Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 82(10): 1788-1805, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35561688

RESUMO

Next-generation sequencing techniques have led to a new quantitative dimension in the biological sciences. In particular, integrating sequencing techniques with biophysical tools allows sequence-dependent mechanistic studies. Using the millions of DNA clusters that are generated during sequencing to perform high-throughput binding affinity and kinetics measurements enabled the construction of energy landscapes in sequence space, uncovering relationships between sequence, structure, and function. Here, we review the approaches to perform ensemble fluorescence experiments on next-generation sequencing chips for variations of DNA, RNA, and protein sequences. As the next step, we anticipate that these fluorescence experiments will be pushed to the single-molecule level, which can directly uncover kinetics and molecular heterogeneity in an unprecedented high-throughput fashion. Molecular biophysics in sequence space, both at the ensemble and single-molecule level, leads to new mechanistic insights. The wide spectrum of applications in biology and medicine ranges from the fundamental understanding of evolutionary pathways to the development of new therapeutics.


Assuntos
DNA , Sequenciamento de Nucleotídeos em Larga Escala , Biofísica , DNA/química , DNA/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Biologia Molecular , Análise de Sequência de DNA/métodos
2.
EMBO J ; 43(1): 87-111, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177309

RESUMO

Telomere repeat binding factor 2 (TRF2) is an essential component of the telomeres and also plays an important role in a number of other non-telomeric processes. Detailed knowledge of the binding and interaction of TRF2 with telomeric nucleosomes is limited. Here, we study the binding of TRF2 to in vitro-reconstituted kilobasepair-long human telomeric chromatin fibres using electron microscopy, single-molecule force spectroscopy and analytical ultracentrifugation sedimentation velocity. Our electron microscopy results revealed that full-length and N-terminally truncated TRF2 promote the formation of a columnar structure of the fibres with an average width and compaction larger than that induced by the addition of Mg2+, in agreement with the in vivo observations. Single-molecule force spectroscopy showed that TRF2 increases the mechanical and thermodynamic stability of the telomeric fibres when stretched with magnetic tweezers. This was in contrast to the result for fibres reconstituted on the 'Widom 601' high-affinity nucleosome positioning sequence, where minor effects on fibre stability were observed. Overall, TRF2 binding induces and stabilises columnar fibres, which may play an important role in telomere maintenance.


Assuntos
Cromatina , Complexo Shelterina , Proteína 2 de Ligação a Repetições Teloméricas , Humanos , Nucleossomos , Telômero/metabolismo , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/genética
3.
Nature ; 609(7929): 1048-1055, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36104563

RESUMO

Telomeres, the ends of eukaryotic chromosomes, play pivotal parts in ageing and cancer and are targets of DNA damage and the DNA damage response1-5. Little is known about the structure of telomeric chromatin at the molecular level. Here we used negative stain electron microscopy and single-molecule magnetic tweezers to characterize 3-kbp-long telomeric chromatin fibres. We also obtained the cryogenic electron microscopy structure of the condensed telomeric tetranucleosome and its dinucleosome unit. The structure displayed close stacking of nucleosomes with a columnar arrangement, and an unusually short nucleosome repeat  length that comprised about 132 bp DNA wound in a continuous superhelix around histone octamers. This columnar structure is primarily stabilized by the H2A carboxy-terminal and histone amino-terminal tails in a synergistic manner. The columnar conformation results in exposure of the DNA helix, which may make it susceptible to both DNA damage and the DNA damage response. The conformation also exists in an alternative open state, in which one nucleosome is unstacked and flipped out, which exposes the acidic patch of the histone surface. The structural features revealed in this work suggest mechanisms by which protein factors involved in telomere maintenance can access telomeric chromatin in its compact form.


Assuntos
Cromatina , DNA , Histonas , Conformação Molecular , Telômero , Cromatina/química , Cromatina/genética , Cromatina/ultraestrutura , DNA/química , DNA/metabolismo , DNA/ultraestrutura , Dano ao DNA , Histonas/química , Histonas/metabolismo , Histonas/ultraestrutura , Humanos , Microscopia Eletrônica , Nucleossomos/química , Nucleossomos/genética , Nucleossomos/ultraestrutura , Imagem Individual de Molécula , Telômero/química , Telômero/genética , Telômero/ultraestrutura
4.
Nat Methods ; 20(4): 523-535, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36973549

RESUMO

Single-molecule Förster-resonance energy transfer (smFRET) experiments allow the study of biomolecular structure and dynamics in vitro and in vivo. We performed an international blind study involving 19 laboratories to assess the uncertainty of FRET experiments for proteins with respect to the measured FRET efficiency histograms, determination of distances, and the detection and quantification of structural dynamics. Using two protein systems with distinct conformational changes and dynamics, we obtained an uncertainty of the FRET efficiency ≤0.06, corresponding to an interdye distance precision of ≤2 Å and accuracy of ≤5 Å. We further discuss the limits for detecting fluctuations in this distance range and how to identify dye perturbations. Our work demonstrates the ability of smFRET experiments to simultaneously measure distances and avoid the averaging of conformational dynamics for realistic protein systems, highlighting its importance in the expanding toolbox of integrative structural biology.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Proteínas , Transferência Ressonante de Energia de Fluorescência/métodos , Reprodutibilidade dos Testes , Proteínas/química , Conformação Molecular , Laboratórios
5.
Nucleic Acids Res ; 49(5): 2537-2551, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33589918

RESUMO

Nucleosome-nucleosome interactions drive the folding of nucleosomal arrays into dense chromatin fibers. A better physical account of the folding of chromatin fibers is necessary to understand the role of chromatin in regulating DNA transactions. Here, we studied the unfolding pathway of regular chromatin fibers as a function of single base pair increments in linker length, using both rigid base-pair Monte Carlo simulations and single-molecule force spectroscopy. Both computational and experimental results reveal a periodic variation of the folding energies due to the limited flexibility of the linker DNA. We show that twist is more restrictive for nucleosome stacking than bend, and find the most stable stacking interactions for linker lengths of multiples of 10 bp. We analyzed nucleosomes stacking in both 1- and 2-start topologies and show that stacking preferences are determined by the length of the linker DNA. Moreover, we present evidence that the sequence of the linker DNA also modulates nucleosome stacking and that the effect of the deletion of the H4 tail depends on the linker length. Importantly, these results imply that nucleosome positioning in vivo not only affects the phasing of nucleosomes relative to DNA but also directs the higher-order structure of chromatin.


Assuntos
Cromatina/química , DNA/química , Nucleossomos/química , Histonas/genética , Modelos Moleculares , Método de Monte Carlo , Conformação de Ácido Nucleico
6.
Nucleic Acids Res ; 49(8): 4338-4349, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33341892

RESUMO

Many archaea express histones, which organize the genome and play a key role in gene regulation. The structure and function of archaeal histone-DNA complexes remain however largely unclear. Recent studies show formation of hypernucleosomes consisting of DNA wrapped around an 'endless' histone-protein core. However, if and how such a hypernucleosome structure assembles on a long DNA substrate and which interactions provide for its stability, remains unclear. Here, we describe micromanipulation studies of complexes of the histones HMfA and HMfB with DNA. Our experiments show hypernucleosome assembly which results from cooperative binding of histones to DNA, facilitated by weak stacking interactions between neighboring histone dimers. Furthermore, rotational force spectroscopy demonstrates that the HMfB-DNA complex has a left-handed chirality, but that torque can drive it in a right-handed conformation. The structure of the hypernucleosome thus depends on stacking interactions, torque, and force. In vivo, such modulation of the archaeal hypernucleosome structure may play an important role in transcription regulation in response to environmental changes.


Assuntos
Proteínas Arqueais/química , DNA Arqueal/química , Histonas/química , Methanobacteriales/química , Nucleossomos/química , Fenômenos Mecânicos , Multimerização Proteica
7.
J Chem Phys ; 156(9): 094201, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35259901

RESUMO

Plasmonic metallic nanoparticles are commonly used in (bio-)sensing applications because their localized surface plasmon resonance is highly sensitive to changes in the environment. Although optical detection of scattered light from single particles provides a straightforward means of detection, the two-photon luminescence (TPL) of single gold nanorods (GNRs) has the potential to increase the sensitivity due to the large anti-Stokes shift and the non-linear excitation mechanism. However, two-photon microscopy and spectroscopy are restricted in bandwidth and have been limited by the thermal stability of GNRs. Here, we used a scanning multi-focal microscope to simultaneously measure the two-photon excitation spectra of hundreds of individual GNRs with sub-nanometer accuracy. By keeping the excitation power under the melting threshold, we show that GNRs were stable in intensity and spectrum for more than 30 min, demonstrating the absence of thermal reshaping. Spectra featured a signal-to-noise ratio of >10 and a plasmon peak width of typically 30 nm. Changes in the refractive index of the medium of less than 0.04, corresponding to a change in surface plasmon resonance of 8 nm, could be readily measured and over longer periods. We used this enhanced spectral sensitivity to measure the presence of neutravidin, exploring the potential of TPL spectroscopy of single GNRs for enhanced plasmonic sensing.

8.
Biophys J ; 118(9): 2245-2257, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32053775

RESUMO

Many single-molecule biophysical techniques rely on nanometric tracking of microbeads to obtain quantitative information about the mechanical properties of biomolecules such as chromatin fibers. Their three-dimensional (3D) position can be resolved by holographic analysis of the diffraction pattern in wide-field imaging. Fitting this diffraction pattern to Lorenz-Mie scattering theory yields the bead's position with nanometer accuracy in three dimensions but is computationally expensive. Real-time multiplexed bead tracking therefore requires a more efficient tracking method, such as comparison with previously measured diffraction patterns, known as look-up tables. Here, we introduce an alternative 3D phasor algorithm that provides robust bead tracking with nanometric localization accuracy in a z range of over 10 µm under nonoptimal imaging conditions. The algorithm is based on a two-dimensional cross correlation using fast Fourier transforms with computer-generated reference images, yielding a processing rate of up to 10,000 regions of interest per second. We implemented the technique in magnetic tweezers and tracked the 3D position of over 100 beads in real time on a generic CPU. The accuracy of 3D phasor tracking was extensively tested and compared to a look-up table approach using Lorenz-Mie simulations, avoiding experimental uncertainties. Its easy implementation, efficiency, and robustness can improve multiplexed biophysical bead-tracking applications, especially when high throughput is required and image artifacts are difficult to avoid.


Assuntos
Holografia , Imageamento Tridimensional , Algoritmos , Microesferas
9.
Biophys J ; 115(10): 1848-1859, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30366627

RESUMO

The organization of chromatin in 30 nm fibers remains a topic of debate. Here, we quantify the mechanical properties of the linker DNA and evaluate the impact of these properties on chromatin fiber folding. We extended a rigid basepair DNA model to include (un)wrapping of nucleosomal DNA and (un)stacking of nucleosomes in one-start and two-start chromatin fibers. Monte Carlo simulations that mimic single-molecule force spectroscopy experiments of folded nucleosomal arrays reveal different stages of unfolding as a function of force and are largely consistent with a two-start folding for 167 and one-start folding for 197 nucleosome repeat length fibers. The major insight is that nucleosome unstacking and subsequent unwrapping is not necessary to obtain quantitative agreement with experimental force extension curves up to the overstretching plateau of folded chromatin fibers at 3-5 pN. Nucleosome stacking appears better accommodated in one-start than in two-start conformations, and we suggest that this difference can compensate the increased energy for bending the linker DNA. Overall, these simulations capture the dynamic structure of chromatin fibers while maintaining realistic physical properties of the linker DNA.


Assuntos
Pareamento de Bases , Cromatina/química , DNA/química , Método de Monte Carlo , Fenômenos Biomecânicos , Cinética , Modelos Moleculares , Desnaturação de Ácido Nucleico , Nucleossomos/química , Termodinâmica
10.
J Biol Chem ; 292(42): 17506-17513, 2017 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-28855255

RESUMO

The eukaryotic genome is highly compacted into a protein-DNA complex called chromatin. The cell controls access of transcriptional regulators to chromosomal DNA via several mechanisms that act on chromatin-associated proteins and provide a rich spectrum of epigenetic regulation. Elucidating the mechanisms that fold chromatin fibers into higher-order structures is therefore key to understanding the epigenetic regulation of DNA accessibility. Here, using histone H4-V21C and histone H2A-E64C mutations, we employed single-molecule force spectroscopy to measure the unfolding of individual chromatin fibers that are reversibly cross-linked through the histone H4 tail. Fibers with covalently linked nucleosomes featured the same folding characteristics as fibers containing wild-type histones but exhibited increased stability against stretching forces. By stabilizing the secondary structure of chromatin, we confirmed a nucleosome repeat length (NRL)-dependent folding. Consistent with previous crystallographic and cryo-EM studies, the obtained force-extension curves on arrays with 167-bp NRLs best supported an underlying structure consisting of zig-zag, two-start fibers. For arrays with 197-bp NRLs, we previously inferred solenoidal folding, which was further corroborated by force-extension curves of the cross-linked fibers. The different unfolding pathways exhibited by these two types of arrays and reported here extend our understanding of chromatin structure and its potential roles in gene regulation. Importantly, these findings imply that chromatin compaction by nucleosome stacking protects nucleosomal DNA from external forces up to 4 piconewtons.


Assuntos
DNA/química , Histonas/química , Nucleossomos/química , Dobramento de Proteína , Proteínas de Xenopus/química , Animais , Microscopia Crioeletrônica , Cristalografia por Raios X , DNA/metabolismo , Histonas/metabolismo , Nucleossomos/metabolismo , Nucleossomos/ultraestrutura , Proteínas de Xenopus/metabolismo , Xenopus laevis
11.
Mol Cell ; 36(1): 153-63, 2009 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-19818718

RESUMO

Lysine acetylation of histones defines the epigenetic status of human embryonic stem cells and orchestrates DNA replication, chromosome condensation, transcription, telomeric silencing, and DNA repair. A detailed mechanistic explanation of these phenomena is impeded by the limited availability of homogeneously acetylated histones. We report a general method for the production of homogeneously and site-specifically acetylated recombinant histones by genetically encoding acetyl-lysine. We reconstitute histone octamers, nucleosomes, and nucleosomal arrays bearing defined acetylated lysine residues. With these designer nucleosomes, we demonstrate that, in contrast to the prevailing dogma, acetylation of H3 K56 does not directly affect the compaction of chromatin and has modest effects on remodeling by SWI/SNF and RSC. Single-molecule FRET experiments reveal that H3 K56 acetylation increases DNA breathing 7-fold. Our results provide a molecular and mechanistic underpinning for cellular phenomena that have been linked with K56 acetylation.


Assuntos
Histonas/metabolismo , Lisina/metabolismo , Proteínas Recombinantes/metabolismo , Acetilação , Substituição de Aminoácidos/fisiologia , Aminoacil-tRNA Sintetases/genética , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Montagem e Desmontagem da Cromatina/fisiologia , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Transferência Ressonante de Energia de Fluorescência , Histonas/biossíntese , Histonas/genética , Humanos , Lisina/análogos & derivados , Lisina/genética , Nucleossomos/efeitos dos fármacos , Nucleossomos/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Cloreto de Sódio/farmacologia , Fatores de Transcrição/metabolismo
12.
Nucleic Acids Res ; 43(7): 3578-90, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25779043

RESUMO

Single-molecule techniques allow for picoNewton manipulation and nanometer accuracy measurements of single chromatin fibers. However, the complexity of the data, the heterogeneity of the composition of individual fibers and the relatively large fluctuations in extension of the fibers complicate a structural interpretation of such force-extension curves. Here we introduce a statistical mechanics model that quantitatively describes the extension of individual fibers in response to force on a per nucleosome basis. Four nucleosome conformations can be distinguished when pulling a chromatin fiber apart. A novel, transient conformation is introduced that coexists with single wrapped nucleosomes between 3 and 7 pN. Comparison of force-extension curves between single nucleosomes and chromatin fibers shows that embedding nucleosomes in a fiber stabilizes the nucleosome by 10 kBT. Chromatin fibers with 20- and 50-bp linker DNA follow a different unfolding pathway. These results have implications for accessibility of DNA in fully folded and partially unwrapped chromatin fibers and are vital for understanding force unfolding experiments on nucleosome arrays.


Assuntos
Cromatina/química , Análise Espectral/métodos , Nucleossomos/química , Dobramento de Proteína
13.
Nucleic Acids Res ; 42(8): 4922-33, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24561803

RESUMO

Nucleosomes contain ∼146 bp of DNA wrapped around a histone protein octamer that controls DNA accessibility to transcription and repair complexes. Posttranslational modification (PTM) of histone proteins regulates nucleosome function. To date, only modest changes in nucleosome structure have been directly attributed to histone PTMs. Histone residue H3(T118) is located near the nucleosome dyad and can be phosphorylated. This PTM destabilizes nucleosomes and is implicated in the regulation of transcription and repair. Here, we report gel electrophoretic mobility, sucrose gradient sedimentation, thermal disassembly, micrococcal nuclease digestion and atomic force microscopy measurements of two DNA-histone complexes that are structurally distinct from nucleosomes. We find that H3(T118ph) facilitates the formation of a nucleosome duplex with two DNA molecules wrapped around two histone octamers, and an altosome complex that contains one DNA molecule wrapped around two histone octamers. The nucleosome duplex complex forms within short ∼150 bp DNA molecules, whereas altosomes require at least ∼250 bp of DNA and form repeatedly along 3000 bp DNA molecules. These results are the first report of a histone PTM significantly altering the nucleosome structure.


Assuntos
Histonas/metabolismo , Nucleossomos/química , Nucleossomos/metabolismo , Sequência de Bases , Cromatina/química , DNA/análise , DNA/química , Chaperonas de Histonas/metabolismo , Histonas/análise , Histonas/química , Nucleossomos/ultraestrutura , Fosforilação , Treonina/metabolismo
14.
Nucleic Acids Res ; 41(1): 196-205, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-23155062

RESUMO

Archaeal chromatin proteins share molecular and functional similarities with both bacterial and eukaryotic chromatin proteins. These proteins play an important role in functionally organizing the genomic DNA into a compact nucleoid. Cren7 and Sul7 are two crenarchaeal nucleoid-associated proteins, which are structurally homologous, but not conserved at the sequence level. Co-crystal structures have shown that these two proteins induce a sharp bend on binding to DNA. In this study, we have investigated the architectural properties of these proteins using atomic force microscopy, molecular dynamics simulations and magnetic tweezers. We demonstrate that Cren7 and Sul7 both compact DNA molecules to a similar extent. Using a theoretical model, we quantify the number of individual proteins bound to the DNA as a function of protein concentration and show that forces up to 3.5 pN do not affect this binding. Moreover, we investigate the flexibility of the bending angle induced by Cren7 and Sul7 and show that the protein-DNA complexes differ in flexibility from analogous bacterial and eukaryotic DNA-bending proteins.


Assuntos
Proteínas Arqueais/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA/química , Proteínas Arqueais/análise , Proteínas Arqueais/química , Proteínas Cromossômicas não Histona/análise , Proteínas Cromossômicas não Histona/química , DNA/ultraestrutura , Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/química , Microscopia de Força Atômica , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Sulfolobus solfataricus
15.
Proc Natl Acad Sci U S A ; 109(38): E2514-22, 2012 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-22908247

RESUMO

Nucleosome positioning dictates eukaryotic DNA compaction and access. To predict nucleosome positions in a statistical mechanics model, we exploited the knowledge that nucleosomes favor DNA sequences with specific periodically occurring dinucleotides. Our model is the first to capture both dyad position within a few base pairs, and free binding energy within 2 k(B)T, for all the known nucleosome positioning sequences. By applying Percus's equation to the derived energy landscape, we isolate sequence effects on genome-wide nucleosome occupancy from other factors that may influence nucleosome positioning. For both in vitro and in vivo systems, three parameters suffice to predict nucleosome occupancy with correlation coefficients of respectively 0.74 and 0.66. As predicted, we find the largest deviations in vivo around transcription start sites. This relatively simple algorithm can be used to guide future studies on the influence of DNA sequence on chromatin organization.


Assuntos
DNA/química , Nucleossomos/química , Algoritmos , Animais , Galinhas , Cromatina/química , Montagem e Desmontagem da Cromatina , Biologia Computacional/métodos , Eritrócitos/citologia , Genoma Fúngico , Histonas/química , Modelos Estatísticos , Nucleossomos/metabolismo , Nucleotídeos/química , Probabilidade , Saccharomyces cerevisiae/genética , Análise de Sequência de DNA , Termodinâmica , Sítio de Iniciação de Transcrição , Transcrição Gênica
16.
Biophys J ; 106(5): 1174-81, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24606941

RESUMO

DNA responds to small changes in force and torque by over- or undertwisting, forming plectonemes, and/or melting bubbles. Although transitions between either twisted and plectonemic conformations or twisted and melted conformations have been described as first-order phase transitions, we report here a broadening of these transitions when the size of a topological domain spans several kilobasepairs. Magnetic tweezers measurements indicate the coexistence of three conformations at subpicoNewton force and linking number densities ∼-0.06. We present a statistical physics model for DNA domains of several kilobasepairs by calculating the full partition function that describes this three-state coexistence. Real-time analysis of short DNA tethers at constant force and torque shows discrete levels of extension, representing discontinuous changes in the size of the melting bubble, which should reflect the underlying DNA sequence. Our results provide a comprehensive picture of the structure of underwound DNA at low force and torque and could have important consequences for various biological processes, in particular those that depend on local DNA melting, such as the initiation of replication and transcription.


Assuntos
DNA/química , Conformação de Ácido Nucleico , Animais , Sobrevivência Celular , Modelos Moleculares , Desnaturação de Ácido Nucleico
17.
Nano Lett ; 13(3): 980-6, 2013 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-23360249

RESUMO

We report a novel technique for long-term parallel three dimensional (3D)-tracking of gold nanorods in live cells with nanometer resolution. Gold nanorods feature a strong plasmon-enhanced two-photon luminescence, can be easily functionalized, and have been shown to be nontoxic. These properties make gold nanorods very suitable for in vivo two-photon luminescence microscopy. By rapid multifocal scanning, we combine the advantages of 3D molecular tracking methods using wide-field imaging with the advantages of two-photon microscopy. Isolated gold nanorods can be localized with a resolution of 4 nm in the xy-plane and 8 nm in the z-direction. The polarization-dependence of the two-photon luminescence signal can be used to resolve the angular orientation, even when two gold nanorods are separated by less than the diffraction limit. Individual nanorods in live U2OS cells could be followed in 3 dimensions for over 30 min, with a photon noise limited accuracy, and a time resolution of 50 ms in 2D and 500 ms in 3D.

18.
Dis Model Mech ; 15(2)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34927194

RESUMO

Developments in single-molecule microscopy (SMM) have enabled imaging individual proteins in biological systems, focusing on the analysis of protein mobility patterns inside cultured cells. In the present study, SMM was applied in vivo, using the zebrafish embryo model. We studied dynamics of the membrane protein H-Ras, its membrane-anchoring domain, C10H-Ras, and mutants, using total internal reflection fluorescence microscopy. Our results consistently confirm the presence of fast- and slow-diffusing subpopulations of molecules, which confine to microdomains within the plasma membrane. The active mutant H-RasV12 exhibits higher diffusion rates and is confined to larger domains than the wild-type H-Ras and its inactive mutant H-RasN17. Subsequently, we demonstrate that the structure and composition of the plasma membrane have an imperative role in modulating H-Ras mobility patterns. Ultimately, we establish that differences between cells within the same embryo largely contribute to the overall data variability. Our findings agree with a model in which the cell architecture and the protein activation state determine protein mobility, underlining the importance of SMM imaging for studying factors influencing protein dynamics in an intact living organism. This article has an associated First Person interview with the first author of the paper.


Assuntos
Células Epidérmicas , Proteínas de Membrana , Peixe-Zebra , Animais , Linhagem Celular , Membrana Celular/metabolismo , Difusão , Células Epidérmicas/citologia , Células Epidérmicas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Imagem Individual de Molécula
19.
Sci Rep ; 12(1): 15558, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36114220

RESUMO

Large topologically associated domains (TADs) contain irregularly spaced nucleosome clutches, and interactions between such clutches are thought to aid the compaction of these domains. Here, we reconstituted TAD-sized chromatin fibers containing hundreds of nucleosomes on native source human and lambda-phage DNA and compared their mechanical properties at the single-molecule level with shorter '601' arrays with various nucleosome repeat lengths. Fluorescent imaging showed increased compaction upon saturation of the DNA with histones and increasing magnesium concentration. Nucleosome clusters and their structural fluctuations were visualized in confined nanochannels. Force spectroscopy revealed not only similar mechanical properties of the TAD-sized fibers as shorter fibers but also large rupture events, consistent with breaking the interactions between distant clutches of nucleosomes. Though the arrays of native human DNA, lambda-phage and '601' DNA featured minor differences in reconstitution yield and nucleosome stability, the fibers' global structural and mechanical properties were similar, including the interactions between nucleosome clutches. These single-molecule experiments quantify the mechanical forces that stabilize large TAD-sized chromatin domains consisting of disordered, dynamically interacting nucleosome clutches and their effect on the condensation of large chromatin domains.


Assuntos
Histonas , Nucleossomos , Cromatina , DNA/química , Histonas/química , Humanos , Magnésio
20.
Nucleic Acids Res ; 37(6): 1962-72, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19208636

RESUMO

The UvrA protein is the initial damage-recognizing factor in bacterial nucleotide excision repair. Each monomer of the UvrA dimer contains two ATPase sites. Using single-molecule analysis we show that dimerization of UvrA in the presence of ATP is significantly higher than with ADP or nonhydrolyzable ATPgammaS, suggesting that the active UvrA dimer contains a mixture of ADP and ATP. We also show that the UvrA dimer has a high preference of binding the end of a linear DNA fragment, independent on the presence or type of cofactor. Apparently ATP binding or hydrolysis is not needed to discriminate between DNA ends and internal sites. A significant number of complexes could be detected where one UvrA dimer bridges two DNA ends implying the presence of two separate DNA-binding domains, most likely present in each monomer. On DNA containing a site-specific lesion the damage-specific binding is much higher than DNA-end binding, but only in the absence of cofactor or with ATP. With ATPgammaS no discrimination between a DNA end and a DNA damage could be observed. We present a model where damage recognition of UvrA depends on the ability of both UvrA monomers to interact with the DNA flanking the lesion.


Assuntos
Adenosina Trifosfatases/ultraestrutura , Dano ao DNA , Proteínas de Ligação a DNA/ultraestrutura , Proteínas de Escherichia coli/ultraestrutura , Difosfato de Adenosina/análise , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/análise , Trifosfato de Adenosina/metabolismo , DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Dimerização , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Microscopia de Força Atômica , Multimerização Proteica , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA