Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 19(23)2019 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31801215

RESUMO

Site-specific liming helps increase efficiency in agricultural production. For adequate determination of the lime demand, a combination of apparent soil electrical conductivity (ECa) and topsoil pH can be used. Here, it was hypothesized that this can also be done at low-input level. Field measurements using the EM38 MK I (Geonics, Canada) were conducted on three experimental sites in north Germany in 2011. The topsoil pH was measured based on two approaches: on the field using a handheld pH meter (Spectrum-Technologies Ltd., Bridgend, UK) with a flat electrode (in situ), and in the lab using standard equipment (ex situ). Both soil ECa (0.4-35.9 mS m-1) and pH (5.13-7.41) were heterogeneously distributed across the sites. The same was true of the lime demand (-1.35-4.18 Mg ha-1). There was a significant correlation between in situ and ex situ determined topsoil pH (r = 0.89; p < 0.0001). This correlation was further improved through non-linear regression (r = 0.92; p < 0.0001). Thus, in situ topsoil pH was found suitable for map-overlay with ECa to determine the site-specific lime demand. Consequently, the hypothesis could be confirmed: The combined use of data from EM38 and handheld pH meters is a promising low-input approach that may help implement site-specific liming in developing countries.

2.
Glob Chall ; 7(7): 2200225, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37483416

RESUMO

The current geological epoch is characterized by anthropogenic activity that greatly impacts on natural ecosystems and their integrity. The complex networks of ecosystem services (ESs) are often ignored because the provision of natural resources, such as food and industrial crops, is mistakenly viewed as an independent process separate from ecosystems and ignoring the impacts on ecosystems. Recently, research has intensified on how to evaluate and manage ES to minimize environmental impacts, but it remains unclear how to balance anthropogenic activity and ecosystem integrity. This paper reviews the main ESs at farm level including provisioning, regulating, habitat, and cultural services. For these ESs, synergies are outlined and evaluated along with the respective practices (e.g., cover- and intercropping) and ES suppliers (e.g., pollinators and biocontrol agents). Further, several farm-level ES trade-offs are discussed along with a proposal for their evaluation. Finally, a framework for stakeholder approaches specific to farm-level ES is put forward, along with an outlook on how existing precision agriculture technologies can be adapted for improved assessment of ES bundles. This is believed to provide a useful framework for both decision makers and stakeholders to facilitate the development of more sustainable and resilient farming systems.

3.
Glob Change Biol Bioenergy ; 15(5): 538-558, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-38505831

RESUMO

Demand for sustainably produced biomass is expected to increase with the need to provide renewable commodities, improve resource security and reduce greenhouse gas emissions in line with COP26 commitments. Studies have demonstrated additional environmental benefits of using perennial biomass crops (PBCs), when produced appropriately, as a feedstock for the growing bioeconomy, including utilisation for bioenergy (with or without carbon capture and storage). PBCs can potentially contribute to Common Agricultural Policy (CAP) (2023-27) objectives provided they are carefully integrated into farming systems and landscapes. Despite significant research and development (R&D) investment over decades in herbaceous and coppiced woody PBCs, deployment has largely stagnated due to social, economic and policy uncertainties. This paper identifies the challenges in creating policies that are acceptable to all actors. Development will need to be informed by measurement, reporting and verification (MRV) of greenhouse gas emissions reductions and other environmental, economic and social metrics. It discusses interlinked issues that must be considered in the expansion of PBC production: (i) available land; (ii) yield potential; (iii) integration into farming systems; (iv) R&D requirements; (v) utilisation options; and (vi) market systems and the socio-economic environment. It makes policy recommendations that would enable greater PBC deployment: (1) incentivise farmers and land managers through specific policy measures, including carbon pricing, to allocate their less productive and less profitable land for uses which deliver demonstrable greenhouse gas reductions; (2) enable greenhouse gas mitigation markets to develop and offer secure contracts for commercial developers of verifiable low-carbon bioenergy and bioproducts; (3) support innovation in biomass utilisation value chains; and (4) continue long-term, strategic R&D and education for positive environmental, economic and social sustainability impacts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA