Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Rev Med Chil ; 149(3): 439-446, 2021 Mar.
Artigo em Espanhol | MEDLINE | ID: mdl-34479323

RESUMO

Recently, the Chilean Senate approved the main ideas of a constitutional reform and a Neuro-rights bill. This bill aims to protect people from the potential abusive use of "neuro-technologies". Unfortunately, a literal interpretation of this law can produce severe negative effects both in the development of neuroscience research and medical practice in Chile, interfering with current treatments in countless patients suffering from neuropsychiatric diseases. This fear stems from the observation of the negative effects that recent Chilean legislations have produced, which share with the Neuro-Rights Law the attempt to protect vulnerable populations from potential abuse from certain medical interventions. In fact, Law 20,584 promulgated in 2012, instead of protecting the most vulnerable patients "incapacitated to consent", produced enormous, and even possibly irreversible, damage to research in Chile in pathologies that require urgent attention, such as many neuropsychiatric diseases. This article details the effects that Law 20.584 had on research in Chile, how it relates to the Neuro-Rights Law, and the potential negative effects that the latter could have on research and medical practice, if it is not formulated correcting its errors.


Assuntos
Direitos do Paciente , Populações Vulneráveis , Chile , Humanos
2.
Rev Med Chil ; 148(3): 393-398, 2020 Mar.
Artigo em Espanhol | MEDLINE | ID: mdl-32730385

RESUMO

The catastrophic emergency experienced by many countries with the COVID-19 pandemic emphasized the importance of bioethics for decision-making, both at the public health (equitable and effective policies) and at the clinical level. At the clinical level, the issues are the fulfillment of medical care demand with adequate health care teams, infrastructure, and supplies, and to cover critical care demands that surpass the available resources. Therefore, ethically correct approaches are required for the allocation of life sustaining resources. There are recommendations for the allocating life support during disasters based on multiple considerations, including ethical ones. However, the ethical criteria of existing guidelines are variable. Ethical principles usually considered are saving the greatest number of lives, saving the greatest number of years of life and the principle of the life cycle or the goal to give each individual equal opportunity to live through the various phases of life. However, the centrality of the human being and the search for the common good should be considered. Knowledge of public perspectives and moral benchmarks on these issues is essential. A successful assignment effort will require everyone's trust and cooperation. Decision making should be planned and discussed in advance, since in-depth deliberation will be extremely complex during the disaster. Our goal is to help the health care teams to wisely allocate resources in shortage periods.


Assuntos
Tomada de Decisão Clínica/ética , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/terapia , Alocação de Recursos para a Atenção à Saúde/ética , Pandemias , Pneumonia Viral/epidemiologia , Pneumonia Viral/terapia , COVID-19 , Chile/epidemiologia , Humanos , Guias de Prática Clínica como Assunto
3.
Brain Behav Immun ; 69: 336-350, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29246456

RESUMO

Late onset Alzheimer disease's (LOAD) main risk factor is aging. Although it is not well known which age-related factors are involved in its development, evidence points out to the involvement of an impaired amyloid-ß (Aß) clearance in the aged brain among possible causes. Glial cells are the main scavengers of the brain, where Scavenger Receptor class A (SR-A) emerges as a relevant player in AD because of its participation in Aß uptake and in the modulation of glial cell inflammatory response. Here, we show that SR-A expression is reduced in the hippocampus of aged animals and APP/PS1 mice. Given that Aß deposition increases in the aging brain, we generated a triple transgenic mouse, which accumulates Aß and is knockout for SR-A (APP/PS1/SR-A-/-) to evaluate Aß accumulation and the inflammatory outcome of SR-A depletion in the aged brain. The lifespan of APP/PS1/SR-A-/- mice was greatly reduced, accompanied by a 3-fold increase in plasmatic pro-inflammatory cytokines, and reduced performance in a working memory behavioral assessment. Microglia and astrocytes lacking SR-A displayed impaired oxidative response and nitric oxide production, produced up to 7-fold more pro-inflammatory cytokines and showed a 12-fold reduction in anti-inflammatory cytokines release, with conspicuous changes in lipopolysaccharide-induced glial activation. Isolated microglia from young and adult mice lacking SR-A showed a 50% reduction in phagocytic activity. Our results indicate that reduced expression of SR-A can deregulate glial inflammatory response and potentiate Aß accumulation, two mechanisms that could contribute to AD progression.


Assuntos
Doença de Alzheimer/metabolismo , Astrócitos/metabolismo , Encéfalo/metabolismo , Microglia/metabolismo , Receptores Depuradores Classe A/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Astrócitos/patologia , Encéfalo/patologia , Citocinas/metabolismo , Modelos Animais de Doenças , Memória de Curto Prazo/fisiologia , Camundongos , Camundongos Transgênicos , Microglia/patologia , Óxido Nítrico/metabolismo , Estresse Oxidativo/fisiologia , Receptores Depuradores Classe A/genética
4.
Mediators Inflamm ; 2018: 7219732, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30363571

RESUMO

A mild chronic inflammatory state, like that observed in aged individuals, affects microglial function, inducing a dysfunctional phenotype that potentiates neuroinflammation and cytotoxicity instead of neuroprotection in response to additional challenges. Given that inflammatory activation of microglia promotes increased release of D-serine, we postulate that age-dependent inflammatory brain environment leads to microglia-mediated changes on the D-serine-regulated glutamatergic transmission. Furthermore, D-serine dysregulation, in addition to affecting synaptogenesis and synaptic plasticity, appears also to potentiate NMDAR-dependent excitotoxicity, promoting neurodegeneration and cognitive impairment. D-serine dysregulation promoted by microglia could have a role in age-related cognitive impairment and in the induction and progression of neurodegenerative processes like Alzheimer's disease.


Assuntos
Envelhecimento/fisiologia , Sistema Nervoso Central/metabolismo , Microglia/metabolismo , Serina/metabolismo , Animais , Humanos , Doenças Neurodegenerativas/metabolismo
5.
Adv Exp Med Biol ; 1015: 1-15, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29080018

RESUMO

"Neural plasticity" refers to the capacity of the nervous system to modify itself, functionally and structurally, in response to experience and injury. As the various chapters in this volume show, plasticity is a key component of neural development and normal functioning of the nervous system, as well as a response to the changing environment, aging, or pathological insult. This chapter discusses how plasticity is necessary not only for neural networks to acquire new functional properties, but also for them to remain robust and stable. The article also reviews the seminal proposals developed over the years that have driven experiments and strongly influenced concepts of neural plasticity.


Assuntos
Encéfalo/fisiologia , Rede Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Animais , Homeostase/fisiologia , Humanos , Redes Neurais de Computação , Neurônios/fisiologia
7.
Adv Exp Med Biol ; 949: 205-226, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27714691

RESUMO

As we age, a large number of physiological and molecular changes affect the normal functioning of cells, tissues, and the organism as a whole. One of the main changes is the establishment of a state of systemic inflammatory activation, which has been termed "inflamm-aging"; a mild chronic inflammation of the aging organism that reduces the ability to generate an efficient response against stressor stimuli. As any other system, the nervous system undergoes these aging-related changes; the neuroinflammatory state depends mainly on the dysregulated activation of microglia, the innate immune cells of the central nervous system (CNS) and the principal producers of reactive oxygen species. As the brain ages, microglia acquire a phenotype that is increasingly inflammatory and cytotoxic, generating a hostile environment for neurons. There is mounting evidence that this process facilitates development of neurodegenerative diseases, for which the greatest risk factor is age. In this chapter, we will review key aging-associated changes occurring in the central nervous system, focusing primarily on the changes that occur in aging microglia, the inflammatory and oxidative stressful environment they establish, and their impaired regulation. In addition, we will discuss the effects of aged microglia on neuronal function and their participation in the development of neurodegenerative pathologies such as Parkinson's and Alzheimer's diseases.


Assuntos
Envelhecimento/metabolismo , Doença de Alzheimer/metabolismo , Sistema Nervoso Central/metabolismo , Microglia/metabolismo , Neurônios/metabolismo , Doença de Parkinson/metabolismo , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/genética , Envelhecimento/patologia , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Sistema Nervoso Central/patologia , Citocinas/biossíntese , Metilação de DNA , Histonas/genética , Histonas/metabolismo , Humanos , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Inflamação , Microglia/patologia , Neurônios/patologia , Estresse Oxidativo , Doença de Parkinson/genética , Doença de Parkinson/patologia , Espécies Reativas de Oxigênio/metabolismo , Complexo Shelterina , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo
8.
Adv Exp Med Biol ; 949: 67-92, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27714685

RESUMO

The activation of microglia has been recognized for over a century by their morphological changes. Long slender microglia acquire a short sturdy ramified shape when activated. During the past 20 years, microglia have been accepted as an essential cellular component for understanding the pathogenic mechanism of many brain diseases, including neurodegenerative diseases. More recently, functional studies and imaging in mouse models indicate that microglia are active in the healthy central nervous system. It has become evident that microglia release several signal molecules that play key roles in the crosstalk among brain cells, i.e., astrocytes and oligodendrocytes with neurons, as well as with regulatory immune cells. Recent studies also reveal the heterogeneous nature of microglia diverse functions depending on development, previous exposure to stimulation events, brain region of residence, or pathological state. Subjects to approach by future research are still the unresolved questions regarding the conditions and mechanisms that render microglia protective, capable of preventing or reducing damage, or deleterious, capable of inducing or facilitating the progression of neuropathological diseases. This novel knowledge will certainly change our view on microglia as therapeutic target, shifting our goal from their general silencing to the generation of treatments able to change their activation pattern.


Assuntos
Encéfalo/fisiologia , Comunicação Celular/fisiologia , Microglia/fisiologia , Doenças Neurodegenerativas/fisiopatologia , Neurônios/fisiologia , Animais , Astrócitos/citologia , Astrócitos/fisiologia , Encéfalo/citologia , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Movimento Celular , Citocinas/genética , Citocinas/metabolismo , Expressão Gênica , Humanos , Camundongos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Microglia/citologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Neurônios/citologia , Neurotransmissores/genética , Neurotransmissores/metabolismo , Oligodendroglia/citologia , Oligodendroglia/fisiologia , Fagocitose , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo
9.
Adv Exp Med Biol ; 949: 1-24, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27714682

RESUMO

Today, there is enormous progress in understanding the function of glial cells, including astroglia, oligodendroglia, Schwann cells, and microglia. Around 150 years ago, glia were viewed as a glue among neurons. During the course of the twentieth century, microglia were discovered and neuroscientists' views evolved toward considering glia only as auxiliary cells of neurons. However, over the last two to three decades, glial cells' importance has been reconsidered because of the evidence on their involvement in defining central nervous system architecture, brain metabolism, the survival of neurons, development and modulation of synaptic transmission, propagation of nerve impulses, and many other physiological functions. Furthermore, increasing evidence shows that glia are involved in the mechanisms of a broad spectrum of pathologies of the nervous system, including some psychiatric diseases, epilepsy, and neurodegenerative diseases to mention a few. It appears safe to say that no neurological disease can be understood without considering neuron-glia crosstalk. Thus, this book aims to show different roles played by glia in the healthy and diseased nervous system, highlighting some of their properties while considering that the various glial cell types are essential components not only for cell function and integration among neurons, but also for the emergence of important brain homeostasis.


Assuntos
Astrócitos/fisiologia , Microglia/fisiologia , Fenômenos Fisiológicos do Sistema Nervoso , Neurônios/fisiologia , Oligodendroglia/fisiologia , Células de Schwann/fisiologia , Astrócitos/citologia , Epilepsia/patologia , Epilepsia/fisiopatologia , Humanos , Microglia/citologia , Esclerose Múltipla/patologia , Esclerose Múltipla/fisiopatologia , Sistema Nervoso/patologia , Sistema Nervoso/fisiopatologia , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/fisiopatologia , Neurônios/citologia , Óxido Nítrico/fisiologia , Oligodendroglia/citologia , Estresse Oxidativo , Células de Schwann/citologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia
10.
Glia ; 63(7): 1185-99, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25731866

RESUMO

The mechanism of secondary damage spread after brain trauma remains unsolved. In this work, we redirected the attention to astrocytic communication pathways. Using an in vitro trauma model that consists of a scratch injury applied to an astrocyte monolayer, we found a significant and transient induction of connexin43 (Cx43) hemichannel activity in regions distal from the injury, which was maximal ∼1 h after scratch. Two connexin hemichannel blockers, La(3+) and the peptide Gap26, abolished the increased activity, which was also absent in Cx43 KO astrocytes. In addition, the scratch-induced increase of hemichannel activity was prevented by inhibition of P2 purinergic receptors. Changes in hemichannel activity took place with a particular spatial distribution, with cells located at ∼17 mm away from the scratch presenting the highest activity (dye uptake). In contrast, the functional state of gap junction channels (dye coupling) was not significantly affected. Cx43 hemichannel activity was also enhanced by the acute extracellular application of 60 mM K(+) . The increase in hemichannel activity was associated with an increment in apoptotic cells at 24 h after scratch that was totally prevented by Gap26 peptide. These findings suggest that Cx43 hemichannels could be a new approach to prevent or reduce the secondary cell damage of brain trauma.


Assuntos
Astrócitos/metabolismo , Conexina 43/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Astrócitos/efeitos dos fármacos , Lesões Encefálicas , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células Cultivadas , Fármacos do Sistema Nervoso Central/farmacologia , Conexina 43/antagonistas & inibidores , Conexina 43/genética , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Camundongos Knockout , Peptídeos/administração & dosagem , Potássio/metabolismo , Antagonistas do Receptor Purinérgico P2/farmacologia , Ratos Sprague-Dawley , Receptores Purinérgicos P2/metabolismo
11.
Glia ; 63(11): 2058-2072, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26096155

RESUMO

Several epidemiological studies indicate that children born from mothers exposed to infections during gestation, have an increased risk to develop neurological disorders, including schizophrenia, autism and cerebral palsy. Given that it is unknown if astrocytes and their crosstalk with neurons participate in the above mentioned brain pathologies, the aim of this work was to address if astroglial paracrine signaling mediated by Cx43 and Panx1 unopposed channels could be affected in the offspring of LPS-exposed dams during pregnancy. Ethidium uptake experiments showed that prenatal LPS-exposure increases the activity of astroglial Cx43 and Panx1 unopposed channels in the offspring. Induction of unopposed channel opening by prenatal LPS exposure depended on intracellular Ca2+ levels, cytokine production and activation of p38 MAP kinase/iNOS pathway. Biochemical assays and Fura-2AM/DAF-FM time-lapse fluorescence images revealed that astrocytes from the offspring of LPS-exposed dams displayed increased spontaneous Ca2+ dynamics and NO production, whereas iNOS levels and release of IL-1ß/TNF-α were also increased. Interestingly, we found that prenatal LPS exposure enhanced the release of ATP through astroglial Cx43 and Panx1 unopposed channels in the offspring, resulting in an increased neuronal death mediated by the activation of neuronal P2X7 receptors and Panx1 channels. Altogether, this evidence suggests that astroglial Cx43 and Panx1 unopposed channel opening induced by prenatal LPS exposure depended on the inflammatory activation profile and the activation pattern of astrocytes. The understanding of the mechanism underlying astrocyte-neuron crosstalk could contribute to the development of new strategies to ameliorate the brain abnormalities induced in the offspring by prenatal inflammation. GLIA 2015;63:2058-2072.

12.
Neurobiol Dis ; 71: 260-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25134729

RESUMO

Tau phosphorylated at the PHF-1 epitope (S396/S404) is likely involved in the pathogenesis of Alzheimer's disease (AD). However, the molecular mechanisms by which tau phosphorylated at these sites negatively impacts neuronal functions are still under scrutiny. Previously, we showed that expression of tau truncated at D421 enhances mitochondrial dysfunction induced by Aß in cortical neurons. To extend these findings, we expressed tau pseudo-phosphorylated at S396/404 (T42EC) in mature and young cortical neurons and evaluated different aspects of mitochondrial function in response to Aß. Expression of T42EC did not induce significant changes in mitochondrial morphology, mitochondrial length, or mitochondrial transport, compared to GFP and full-length tau. However, T42EC expression enhanced Aß-induced mitochondrial membrane potential loss and increased superoxide levels compared to what was observed in mature neurons expressing full-length tau. The same effect was observed in mature neurons that expressed both pseudo-phosphorylated and truncated tau when they were treated with Aß. Interestingly, the mitochondrial failure induced by Aß in mature neurons that expressed T42EC, was not observed in young neurons expressing T42EC. These novel findings suggest that phosphorylated tau (PHF-1 epitope) enhances Aß-induced mitochondrial injury, which contributes to neuronal dysfunction and to the pathogenesis of AD.


Assuntos
Doenças Mitocondriais/induzido quimicamente , Neurônios/efeitos dos fármacos , Proteínas tau/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Células Cultivadas , Córtex Cerebral/citologia , Embrião de Mamíferos , Proteínas de Fluorescência Verde/genética , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Doenças Mitocondriais/metabolismo , Mutação/genética , Fosforilação/genética , Presenilina-1/genética , Ratos , Superóxidos/metabolismo , Transfecção
13.
Brain Behav Immun ; 37: 187-96, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24380849

RESUMO

Aging is the main risk factor for Alzheimer's disease. Among other characteristics, it shows changes in inflammatory signaling that could affect the regulation of glial cell activation. We have shown that astrocytes prevent microglial cell cytotoxicity by mechanisms mediated by TGFß1. However, whereas TGFß1 is increased, glial cell activation persists in aging. To understand this apparent contradiction, we studied TGFß1-Smad3 signaling during aging and their effect on microglial cell function. TGFß1 induction and activation of Smad3 signaling in the hippocampus by inflammatory stimulation was greatly reduced in adult mice. We evaluated the effect of TGFß1-Smad3 pathway on the regulation of nitric oxide (NO) and reactive oxygen species (ROS) secretion, and phagocytosis of microglia from mice at different ages with and without in vivo treatment with lipopolysaccharide (LPS) to induce an inflammatory status. NO secretion was only induced on microglia from young mice exposed to LPS, and was potentiated by inflammatory preconditioning, whereas in adult mice the induction of ROS was predominant. TGFß1 modulated induction of NO and ROS production in young and adult microglia, respectively. Modulation was partially dependent on Smad3 pathway and was impaired by inflammatory preconditioning. Phagocytosis was induced by inflammation and TGFß1 only in microglia cultures from young mice. Induction by TGFß1 was also prevented by Smad3 inhibition. Our findings suggest that activation of the TGFß1-Smad3 pathway is impaired in aging. Age-related impairment of TGFß1-Smad3 can reduce protective activation while facilitating cytotoxic activation of microglia, potentiating microglia-mediated neurodegeneration.


Assuntos
Microglia/metabolismo , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Envelhecimento , Peptídeos beta-Amiloides/metabolismo , Animais , Hipocampo/metabolismo , Inflamação/metabolismo , Lipopolissacarídeos , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , Fagocitose , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
14.
Adv Neurobiol ; 37: 379-395, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39207703

RESUMO

Aging is the greatest risk factor for neurodegenerative diseases. Microglia are the resident immune cells in the central nervous system (CNS), playing key roles in its normal functioning, and as mediators for age-dependent changes of the CNS, condition at which they generate a hostile environment for neurons. Transforming Growth Factor ß1 (TGFß1) is a regulatory cytokine involved in immuneregulation and neuroprotection, affecting glial cell inflammatory activation, neuronal survival, and function. TGFß1 signaling undergoes age-dependent changes affecting the regulation of microglial cells and can contribute to the pathophysiology of neurodegenerative diseases. This chapter focuses on assessing the role of age-related changes on the regulation of microglial cells and their impact on neuroinflammation and neuronal function, for understanding age-dependent changes of the nervous system.


Assuntos
Envelhecimento , Microglia , Doenças Neuroinflamatórias , Microglia/metabolismo , Humanos , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Animais , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/metabolismo , Doenças Neurodegenerativas/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Sistema Nervoso Central/metabolismo , Neurônios/metabolismo , Transdução de Sinais
15.
Front Physiol ; 15: 1332355, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476146

RESUMO

Microglia, the resident immune cells of the CNS, surveil, detect, and respond to various extracellular signals. Depending on the nature of these signals, an integrative microglial response can be triggered, resulting in a phenotypic transformation. Here, we evaluate whether hypercapnia modifies microglia phenotype in brainstem respiratory-related nuclei. Adult C57BL/6 inbred mice were exposed to 10% CO2 enriched air (hypercapnia), or pure air (control), for 10 or 30 min and immediately processed for immunohistochemistry to detect the ubiquitous microglia marker, ionized calcium binding adaptor molecule 1 (Iba1). Hypercapnia for thirty, but not 10 min reduced the Iba1 labeling percent coverage in the ventral respiratory column (VRC), raphe nucleus (RN), and nucleus tractus solitarius (NTS) and the number of primary branches in VRC. The morphological changes persisted, at least, for 60 min breathing air after the hypercapnic challenge. No significant changes were observed in Iba1+ cells in the spinal trigeminal nucleus (Sp5) and the hippocampus. In CF-1 outbred mice, 10% CO2 followed by 60 min of breathing air, resulted in the reduction of Iba1 labeling percent coverage and the number and length of primary branches in VRC, RN, and NTS. No morphological change was observed in Iba1+ cells in Sp5 and hippocampus. Double immunofluorescence revealed that prolonged hypercapnia increased the expression of CD86, an inflammatory marker for reactive state microglia, in Iba1+ cells in VRC, RN, and NTS, but not in Sp5 and hippocampus in CF-1 mice. By contrast, the expression of CD206, a marker of regulatory state microglia, persisted unmodified. In brainstem, but not in hippocampal microglia cultures, hypercapnia increased the level of IL1ß, but not that of TGFß measured by ELISA. Our results show that microglia from respiratory-related chemosensory nuclei, are reactive to prolonged hypercapnia acquiring an inflammatory-like phenotype.

16.
Glia ; 61(12): 2023-37, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24123492

RESUMO

Under inflammatory conditions, microglia exhibit increased levels of free intracellular Ca(2+) and produce high amounts of nitric oxide (NO). However, whether NO, Ca(2+) dynamics, and gliotransmitter release are reciprocally modulated is not fully understood. More importantly, the effect of astrocytes in the potentiation or suppression of such signaling is unknown. Our aim was to address if astrocytes could regulate NO-dependent Ca(2+) dynamics and ATP release in LPS-stimulated microglia. Griess assays and Fura-2AM time-lapse fluorescence images of microglia revealed that LPS produced an increased basal [Ca(2+) ]i that depended on the sequential activation of iNOS, COXs, and EP1 receptor. TGFß1 released by astrocytes inhibited the abovementioned responses and also abolished LPS-induced ATP release by microglia. Luciferin/luciferase assays and dye uptake experiments showed that release of ATP from LPS-stimulated microglia occurred via pannexin 1 (Panx1) channels, but not connexin 43 hemichannels. Moreover, in LPS-stimulated microglia, exogenous ATP triggered activation of purinergic P2Y1 receptors resulting in Ca(2+) release from intracellular stores. Interestingly, TGFß1 released by astrocytes inhibited ATP-induced Ca(2+) response in LPS-stimulated microglia to that observed in control microglia. Finally, COX/EP1 receptor signaling and activation of P2 receptors via ATP released through Panx1 channels were critical for the increased NO production in LPS-stimulated microglia. Thus, Ca(2+) dynamics depended on the inflammatory profile of microglia and could be modulated by astrocytes. The understanding of mechanisms underlying glial cell regulatory crosstalk could contribute to the development of new treatments to reduce inflammatory cytotoxicity in several brain pathologies.


Assuntos
Trifosfato de Adenosina/metabolismo , Astrócitos/metabolismo , Cálcio/metabolismo , Conexinas/metabolismo , Microglia/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Óxido Nítrico/metabolismo , Animais , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Lipopolissacarídeos/farmacologia , Microglia/citologia , Microglia/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
17.
Mediators Inflamm ; 2013: 895651, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23737655

RESUMO

It is widely accepted that cells serving immune functions in the brain, namely, microglia and astrocytes, are important mediators of pathological phenomena observed in Alzheimer's disease. However, it is unknown how these cells initiate the response that results in cognitive impairment and neuronal degeneration. Here, we review the participation of the immune response mediated by glial cells in Alzheimer's disease and the role played by scavenger receptors in the development of this pathology, focusing on the relevance of class A scavenger receptor (SR-A) for A ß clearance and inflammatory activation of glial cell, and as a potential target for Alzheimer's disease therapy.


Assuntos
Doença de Alzheimer/metabolismo , Neuroglia/metabolismo , Receptores Depuradores/metabolismo , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Humanos , Receptores Depuradores/genética
18.
Mediators Inflamm ; 2013: 216402, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23737642

RESUMO

Microglia are the immune cells in the central nervous system. After injury microglia release bioactive molecules, including cytokines and ATP, which modify the functional state of hemichannels (HCs) and gap junction channels (GJCs), affecting the intercellular communication via extracellular and intracellular compartments, respectively. Here, we studied the role of extracellular ATP and several cytokines as modulators of the functional state of microglial HCs and GJCs using dye uptake and dye coupling techniques, respectively. In microglia and the microglia cell line EOC20, ATP advanced the TNF-α/IFN-γ-induced dye coupling, probably through the induction of IL-1ß release. Moreover, TNF-α/IFN-γ, but not TNF-α plus ATP, increased dye uptake in EOC20 cells. Blockade of Cx43 and Panx1 HCs prevented dye coupling induced by TNF-α/IFN-γ, but not TNF-α plus ATP. In addition, IL-6 prevented the induction of dye coupling and HC activity induced by TNF-α/IFN-γ in EOC20 cells. Our data support the notion that extracellular ATP affects the cellular communication between microglia through autocrine and paracrine mechanisms, which might affect the timing of immune response under neuroinflammatory conditions.


Assuntos
Citocinas/farmacologia , Junções Comunicantes/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Trifosfato de Adenosina , Animais , Western Blotting , Linhagem Celular , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Imunofluorescência , Interferon gama/farmacologia , Interleucina-1beta/farmacologia , Interleucina-6/farmacologia , Camundongos , Microglia/citologia , Ratos , Fator de Necrose Tumoral alfa/farmacologia
19.
Front Mol Neurosci ; 16: 1249320, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37818457

RESUMO

The chemokine fractalkine (FKN, CX3CL1), a member of the CX3C subfamily, contributes to neuron-glia interaction and the regulation of microglial cell activation. Fractalkine is expressed by neurons as a membrane-bound protein (mCX3CL1) that can be cleaved by extracellular proteases generating several sCX3CL1 forms. sCX3CL1, containing the chemokine domain, and mCX3CL1 have high affinity by their unique receptor (CX3CR1) which, physiologically, is only found in microglia, a resident immune cell of the CNS. The activation of CX3CR1contributes to survival and maturation of the neural network during development, glutamatergic synaptic transmission, synaptic plasticity, cognition, neuropathic pain, and inflammatory regulation in the adult brain. Indeed, the various CX3CL1 forms appear in some cases to serve an anti-inflammatory role of microglia, whereas in others, they have a pro-inflammatory role, aggravating neurological disorders. In the last decade, evidence points to the fact that sCX3CL1 and mCX3CL1 exhibit selective and differential effects on their targets. Thus, the balance in their level and activity will impact on neuron-microglia interaction. This review is focused on the description of factors determining the emergence of distinct fractalkine forms, their age-dependent changes, and how they contribute to neuroinflammation and neurodegenerative diseases. Changes in the balance among various fractalkine forms may be one of the mechanisms on which converge aging, chronic CNS inflammation, and neurodegeneration.

20.
J Neurochem ; 123(1): 113-23, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22823229

RESUMO

Overactivated glial cells can produce neurotoxic oxidant molecules such as nitric oxide (NO·) and superoxide anion (O(2)·(-)). We have previously reported that transforming growth factor ß1 (TGFß1) released by hippocampal cells modulates interferon-γ (IFNγ)-induced production of O(2)·(-) and NO· by glial cells. However, underlying molecular mechanisms are not completely understood, thereby, the aim of this work was to study the effect of TGFß1 on IFNγ-induced signaling pathways. We found that costimulation with TGFß1 decreased IFNγ-induced phosphorylation of signal transducer and activator of transcription-type-1 (STAT1) and extracellular signal-regulated kinase (ERK), which correlated with a reduced O(2)·(-) and NO· production in mixed and purified glial cultures. Moreover, IFNγ caused a decrease in TGFß1-mediated phosphorylation of P38, whereas pre-treatment with ERK and P38 inhibitors decreased IFNγ-induced phosphorylation of STAT1 on serine727 and production of radical species. These results suggested that modulation of glial activation by TGFß1 is mediated by deactivation of MAPKs. Notably, TGFß1 increased the levels of MAPK phosphatase-1 (MKP-1), whose participation in TGFß1-mediated modulation was confirmed by MKP-1 siRNA transfection in mixed and purified glial cultures. Our results indicate that the cross-talk between IFNγ and TGFß1 might regulate the activation of glial cells and that TGFß1 modulated IFNγ-induced production of neurotoxic oxidant molecules through STAT1, ERK, and P38 pathways.


Assuntos
Interferon gama/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neuroglia/efeitos dos fármacos , Fator de Transcrição STAT1/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Animais , Animais Recém-Nascidos , Proteínas de Ligação ao Cálcio/metabolismo , Células Cultivadas , Córtex Cerebral/citologia , Interações Medicamentosas , Inibidores Enzimáticos/farmacologia , Formazans , Proteína Glial Fibrilar Ácida/metabolismo , Glicoproteínas/metabolismo , Lectinas/metabolismo , Lipopolissacarídeos/farmacologia , Proteínas dos Microfilamentos/metabolismo , Nitritos/metabolismo , Fosforilação/efeitos dos fármacos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Estatísticas não Paramétricas , Transfecção , Versicanas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA