (GI) cancers are highly heterogeneous at multiple levels. Tumor heterogeneity can be captured by molecular profiling, such as genetic, epigenetic, proteomic, and transcriptomic classification. Transcriptomic subtyping has the advantage of combining genetic and epigenetic information, cancer cell-intrinsic properties, and the tumor microenvironment (TME). Unsupervised transcriptomic subtyping systems of different GI malignancies have gained interest because they reveal shared biological features across cancers and bear prognostic and predictive value. Importantly, transcriptomic subtypes accurately reflect complex phenotypic states varying not only per tumor region, but also throughout disease progression, with consequences for clinical management. Here, we discuss methodologies of transcriptomic subtyping, proposed taxonomies for GI malignancies, and the challenges posed to clinical implementation, highlighting opportunities for future transcriptomic profiling efforts to optimize clinical impact.

9.
Life Sci Alliance ; 7(8)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38782602

RESUMO

Consensus Molecular Subtype (CMS) classification of colorectal cancer (CRC) tissues is complicated by RNA degradation upon formalin-fixed paraffin-embedded (FFPE) preservation. Here, we present an FFPE-curated CMS classifier. The CMSFFPE classifier was developed using genes with a high transcript integrity in FFPE-derived RNA. We evaluated the classification accuracy in two FFPE-RNA datasets with matched fresh-frozen (FF) RNA data, and an FF-derived RNA set. An FFPE-RNA application cohort of metastatic CRC patients was established, partly treated with anti-EGFR therapy. Key characteristics per CMS were assessed. Cross-referenced with matched benchmark FF CMS calls, the CMSFFPE classifier strongly improved classification accuracy in two FFPE datasets compared with the original CMSClassifier (63.6% versus 40.9% and 83.3% versus 66.7%, respectively). We recovered CMS-specific recurrence-free survival patterns (CMS4 versus CMS2: hazard ratio 1.75, 95% CI 1.24-2.46). Key molecular and clinical associations of the CMSs were confirmed. In particular, we demonstrated the predictive value of CMS2 and CMS3 for anti-EGFR therapy response (CMS2&3: odds ratio 5.48, 95% CI 1.10-27.27). The CMSFFPE classifier is an optimized FFPE-curated research tool for CMS classification of clinical CRC samples.


Assuntos
Neoplasias Colorretais , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/classificação , Neoplasias Colorretais/patologia , Inclusão em Parafina , Biomarcadores Tumorais/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Consenso , Fixação de Tecidos/métodos , Masculino , Perfilação da Expressão Gênica/métodos , Idoso , Pessoa de Meia-Idade , Prognóstico , Regulação Neoplásica da Expressão Gênica , Formaldeído
10.
Cancer Cell ; 42(2): 283-300.e8, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38181797

RESUMO

Pediatric patients with high-risk neuroblastoma have poor survival rates and urgently need more effective treatment options with less side effects. Since novel and improved immunotherapies may fill this need, we dissect the immunoregulatory interactions in neuroblastoma by single-cell RNA-sequencing of 24 tumors (10 pre- and 14 post-chemotherapy, including 5 pairs) to identify strategies for optimizing immunotherapy efficacy. Neuroblastomas are infiltrated by natural killer (NK), T and B cells, and immunosuppressive myeloid populations. NK cells show reduced cytotoxicity and T cells have a dysfunctional profile. Interaction analysis reveals a vast immunoregulatory network and identifies NECTIN2-TIGIT as a crucial immune checkpoint. Combined blockade of TIGIT and PD-L1 significantly reduces neuroblastoma growth, with complete responses (CR) in vivo. Moreover, addition of TIGIT+PD-L1 blockade to standard relapse treatment in a chemotherapy-resistant Th-ALKF1174L/MYCN 129/SvJ syngeneic model induces CR. In conclusion, our integrative analysis provides promising targets and a rationale for immunotherapeutic combination strategies.


Assuntos
Antígeno B7-H1 , Neuroblastoma , Humanos , Criança , Recidiva Local de Neoplasia , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Receptores Imunológicos/genética , Imunoterapia , Análise de Sequência de RNA
11.
Cell Rep Med ; 5(5): 101523, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38670098

RESUMO

Peritoneal metastases (PMs) from colorectal cancer (CRC) respond poorly to treatment and are associated with unfavorable prognosis. For example, the addition of hyperthermic intraperitoneal chemotherapy (HIPEC) to cytoreductive surgery in resectable patients shows limited benefit, and novel treatments are urgently needed. The majority of CRC-PMs represent the CMS4 molecular subtype of CRC, and here we queried the vulnerabilities of this subtype in pharmacogenomic databases to identify novel therapies. This reveals the copper ionophore elesclomol (ES) as highly effective against CRC-PMs. ES exhibits rapid cytotoxicity against CMS4 cells by targeting mitochondria. We find that a markedly reduced mitochondrial content in CMS4 cells explains their vulnerability to ES. ES demonstrates efficacy in preclinical models of PMs, including CRC-PMs and ovarian cancer organoids, mouse models, and a HIPEC rat model of PMs. The above proposes ES as a promising candidate for the local treatment of CRC-PMs, with broader implications for other PM-prone cancers.


Assuntos
Neoplasias Colorretais , Mitocôndrias , Neoplasias Peritoneais , Neoplasias Colorretais/patologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Peritoneais/secundário , Neoplasias Peritoneais/tratamento farmacológico , Neoplasias Peritoneais/terapia , Animais , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Camundongos , Linhagem Celular Tumoral , Ratos , Feminino , Quimioterapia Intraperitoneal Hipertérmica/métodos
12.
Lancet Oncol ; 13(12): e554-61, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23182196

RESUMO

Oral squamous-cell carcinomas arise in mucosal linings of the oral cavity and frequently metastasise to regional lymph nodes in the neck. The presence of nodal metastases is a determinant of prognosis and clinical management. The neck is staged by palpation and imaging, but accuracy of these techniques to detect small metastases is low. In general, 30-40% of patients will have occult nodal disease and will develop clinically detectable lymph-node metastases when the neck is left untreated. The choice at present is either elective treatment or careful observation followed by treatment of the neck in patients who develop manifest metastases. These unsatisfying therapeutic options have been the subject of debate for decades. Recent developments in staging of the neck, including expression profiling and sentinel lymph-node biopsy, will allow more personalised management of the neck.


Assuntos
Carcinoma de Células Escamosas/patologia , Metástase Linfática/diagnóstico , Neoplasias Bucais/patologia , Biópsia de Linfonodo Sentinela , Transcriptoma , Humanos , Pescoço
13.
Genome Biol ; 24(1): 177, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528411

RESUMO

BACKGROUND: RNA profiling technologies at single-cell resolutions, including single-cell and single-nuclei RNA sequencing (scRNA-seq and snRNA-seq, scnRNA-seq for short), can help characterize the composition of tissues and reveal cells that influence key functions in both healthy and disease tissues. However, the use of these technologies is operationally challenging because of high costs and stringent sample-collection requirements. Computational deconvolution methods that infer the composition of bulk-profiled samples using scnRNA-seq-characterized cell types can broaden scnRNA-seq applications, but their effectiveness remains controversial. RESULTS: We produced the first systematic evaluation of deconvolution methods on datasets with either known or scnRNA-seq-estimated compositions. Our analyses revealed biases that are common to scnRNA-seq 10X Genomics assays and illustrated the importance of accurate and properly controlled data preprocessing and method selection and optimization. Moreover, our results suggested that concurrent RNA-seq and scnRNA-seq profiles can help improve the accuracy of both scnRNA-seq preprocessing and the deconvolution methods that employ them. Indeed, our proposed method, Single-cell RNA Quantity Informed Deconvolution (SQUID), which combines RNA-seq transformation and dampened weighted least-squares deconvolution approaches, consistently outperformed other methods in predicting the composition of cell mixtures and tissue samples. CONCLUSIONS: We showed that analysis of concurrent RNA-seq and scnRNA-seq profiles with SQUID can produce accurate cell-type abundance estimates and that this accuracy improvement was necessary for identifying outcomes-predictive cancer cell subclones in pediatric acute myeloid leukemia and neuroblastoma datasets. These results suggest that deconvolution accuracy improvements are vital to enabling its applications in the life sciences.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Criança , Humanos , RNA-Seq , Perfilação da Expressão Gênica/métodos , RNA Interferente Pequeno , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos
14.
PLoS One ; 18(8): e0289084, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37540673

RESUMO

Neuroblastoma is the most common extracranial solid tumor in children. A subgroup of high-risk patients is characterized by aberrations in the chromatin remodeller ATRX that is encoded by 35 exons. In contrast to other pediatric cancer where ATRX point mutations are most frequent, multi-exon deletions (MEDs) are the most frequent type of ATRX aberrations in neuroblastoma. 75% of these MEDs are predicted to produce in-frame fusion proteins, suggesting a potential gain-of-function effect compared to nonsense mutations. For neuroblastoma there are only a few patient-derived ATRX aberrant models. Therefore, we created isogenic ATRX aberrant models using CRISPR-Cas9 in several neuroblastoma cell lines and one tumoroid and performed total RNA-sequencing on these and the patient-derived models. Gene set enrichment analysis (GSEA) showed decreased expression of genes related to both ribosome biogenesis and several metabolic processes in our isogenic ATRX exon 2-10 MED model systems, the patient-derived MED models and in tumor data containing two patients with an ATRX exon 2-10 MED. In sharp contrast, these same processes showed an increased expression in our isogenic ATRX knock-out and exon 2-13 MED models. Our validations confirmed a role of ATRX in the regulation of ribosome homeostasis. The two distinct molecular expression patterns within ATRX aberrant neuroblastomas that we identified imply that there might be a need for distinct treatment regimens.


Assuntos
Neuroblastoma , Criança , Humanos , Proteína Nuclear Ligada ao X/genética , Neuroblastoma/genética , Neuroblastoma/patologia , Cromatina , Linhagem Celular , Expressão Gênica
15.
Eur J Cancer ; 162: 107-117, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34963094

RESUMO

BACKGROUND: Owing to the high numbers of paediatric cancer-related deaths, advances in therapeutic options for childhood cancer is a heavily studied field, especially over the past decade. Classical chemotherapy offers some therapeutic benefit but has proven long-term complications in survivors, and there is an urgent need to identify novel target-driven therapies. Replication stress is a major cause of genomic instability in cancer, triggering the stalling of the replication fork. Failure of molecular response by DNA damage checkpoints, DNA repair mechanisms and restarting the replication forks can exacerbate replication stress and initiate cell death pathways, thus presenting as a novel therapeutic target. To bridge the gap between preclinical evidence and clinical utility thereof, we apply the literature-driven systematic target actionability review methodology to published proof-of-concept (PoC) data related to the process of replication stress. METHODS: A meticulous PubMed literature search was performed to gather replication stress-related articles (published between 2014 and 2021) across 16 different paediatric solid tumour types. Articles that fulfilled inclusion criteria were uploaded into the R2 informatics platform [r2.amc.nl] and assessed by critical appraisal. Key evidence based on nine pre-established PoC modules was summarised, and scores based on the quality and outcome of each study were assigned by two separate reviewers. Articles with discordant modules/scores were re-scored by a third independent reviewer, and a final consensus score was agreed upon by adjudication between all three reviewers. To visualise the final scores, an interactive heatmap summarising the evidence and scores associated with each PoC module across all, including paediatric tumour types, were generated. RESULTS AND CONCLUSIONS: 145 publications related to targeting replication stress in paediatric tumours were systematically reviewed with an emphasis on DNA repair pathways and cell cycle checkpoint control. Although various targets in these pathways have been studied in these diseases to different extents, the results of this extensive literature search show that ATR, CHK1, PARP or WEE1 are the most promising targets using either single agents or in combination with chemotherapy or radiotherapy in neuroblastoma, osteosarcoma, high-grade glioma or medulloblastoma. Targeting these pathways in other paediatric malignancies may work as well, but here, the evidence was more limited. The evidence for other targets (such as ATM and DNA-PK) was also limited but showed promising results in some malignancies and requires more studies in other tumour types. Overall, we have created an extensive overview of targeting replication stress across 16 paediatric tumour types, which can be explored using the interactive heatmap on the R2 target actionability review platform [https://hgserver1.amc.nl/cgi-bin/r2/main.cgi?option=imi2_targetmap_v1].


Assuntos
Neoplasias Ósseas , Neoplasias Cerebelares , Meduloblastoma , Pontos de Checagem do Ciclo Celular , Criança , Reparo do DNA , Humanos
16.
Front Oncol ; 12: 929123, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36237330

RESUMO

Neuroblastoma is the most common extracranial solid tumor found in children and despite intense multi-modal therapeutic approaches, low overall survival rates of high-risk patients persist. Tumors with heterozygous loss of chromosome 11q and MYCN amplification are two genetically distinct subsets of neuroblastoma that are associated with poor patient outcome. Using an isogenic 11q deleted model system and high-throughput drug screening, we identify checkpoint kinase 1 (CHK1) as a potential therapeutic target for 11q deleted neuroblastoma. Further investigation reveals MYCN amplification as a possible additional biomarker for CHK1 inhibition, independent of 11q loss. Overall, our study highlights the potential power of studying chromosomal aberrations to guide preclinical development of novel drug targets and combinations. Additionally, our study builds on the growing evidence that DNA damage repair and replication stress response pathways offer therapeutic vulnerabilities for the treatment of neuroblastoma.

17.
Eur J Cancer ; 175: 311-325, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36182817

RESUMO

iTHER is a Dutch prospective national precision oncology program aiming to define tumour molecular profiles in children and adolescents with primary very high-risk, relapsed, or refractory paediatric tumours. Between April 2017 and April 2021, 302 samples from 253 patients were included. Comprehensive molecular profiling including low-coverage whole genome sequencing (lcWGS), whole exome sequencing (WES), RNA sequencing (RNA-seq), Affymetrix, and/or 850k methylation profiling was successfully performed for 226 samples with at least 20% tumour content. Germline pathogenic variants were identified in 16% of patients (35/219), of which 22 variants were judged causative for a cancer predisposition syndrome. At least one somatic alteration was detected in 204 (90.3%), and 185 (81.9%) were considered druggable, with clinical priority very high (6.1%), high (21.3%), moderate (26.0%), intermediate (36.1%), and borderline (10.5%) priority. iTHER led to revision or refinement of diagnosis in 8 patients (3.5%). Temporal heterogeneity was observed in paired samples of 15 patients, indicating the value of sequential analyses. Of 137 patients with follow-up beyond twelve months, 21 molecularly matched treatments were applied in 19 patients (13.9%), with clinical benefit in few. Most relevant barriers to not applying targeted therapies included poor performance status, as well as limited access to drugs within clinical trial. iTHER demonstrates the feasibility of comprehensive molecular profiling across all ages, tumour types and stages in paediatric cancers, informing of diagnostic, prognostic, and targetable alterations as well as reportable germline variants. Therefore, WES and RNA-seq is nowadays standard clinical care at the Princess Máxima Center for all children with cancer, including patients at primary diagnosis. Improved access to innovative treatments within biology-driven combination trials is required to ultimately improve survival.


Assuntos
Neoplasias , Adolescente , Criança , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Oncologia , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/genética , Medicina de Precisão , Estudos Prospectivos , Sequenciamento do Exoma
18.
Cancers (Basel) ; 13(4)2021 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-33673003

RESUMO

Colorectal cancer (CRC) is a heterogeneous disease that can currently be subdivided into four distinct consensus molecular subtypes (CMS) based on gene expression profiling. The CMS4 subtype is marked by high expression of mesenchymal genes and is associated with a worse overall prognosis compared to other CMSs. Importantly, this subtype responds poorly to the standard therapies currently used to treat CRC. We set out to explore what regulatory signalling networks underlie the CMS4 phenotype of cancer cells, specifically, by analysing which kinases were more highly expressed in this subtype compared to others. We found AKT3 to be expressed in the cancer cell epithelium of CRC specimens, patient derived xenograft (PDX) models and in (primary) cell cultures representing CMS4. Importantly, chemical inhibition or knockout of this gene hampers outgrowth of this subtype, as AKT3 controls expression of the cell cycle regulator p27KIP1. Furthermore, high AKT3 expression was associated with high expression of epithelial-mesenchymal transition (EMT) genes, and this observation could be expanded to cell lines representing other carcinoma types. More importantly, this association allowed for the identification of CRC patients with a high propensity to metastasise and an associated poor prognosis. High AKT3 expression in the tumour epithelial compartment may thus be used as a surrogate marker for EMT and may allow for a selection of CRC patients that could benefit from AKT3-targeted therapy.

19.
Cell Death Differ ; 28(12): 3282-3296, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34117376

RESUMO

Evasion of apoptosis is a hallmark of cancer, which is frequently mediated by upregulation of the antiapoptotic BCL-2 family proteins. In colorectal cancer (CRC), previous work has highlighted differential antiapoptotic protein dependencies determined by the stage of the disease. While intestinal stem cells (ISCs) require BCL-2 for adenoma outgrowth and survival during transformation, ISC-specific MCL1 deletion results in disturbed intestinal homeostasis, eventually contributing to tumorigenesis. Colon cancer stem cells (CSCs), however, no longer require BCL-2 and depend mainly on BCL-XL for their survival. We therefore hypothesized that a shift in antiapoptotic protein reliance occurs in ISCs as the disease progresses from normal to adenoma to carcinoma. By targeting antiapoptotic proteins with specific BH3 mimetics in organoid models of CRC progression, we found that BCL-2 is essential only during ISC transformation while MCL1 inhibition did not affect adenoma outgrowth. BCL-XL, on the other hand, was crucial for stem cell survival throughout the adenoma-to-carcinoma sequence. Furthermore, we identified that the limited window of BCL-2 reliance is a result of its downregulation by miR-17-5p, a microRNA that is upregulated upon APC-mutation driven transformation. Here we show that BCL-XL inhibition effectively impairs adenoma outgrowth in vivo and enhances the efficacy of chemotherapy. In line with this dependency, expression of BCL-XL, but not BCL-2 or MCL1, directly correlated to the outcome of chemotherapy-treated CRC patients. Our results provide insights to enable the rational use of BH3 mimetics in CRC management, particularly underlining the therapeutic potential of BCL-XL targeting mimetics in both early and late-stage disease.


Assuntos
Adenoma/genética , Neoplasias Colorretais/genética , Proteína bcl-X/genética , Adenoma/mortalidade , Adenoma/patologia , Animais , Apoptose , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Progressão da Doença , Feminino , Humanos , Masculino , Camundongos , Análise de Sobrevida
20.
J Pers Med ; 11(9)2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34575700

RESUMO

Currently ~50% of patients with a diagnosis of high-risk neuroblastoma will not survive due to relapsing or refractory disease. Recent innovations in immunotherapy for solid tumors are highly promising, but the low MHC-I expression of neuroblastoma represents a major challenge for T cell-mediated immunotherapy. Here, we propose a novel T cell-based immunotherapy approach for neuroblastoma, based on the use of TEG002, αß-T cells engineered to express a defined γδ-T cell receptor, which can recognize and kill target cells independent of MHC-I. In a co-culture killing assay, we showed that 3 out of 6 neuroblastoma organoids could activate TEG002 as measured by IFNγ production. Transcriptional profiling showed this effect correlates with an increased activity of processes involved in interferon signaling and extracellular matrix organization. Analysis of the dynamics of organoid killing by TEG002 over time confirmed that organoids which induced TEG002 activation were efficiently killed independent of their MHC-I expression. Of note, efficacy of TEG002 treatment was superior to donor-matched untransduced αß-T cells or endogenous γδ-T cells. Our data suggest that TEG002 may be a promising novel treatment option for a subset of neuroblastoma patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA