Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Mod Pathol ; 33(12): 2483-2498, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32572153

RESUMO

Loss of E-cadherin expression due to mutation of the CDH1 gene is a characteristic feature of invasive lobular breast cancer (ILBC). Beta-catenin, which binds to the cytoplasmic domain of E-cadherin, is simultaneously downregulated, reflecting disassembly of adherens junctions (AJs) and loss of cell adhesion. E-cadherin to P-cadherin expression switching can rescue AJs and cell adhesion. However, P-cadherin has not been implicated in ILBC, so far. We aimed to characterize 13 ILBCs with exceptional histomorphology, which we termed ILBCs with tubular elements. The CDH1 mutational status was determined by next generation sequencing and whole-genome copy number (CN) profiling. Expression of cadherins was assessed by immunohistochemistry. ILBCs with tubular elements were ER-positive (13/13) and HER2-negative (13/13) and harbored deleterious CDH1 mutations (11/13) accompanied by loss of heterozygosity due to deletion of chromosome 16q22.1 (9/11). E-cadherin expression was lost or reduced in noncohesive tumor cells and in admixed tubular elements (13/13). Beta-catenin expression was lost in noncohesive tumor cells, but was retained in tubular elements (11/13), indicating focal rescue of AJ formation. N-cadherin and R-cadherin were always negative (0/13). Strikingly, P-cadherin was commonly positive (12/13) and immunoreactivity was accentuated in tubular elements. Adjacent lobular carcinoma in situ (LCIS) was always P-cadherin-negative (0/7). In a reference cohort of LCIS specimens, P-cadherin was constantly not expressed (0/25). In a reference cohort of invasive mammary carcinomas, P-cadherin-positive cases (36/268, 13%) were associated with triple-negative nonlobular breast cancer (P < 0.001). Compared with ILBCs from the reference cohort, P-cadherin expression was more common in ILBCs with tubular elements (12/13 versus 7/84, P < 0.001). In summary, E-cadherin to P-cadherin switching occurs in a subset of ILBCs. P-cadherin is the molecular determinant of a mixed-appearing histomorphology in ILBCs with tubular elements.


Assuntos
Antígenos CD/análise , Biomarcadores Tumorais/análise , Neoplasias da Mama/química , Caderinas/análise , Carcinoma Lobular/química , Adulto , Idoso , Antígenos CD/genética , Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Caderinas/genética , Carcinoma Lobular/genética , Carcinoma Lobular/patologia , Variações do Número de Cópias de DNA , Análise Mutacional de DNA , Feminino , Dosagem de Genes , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Perda de Heterozigosidade , Pessoa de Meia-Idade , Mutação , RNA-Seq
2.
Int J Cancer ; 144(11): 2683-2694, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30426508

RESUMO

NGS-based multiple gene panel resequencing in combination with a high resolution CGH-array was used to identify genetic risk factors for hereditary breast and/or ovarian cancer in 237 high risk patients who were previously tested negative for pathogenic BRCA1/2 variants. All patients were screened for pathogenic variants in 94 different cancer predisposing genes. We identified 32 pathogenic variants in 14 different genes (ATM, BLM, BRCA1, CDH1, CHEK2, FANCG, FANCM, FH, HRAS, PALB2, PMS2, PTEN, RAD51C and NBN) in 30 patients (12.7%). Two pathogenic BRCA1 variants that were previously undetected due to less comprehensive and sensitive methods were found. Five pathogenic variants are novel, three of which occur in genes yet unrelated to hereditary breast and/or ovarian cancer (FANCG, FH and HRAS). In our cohort we discovered a remarkably high frequency of truncating variants in FANCM (2.1%), which has recently been suggested as a susceptibility gene for hereditary breast cancer. Two patients of our cohort carried two different pathogenic variants each and 10 other patients in whom a pathogenic variant was confirmed also harbored a variant of unknown significance in a breast and ovarian cancer susceptibility gene. We were able to identify pathogenic variants predisposing for tumor formation in 12.3% of BRCA1/2 negative breast and/or ovarian cancer patients.


Assuntos
Neoplasias da Mama Masculina/genética , Neoplasias da Mama/genética , DNA Helicases/genética , Síndrome Hereditária de Câncer de Mama e Ovário/genética , Neoplasias Ovarianas/genética , Adolescente , Adulto , Idoso , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias da Mama/patologia , Estudos de Coortes , Análise Mutacional de DNA , Feminino , Testes Genéticos , Humanos , Masculino , Anamnese , Pessoa de Meia-Idade , Adulto Jovem
3.
Oncotarget ; 7(50): 82733-82740, 2016 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-27716627

RESUMO

HER2/ERBB2 amplification/overexpression determines the eligibility of breast cancer patients to HER2-targeted therapy. This study evaluates the agreement between ERBB2 copy number assessment by fluorescence in situ hybridization, a standard method recommended by the American Society of Clinical Oncology/College of American Pathologists (ASCO/CAP), and newly available DNA extraction-based methods. A series of n=29 formalin-fixed paraffin-embedded breast cancers were subjected to ERBB2 copy number assessment by fluorescence in situ hybridization (FISH, Vysis, Abbott). Following macrodissection of invasive breast cancer tissue and DNA extraction, ERBB2 copy number was also determined by molecular inversion probe array analysis (MIP, OncoScan, Affymetrix) and next generation sequencing combined with normalized amplicon coverage analysis (NGS/NAC, AmpliSeq, Ion Torrent). ERBB2 copy number values obtained by MIP or NGS/NAC were tightly correlated with ERBB2 copy number values obtained by conventional FISH (rs = 0.940 and rs = 0.894, P < 0.001). Using ASCO/CAP guideline-conform thresholds for categorization of breast cancers as HER2-negative, equivocal or positive, nearly perfect concordance was observed for HER2 classification by FISH and MIP (93% concordant classifications, κ = 0.87). Substantial concordance was observed for FISH and NGS/NAC (83% concordant classifications, κ = 0.62). In conclusion, MIP facilitates precise ERBB2 copy number detection and should be considered as an ancillary method for clinical HER2 testing.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Amplificação de Genes , Dosagem de Genes , Técnicas de Sonda Molecular , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Receptor ErbB-2/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/patologia , Feminino , Predisposição Genética para Doença , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Hibridização in Situ Fluorescente , Pessoa de Meia-Idade , Fenótipo , Valor Preditivo dos Testes , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA