Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Pineal Res ; 68(1): e12614, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31599473

RESUMO

Disruption of circadian rhythm by means of shift work has been associated with cardiovascular disease in humans. However, causality and underlying mechanisms have not yet been established. In this study, we exposed hyperlipidemic APOE*3-Leiden.CETP mice to either regular light-dark cycles, weekly 6 hours phase advances or delays, or weekly alternating light-dark cycles (12 hours shifts), as a well-established model for shift work. We found that mice exposed to 15 weeks of alternating light-dark cycles displayed a striking increase in atherosclerosis, with an approximately twofold increase in lesion size and severity, while mice exposed to phase advances and delays showed a milder circadian disruption and no significant effect on atherosclerosis development. We observed a higher lesion macrophage content in mice exposed to alternating light-dark cycles without obvious changes in plasma lipids, suggesting involvement of the immune system. Moreover, while no changes in the number or activation status of circulating monocytes and other immune cells were observed, we identified increased markers for inflammation, oxidative stress, and chemoattraction in the vessel wall. Altogether, this is the first study to show that circadian disruption by shifting light-dark cycles directly aggravates atherosclerosis development.


Assuntos
Aterosclerose , Ritmo Circadiano/fisiologia , Fotoperíodo , Animais , Aorta/patologia , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Aterosclerose/metabolismo , Aterosclerose/patologia , Aterosclerose/fisiopatologia , Proteínas de Transferência de Ésteres de Colesterol/genética , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Citocinas/metabolismo , Dieta Ocidental , Feminino , Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Transgênicos
2.
J Sleep Res ; 28(4): e12776, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30324729

RESUMO

Short and long sleep duration and poor sleep quality may affect serum and hepatic lipid content, but available evidence is inconsistent. Therefore, we aimed to investigate the associations of sleep duration and quality with serum and hepatic lipid content in a large population-based cohort of middle-aged individuals. The present cross-sectional study was embedded in the Netherlands Epidemiology of Obesity (NEO) study and consisted of 4260 participants (mean age, 55 years; proportion men, 46%) not using lipid-lowering agents. Self-reported sleep duration and quality were assessed using the Pittsburgh Sleep Quality Index questionnaire (PSQI). Outcomes of this study were fasting lipid profile (total cholesterol, low-density lipoprotein [LDL]-cholesterol, high-density lipoprotein [HDL]-cholesterol and triglycerides), postprandial triglyceride (response) levels, and hepatic triglyceride content (HTGC) as measured with magnetic resonance spectroscopy. We performed multivariable linear regression analyses, adjusted for confounders and additionally for measures that link to adiposity (e.g. body mass index [BMI] and sleep apnea). We observed that relative to the group with median sleep duration (≈7.0 hr of sleep), the group with shortest sleep (≈5.0 hr of sleep) had 1.5-fold higher HTGC (95% confidence interval [CI]: 1.0-2.2). The group with PSQI score ≥ 10 had a 1.1-fold (95% CI: 1.0-1.2) higher serum triglyceride level compared with the group with PSQI ≤ 5. However, these associations disappeared after adjustment for BMI and sleep apnea. Therefore, we concluded that previously observed associations of shorter sleep duration and poorer sleep quality with an adverse lipid profile, may be explained by BMI and sleep apnea, rather than by a direct effect of sleep on the lipid profile.


Assuntos
Lipídeos/sangue , Fígado/irrigação sanguínea , Obesidade/complicações , Sono/fisiologia , Estudos de Coortes , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Países Baixos , Obesidade/patologia
3.
Am J Physiol Renal Physiol ; 315(4): F1129-F1138, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29846108

RESUMO

Fine-tuning of the body's water balance is regulated by vasopressin (AVP), which induces the expression and apical membrane insertion of aquaporin-2 water channels and subsequent water reabsorption in the kidney. Here we demonstrate that silencing of microRNA-132 (miR-132) in mice causes severe weight loss due to acute diuresis coinciding with increased plasma osmolality, reduced renal total and plasma membrane expression of aquaporin-2, and abrogated increase in AVP levels. Infusion with synthetic AVP fully reversed the antagomir-132-induced diuresis, and low-dose intracerebroventricular administration of antagomir-132 similarly caused acute diuresis. Central and intracerebroventricular antagomir-132 injection both decreased hypothalamic AVP mRNA levels. At the molecular level, antagomir-132 increased the in vivo and in vitro mRNA expression of methyl-CpG-binding protein-2 (MECP2), which is a miR-132 target and which blocks AVP gene expression by binding its enhancer region. In line with this, treatment of hypothalamic N6 cells with a high-salt solution increased its miR-132 levels, whereas it attenuated endogenous Mecp2 mRNA levels. In conclusion, we identified miR-132 as a first miRNA regulating the osmotic balance by regulating the hypothalamic AVP gene mRNA expression.


Assuntos
Arginina Vasopressina/metabolismo , Homeostase/fisiologia , Proteína 2 de Ligação a Metil-CpG/genética , MicroRNAs/genética , Vasopressinas/metabolismo , Animais , Aquaporina 2/metabolismo , Expressão Gênica/genética , Hipotálamo/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Concentração Osmolar , Receptores de Vasopressinas/metabolismo , Equilíbrio Hidroeletrolítico/fisiologia
4.
Proc Natl Acad Sci U S A ; 112(21): 6748-53, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25964318

RESUMO

Disruption of circadian rhythmicity is associated with obesity and related disorders, including type 2 diabetes and cardiovascular disease. Specifically, prolonged artificial light exposure associates with obesity in humans, although the underlying mechanism is unclear. Here, we report that increasing the daily hours of light exposure increases body adiposity through attenuation of brown adipose tissue (BAT) activity, a major contributor of energy expenditure. Mice exposed to a prolonged day length of 16- and 24-h light, compared with regular 12-h light, showed increased adiposity without affecting food intake or locomotor activity. Mechanistically, we demonstrated that prolonged day length decreases sympathetic input into BAT and reduces ß3-adrenergic intracellular signaling. Concomitantly, prolonging day length decreased the uptake of fatty acids from triglyceride-rich lipoproteins, as well as of glucose from plasma selectively by BAT. We conclude that impaired BAT activity is an important mediator in the association between disturbed circadian rhythm and adiposity, and anticipate that activation of BAT may overcome the adverse metabolic consequences of disturbed circadian rhythmicity.


Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/patologia , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Obesidade/etiologia , Fotoperíodo , Tecido Adiposo Marrom/inervação , Adiposidade/fisiologia , Animais , Glicemia/metabolismo , Transtornos Cronobiológicos/complicações , Transtornos Cronobiológicos/fisiopatologia , Ritmo Circadiano/fisiologia , Ingestão de Alimentos , Metabolismo Energético/fisiologia , Ácidos Graxos/metabolismo , Lipoproteínas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Obesidade/metabolismo , Obesidade/patologia , Receptores Adrenérgicos beta 3/metabolismo , Transdução de Sinais , Simpatectomia , Sistema Nervoso Simpático/fisiopatologia , Triglicerídeos/metabolismo
5.
Arch Biochem Biophys ; 589: 145-51, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26393786

RESUMO

We have previously shown that acute sleep curtailment induces insulin resistance, both in healthy individuals as well as in patients with type 1 diabetes, suggesting a causal role for sleep disturbances in pathogenesis of insulin resistance, independent of endogenous insulin production. However, the underlying mechanisms remain unclear. This study aimed to explore the metabolic pathways affected by sleep loss using targeted metabolomics in human fasting plasma samples. Healthy individuals (n = 9) and patients with type 1 diabetes (n = 7) were studied after a single night of short sleep (4 h) versus normal sleep (8 h) in a cross-over design. Strikingly, one night of short sleep specifically increased the plasma levels of acylcarnitines, essential intermediates in mitochondrial fatty acid oxidation (FAO). Specifically, short sleep increased plasma levels of tetradecenoyl-l-carnitine (C14:1) (+32%, p = 2.67*10(-4)), octadecanoyl-l-carnitine (C18:1) (+22%, p = 1.92*10(-4)) and octadecadienyl-l-carnitine (C18:2) (+27%, p = 1.32*10(-4)). Since increased plasma acylcarnitine levels could be a sign of disturbed FAO, it is possible that sleep curtailment acutely induces inefficient mitochondrial function. Our observations provide a basis for further research into the role of acylcarnitines as a potential mechanistic pathway by which sleep deprivation - even short term - causes adverse metabolic effects, such as insulin resistance.


Assuntos
Carnitina/análogos & derivados , Resistência à Insulina , Sono , Adulto , Carnitina/sangue , Jejum/sangue , Feminino , Humanos , Masculino , Metabolômica
6.
FASEB J ; 27(4): 1721-32, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23303208

RESUMO

Circadian rhythm disturbances are observed in, e.g., aging and neurodegenerative diseases and are associated with an increased incidence of obesity and diabetes. We subjected male C57Bl/6J mice to constant light [12-h light-light (LL) cycle] to examine the effects of a disturbed circadian rhythm on energy metabolism and insulin sensitivity. In vivo electrophysiological recordings in the central pacemaker of the suprachiasmatic nuclei (SCN) revealed an immediate reduction in rhythm amplitude, stabilizing at 44% of normal amplitude values after 4 d LL. Food intake was increased (+26%) and energy expenditure decreased (-13%), and we observed immediate body weight gain (d 4: +2.4%, d 14: +5.0%). Mixed model analysis revealed that weight gain developed more rapidly in response to LL as compared to high fat. After 4 wk in LL, the circadian pattern in feeding and energy expenditure was completely lost, despite continuing low-amplitude rhythms in the SCN and in behavior, whereas weight gain had stabilized. Hyperinsulinemic-euglycemic clamp analysis revealed complete abolishment of normal circadian variation in insulin sensitivity in LL. In conclusion, a reduction in amplitude of the SCN, to values previously observed in aged mice, is sufficient to induce a complete loss of circadian rhythms in energy metabolism and insulin sensitivity.


Assuntos
Ritmo Circadiano/fisiologia , Dieta Hiperlipídica , Resistência à Insulina/fisiologia , Luz , Núcleo Supraquiasmático/fisiologia , Animais , Glicemia/metabolismo , Ritmo Circadiano/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Metabolismo Energético/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Núcleo Supraquiasmático/efeitos dos fármacos
7.
Mol Metab ; 47: 101179, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33548499

RESUMO

OBJECTIVE: Brown adipose tissue (BAT) displays a strong circadian rhythm in metabolic activity, but it is unclear how this rhythm is regulated. As circulating levels of corticosterone coincide with the rhythm of triglyceride-derived fatty acid (FA) uptake by BAT, we investigated whether corticosterone regulates BAT circadian rhythm. METHODS: Corticosterone levels were flattened by implanting mice with subcutaneous corticosterone-releasing pellets, resulting in constant circulating corticosterone levels. RESULTS: Flattened corticosterone rhythm caused a complete loss of circadian rhythm in triglyceride-derived fatty acid uptake by BAT. This effect was independent of glucocorticoid receptor expression in (brown) adipocytes and was not caused by deregulation of clock gene expression or overexposure to glucocorticoids, but rather seemed mediated by reduced sympathetic innervation of BAT. In a mouse model of hyperlipidemia and metabolic syndrome, long-term experimental flattening of corticosterone - and thus rhythm in BAT function - resulted in adiposity. CONCLUSIONS: This study highlights that a physiological rhythm in glucocorticoids is an important regulator of BAT function and essential for the maintenance of metabolic health.


Assuntos
Tecido Adiposo Marrom/metabolismo , Ritmo Circadiano/fisiologia , Glucocorticoides/metabolismo , Receptores de Glucocorticoides/metabolismo , Adipócitos/metabolismo , Adipócitos/patologia , Tecido Adiposo Marrom/patologia , Adiposidade , Animais , Corticosterona/metabolismo , Ácidos Graxos/metabolismo , Feminino , Metabolismo dos Lipídeos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Receptores de Glucocorticoides/genética , Transcriptoma , Triglicerídeos/metabolismo
8.
J Biol Rhythms ; 35(6): 598-611, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32915671

RESUMO

Artificial light exposure is associated with dyslipidemia in humans, which is a major risk factor for the development of atherosclerotic cardiovascular disease. However, it remains unclear whether artificial light at night can exacerbate atherosclerosis. In this study, we exposed female APOE*3-Leiden.CETP mice, a well-established model for human-like lipid metabolism and atherosclerosis, to either a regular light-dark cycle or to constant bright light for 14 weeks. Mice exposed to constant light demonstrated a minor reduction in food intake, without any effect on body weight, body composition, or the weight of metabolic organs. Constant light increased the plasma levels of proatherogenic non-high-density lipoprotein (HDL) cholesterol but did not increase the size or severity of atherosclerotic lesions in the aortic root. Mice exposed to constant light did show lower immune cell counts, which could explain the absence of an effect of atherosclerosis despite increased non-HDL cholesterol levels. Behavioral analysis demonstrated variability in the response of mice to the light intervention. Constant light completely blunted behavioral rhythms in some mice, while others extended their behavioral period. However, rhythm strength was not an important determinant of atherosclerosis. Altogether, these results demonstrate that constant bright light does not affect atherosclerosis in APOE*3-Leiden.CETP mice. Whether artificial light exposure contributes to cardiovascular disease risk in humans remains to be investigated.


Assuntos
Apolipoproteínas E/genética , Aterosclerose/genética , Proteínas de Transferência de Ésteres de Colesterol/genética , Ritmo Circadiano/efeitos da radiação , Iluminação , Animais , Feminino , Humanos , Inflamação/genética , Iluminação/efeitos adversos , Camundongos , Camundongos Transgênicos
9.
Sci Rep ; 9(1): 7874, 2019 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-31133707

RESUMO

Disturbance of the circadian clock has been associated with increased risk of cardio-metabolic disorders. Previous studies showed that optimal timing of food intake can improve metabolic health. We hypothesized that time-restricted feeding could be a strategy to minimize long term adverse metabolic health effects of shift work and jetlag. In this study, we exposed female FVB mice to weekly alternating light-dark cycles (i.e. 12 h shifts) combined with ad libitum feeding, dark phase feeding or feeding at a fixed clock time, in the original dark phase. In contrast to our expectations, long-term disturbance of the circadian clock had only modest effects on metabolic parameters. Mice fed at a fixed time showed a delayed adaptation compared to ad libitum fed animals, in terms of the similarity in 24 h rhythm of core body temperature, in weeks when food was only available in the light phase. This was accompanied by increased plasma triglyceride levels and decreased energy expenditure, indicating a less favorable metabolic state. On the other hand, dark phase feeding accelerated adaptation of core body temperature and activity rhythms, however, did not improve the metabolic state of animals compared to ad libitum feeding. Taken together, restricting food intake to the active dark phase enhanced adaptation to shifts in the light-dark schedule, without significantly affecting metabolic parameters.


Assuntos
Jejum , Fotoperíodo , Animais , Temperatura Corporal , Metabolismo Energético , Feminino , Metabolismo dos Lipídeos , Lipídeos/sangue , Doenças Metabólicas/sangue , Doenças Metabólicas/metabolismo , Camundongos
10.
J Endocrinol ; 236(2): 85-97, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29233934

RESUMO

Bile acids can function in the postprandial state as circulating signaling molecules in the regulation of glucose and lipid metabolism via the transmembrane receptor TGR5 and nuclear receptor FXR. Both receptors are present in the central nervous system, but their function in the brain is unclear. Therefore, we investigated the effects of intracerebroventricular (i.c.v.) administration of taurolithocholate (tLCA), a strong TGR5 agonist, and GW4064, a synthetic FXR agonist, on energy metabolism. We determined the effects of chronic i.c.v. infusion of tLCA, GW4064, or vehicle on energy expenditure, body weight and composition as well as tissue specific fatty acid uptake in mice equipped with osmotic minipumps. We found that i.c.v. administration of tLCA (final concentration in cerebrospinal fluid: 1 µM) increased fat oxidation (tLCA group: 0.083 ±â€…0.006 vs control group: 0.036 ±â€…0.023 kcal/h, F = 5.46, P = 0.04) and decreased fat mass (after 9 days of tLCA infusion: 1.35 ±â€…0.13 vs controls: 1.96 ±â€…0.23 g, P = 0.03). These changes were associated with enhanced uptake of triglyceride-derived fatty acids by brown adipose tissue and with browning of subcutaneous white adipose tissue. I.c.v. administration of GW4064 (final concentration in cerebrospinal fluid: 10 µM) did not affect energy metabolism, body composition nor bile acid levels, negating a role of FXR in the central nervous system in metabolic control. In conclusion, bile acids such as tLCA may exert metabolic effects on fat metabolism via the brain.


Assuntos
Encéfalo/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Ácido Taurolitocólico/administração & dosagem , Animais , Composição Corporal/efeitos dos fármacos , Encéfalo/metabolismo , Esquema de Medicação , Metabolismo Energético/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Infusões Intraventriculares , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução/efeitos dos fármacos , Fatores de Tempo , Triglicerídeos/metabolismo
11.
Cell Rep ; 22(13): 3521-3533, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29590620

RESUMO

Many favorable metabolic effects have been attributed to thermogenic activity of brown adipose tissue (BAT). Yet, time of day has rarely been considered in this field of research. Here, we show that a diurnal rhythm in BAT activity regulates plasma lipid metabolism. We observed a high-amplitude rhythm in fatty acid uptake by BAT that synchronized with the light/dark cycle. Highest uptake was found at the onset of the active period, which coincided with high lipoprotein lipase expression and low angiopoietin-like 4 expression by BAT. Diurnal rhythmicity in BAT activity determined the rate at which lipids were cleared from the circulation, thereby imposing the daily rhythm in plasma lipid concentrations. In mice as well as humans, postprandial lipid excursions were nearly absent at waking. We anticipate that diurnal BAT activity is an important factor to consider when studying the therapeutic potential of promoting BAT activity.


Assuntos
Tecido Adiposo Marrom/metabolismo , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos/fisiologia , Animais , Ritmo Circadiano , Humanos , Camundongos , Vigília
12.
Aging Cell ; 16(2): 237-243, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28440906

RESUMO

The biological clock, whose function deteriorates with increasing age, determines bodily circadian (i.e. 24h) rhythms, including that of cholesterol metabolism. Dampening of circadian rhythms has been associated with aging and disease. Therefore, we hypothesized that individuals with a familial predisposition for longevity have a higher amplitude circadian serum cholesterol concentration rhythm. The aim of this study was to investigate circadian rhythmicity of serum cholesterol concentrations in offspring of nonagenarian siblings and their partners. Offspring from nonagenarian siblings (n = 19), and their partners as controls (n = 18), were recruited from the Leiden Longevity Study. Participants (mean age 65 years) were studied in a controlled in-hospital setting over a 24-h period, receiving three isocaloric meals at 9:00 h, 12:00 h and 18:00 h. Lights were off between 23:00 h and 8:00 h. Serum total cholesterol (TC), HDL cholesterol (HDL-C), non-HDL-C and triglycerides (TG) were determined every 30 min over a 24-h period. Serum TC concentrations were higher during day than during night in offspring (5.2 vs. 4.7 mm, P < 0.001) and in controls (5.3 vs. 5.0 mm, P < 0.001). The difference in TC concentrations between day and night tended to be greater in offspring than in controls (0.5 vs. 0.3 mm, P = 0.109), reaching statistical significance in females (P = 0.045). Notably, the day-night serum differences in non-HDL-C were twofold greater in offspring than in controls (0.43 vs. 0.21 mm, P = 0.044) and most explicit in females (0.53 vs. 0.22, P = 0.078). We conclude that familial longevity is characterized by a high circadian rhythmicity of non-HDL-C in healthy elderly offspring from nonagenarian siblings.


Assuntos
Relógios Biológicos/fisiologia , Ritmo Circadiano/fisiologia , Longevidade/fisiologia , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Humanos , Metabolismo dos Lipídeos/fisiologia , Pessoa de Meia-Idade , Irmãos , Triglicerídeos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA