RESUMO
The adaptive control of sunlight through photochromic smart windows could have a huge impact on the energy efficiency and daylight comfort in buildings. However, the fabrication of inorganic nanoparticle and polymer composite photochromic films with a high contrast ratio and high transparency/low haze remains a challenge. Here, a solution method is presented for the in situ growth of copper-doped tungsten trioxide nanoparticles in polymethyl methacrylate, which allows a low-cost preparation of photochromic films with a high luminous transparency (luminous transmittance Tlum = 91%) and scalability (30 × 350 cm2 ). High modulation of visible light (ΔTlum = 73%) and solar heat (modulation of solar transmittance ΔTsol = 73%, modulation of solar heat gain coefficient ΔSHGC = 0.5) of the film improves the indoor daylight comfort and energy efficiency. Simulation results show that low-e windows with the photochromic film applied can greatly enhance the energy efficiency and daylight comfort. This photochromic film presents an attractive strategy for achieving more energy-efficient buildings and carbon neutrality to combat global climate change.