Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.459
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 181(4): 865-876.e12, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32353252

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic, caused by the SARS-CoV-2 virus, has highlighted the need for antiviral approaches that can target emerging viruses with no effective vaccines or pharmaceuticals. Here, we demonstrate a CRISPR-Cas13-based strategy, PAC-MAN (prophylactic antiviral CRISPR in human cells), for viral inhibition that can effectively degrade RNA from SARS-CoV-2 sequences and live influenza A virus (IAV) in human lung epithelial cells. We designed and screened CRISPR RNAs (crRNAs) targeting conserved viral regions and identified functional crRNAs targeting SARS-CoV-2. This approach effectively reduced H1N1 IAV load in respiratory epithelial cells. Our bioinformatic analysis showed that a group of only six crRNAs can target more than 90% of all coronaviruses. With the development of a safe and effective system for respiratory tract delivery, PAC-MAN has the potential to become an important pan-coronavirus inhibition strategy.


Assuntos
Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Sistemas CRISPR-Cas , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , RNA Viral/antagonistas & inibidores , Células A549 , Antibioticoprofilaxia/métodos , Sequência de Bases , Betacoronavirus/genética , Betacoronavirus/crescimento & desenvolvimento , COVID-19 , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Simulação por Computador , Sequência Conservada , Coronavirus/efeitos dos fármacos , Coronavirus/genética , Coronavirus/crescimento & desenvolvimento , Infecções por Coronavirus/tratamento farmacológico , Proteínas do Nucleocapsídeo de Coronavírus , RNA-Polimerase RNA-Dependente de Coronavírus , Células Epiteliais/virologia , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/crescimento & desenvolvimento , Pulmão/patologia , Pulmão/virologia , Proteínas do Nucleocapsídeo/genética , Pandemias , Fosfoproteínas , Filogenia , Pneumonia Viral/tratamento farmacológico , RNA Polimerase Dependente de RNA/genética , SARS-CoV-2 , Proteínas não Estruturais Virais/genética
2.
Cell ; 182(4): 843-854.e12, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32673567

RESUMO

The SARS-CoV-2 pandemic has unprecedented implications for public health, social life, and the world economy. Because approved drugs and vaccines are limited or not available, new options for COVID-19 treatment and prevention are in high demand. To identify SARS-CoV-2-neutralizing antibodies, we analyzed the antibody response of 12 COVID-19 patients from 8 to 69 days after diagnosis. By screening 4,313 SARS-CoV-2-reactive B cells, we isolated 255 antibodies from different time points as early as 8 days after diagnosis. Of these, 28 potently neutralized authentic SARS-CoV-2 with IC100 as low as 0.04 µg/mL, showing a broad spectrum of variable (V) genes and low levels of somatic mutations. Interestingly, potential precursor sequences were identified in naive B cell repertoires from 48 healthy individuals who were sampled before the COVID-19 pandemic. Our results demonstrate that SARS-CoV-2-neutralizing antibodies are readily generated from a diverse pool of precursors, fostering hope for rapid induction of a protective immune response upon vaccination.


Assuntos
Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Antivirais/isolamento & purificação , Infecções por Coronavirus/imunologia , Pneumonia Viral/imunologia , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/genética , Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Betacoronavirus/imunologia , COVID-19 , Humanos , Região Variável de Imunoglobulina/genética , Região Variável de Imunoglobulina/imunologia , Memória Imunológica , Estudos Longitudinais , Pandemias , SARS-CoV-2 , Hipermutação Somática de Imunoglobulina
3.
Cell ; 182(2): 417-428.e13, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32526208

RESUMO

Nucleotide analog inhibitors, including broad-spectrum remdesivir and favipiravir, have shown promise in in vitro assays and some clinical studies for COVID-19 treatment, this despite an incomplete mechanistic understanding of the viral RNA-dependent RNA polymerase nsp12 drug interactions. Here, we examine the molecular basis of SARS-CoV-2 RNA replication by determining the cryo-EM structures of the stalled pre- and post- translocated polymerase complexes. Compared with the apo complex, the structures show notable structural rearrangements happening to nsp12 and its co-factors nsp7 and nsp8 to accommodate the nucleic acid, whereas there are highly conserved residues in nsp12, positioning the template and primer for an in-line attack on the incoming nucleotide. Furthermore, we investigate the inhibition mechanism of the triphosphate metabolite of remdesivir through structural and kinetic analyses. A transition model from the nsp7-nsp8 hexadecameric primase complex to the nsp12-nsp7-nsp8 polymerase complex is also proposed to provide clues for the understanding of the coronavirus transcription and replication machinery.


Assuntos
Betacoronavirus/química , Betacoronavirus/enzimologia , RNA Polimerase Dependente de RNA/química , Proteínas não Estruturais Virais/química , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/química , Monofosfato de Adenosina/metabolismo , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Alanina/química , Alanina/metabolismo , Alanina/farmacologia , Antivirais/química , Antivirais/metabolismo , Antivirais/farmacologia , Domínio Catalítico , RNA-Polimerase RNA-Dependente de Coronavírus , Microscopia Crioeletrônica , Modelos Químicos , Modelos Moleculares , RNA Viral/metabolismo , SARS-CoV-2 , Transcrição Gênica , Replicação Viral
4.
Immunity ; 54(4): 797-814.e6, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33765436

RESUMO

Immune response dynamics in coronavirus disease 2019 (COVID-19) and their severe manifestations have largely been studied in circulation. Here, we examined the relationship between immune processes in the respiratory tract and circulation through longitudinal phenotypic, transcriptomic, and cytokine profiling of paired airway and blood samples from patients with severe COVID-19 relative to heathy controls. In COVID-19 airways, T cells exhibited activated, tissue-resident, and protective profiles; higher T cell frequencies correlated with survival and younger age. Myeloid cells in COVID-19 airways featured hyperinflammatory signatures, and higher frequencies of these cells correlated with mortality and older age. In COVID-19 blood, aberrant CD163+ monocytes predominated over conventional monocytes, and were found in corresponding airway samples and in damaged alveoli. High levels of myeloid chemoattractants in airways suggest recruitment of these cells through a CCL2-CCR2 chemokine axis. Our findings provide insights into immune processes driving COVID-19 lung pathology with therapeutic implications for targeting inflammation in the respiratory tract.


Assuntos
COVID-19/imunologia , Pulmão/imunologia , Células Mieloides/imunologia , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , COVID-19/sangue , COVID-19/mortalidade , COVID-19/patologia , Citocinas/imunologia , Citocinas/metabolismo , Humanos , Inflamação , Estudos Longitudinais , Pulmão/patologia , Macrófagos/imunologia , Macrófagos/patologia , Pessoa de Meia-Idade , Monócitos/imunologia , Monócitos/patologia , Células Mieloides/patologia , SARS-CoV-2 , Linfócitos T/imunologia , Linfócitos T/patologia , Transcriptoma , Adulto Jovem
5.
CA Cancer J Clin ; 71(1): 34-46, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32997807

RESUMO

The delivery of cancer care has never changed as rapidly and dramatically as we have seen with the coronavirus disease 2019 (COVID-19) pandemic. During the early phase of the pandemic, recommendations for the management of oncology patients issued by various professional societies and government agencies did not recognize the significant regional differences in the impact of the pandemic. California initially experienced lower than expected numbers of cases, and the health care system did not experience the same degree of the burden that had been the case in other parts of the country. In light of promising trends in COVID-19 infections and mortality in California, by late April 2020, discussions were initiated for a phased recovery of full-scale cancer services. However, by July 2020, a surge of cases was reported across the nation, including in California. In this review, the authors share the response and recovery planning experience of the University of California (UC) Cancer Consortium in an effort to provide guidance to oncology practices. The UC Cancer Consortium was established in 2017 to bring together 5 UC Comprehensive Cancer Centers: UC Davis Comprehensive Cancer Center, UC Los Angeles Jonsson Comprehensive Cancer Center, UC Irvine Chao Family Comprehensive Cancer Center, UC San Diego Moores Cancer Center, and the UC San Francisco Helen Diller Family Comprehensive Cancer Center. The interventions implemented in each of these cancer centers are highlighted, with a focus on opportunities for a redesign in care delivery models. The authors propose that their experiences gained during this pandemic will enhance pre-pandemic cancer care delivery.


Assuntos
COVID-19 , Institutos de Câncer/organização & administração , Atenção à Saúde/organização & administração , Neoplasias/terapia , COVID-19/complicações , COVID-19/diagnóstico , COVID-19/epidemiologia , COVID-19/prevenção & controle , Teste para COVID-19 , California/epidemiologia , Saúde Global , Humanos , Controle de Infecções/métodos , Controle de Infecções/organização & administração , Neoplasias/complicações , Neoplasias/diagnóstico , Pandemias , Telemedicina/métodos , Telemedicina/organização & administração
6.
CA Cancer J Clin ; 70(6): 480-504, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32910493

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has given rise to a pandemic of unprecedented proportions in the modern era because of its highly contagious nature and impact on human health and society: coronavirus disease 2019 (COVID-19). Patients with cardiovascular (CV) risk factors and established CV disease (CVD) are among those initially identified at the highest risk for serious complications, including death. Subsequent studies have pointed out that patients with cancer are also at high risk for a critical disease course. Therefore, the most vulnerable patients are seemingly those with both cancer and CVD, and a careful, unified approach in the evaluation and management of this patient population is especially needed in times of the COVID-19 pandemic. This review provides an overview of the unique implications of the viral outbreak for the field of cardio-oncology and outlines key modifications in the approach to this ever-increasing patient population. These modifications include a shift toward greater utilization of cardiac biomarkers and a more focused CV imaging approach in the broader context of modifications to typical practice pathways. The goal of this strategic adjustment is to minimize the risk of SARS-CoV-2 infection (or other future viral outbreaks) while not becoming negligent of CVD and its important impact on the overall outcomes of patients who are being treated for cancer.


Assuntos
Antineoplásicos/efeitos adversos , COVID-19/complicações , Doenças Cardiovasculares/etiologia , Infecção Hospitalar/prevenção & controle , Neoplasias/complicações , Neoplasias/terapia , Antraciclinas/efeitos adversos , COVID-19/fisiopatologia , COVID-19/prevenção & controle , COVID-19/transmissão , Doenças Cardiovasculares/diagnóstico por imagem , Doenças Cardiovasculares/terapia , Humanos , Inibidores de Proteassoma/efeitos adversos , Inibidores de Proteínas Quinases/efeitos adversos , Radioterapia/efeitos adversos , Receptor ErbB-2/antagonistas & inibidores , Encaminhamento e Consulta , SARS-CoV-2 , Trastuzumab/efeitos adversos
7.
Hum Mol Genet ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39324210

RESUMO

LRRK2 mutations are among the most common genetic causes for Parkinson's disease (PD), and toxicity is associated with increased kinase activity. 14-3-3 proteins are key interactors that regulate LRRK2 kinase activity. Phosphorylation of the 14-3-3θ isoform at S232 is dramatically increased in human PD brains. Here we investigate the impact of 14-3-3θ phosphorylation on its ability to regulate LRRK2 kinase activity. Both wildtype and the non-phosphorylatable S232A 14-3-3θ mutant reduced the kinase activity of wildtype and G2019S LRRK2, whereas the phosphomimetic S232D 14-3-3θ mutant had minimal effects on LRRK2 kinase activity, as determined by measuring autophosphorylation at S1292 and T1503 and Rab10 phosphorylation. However, wildtype and both 14-3-3θ mutants similarly reduced the kinase activity of the R1441G LRRK2 mutant. 14-3-3θ phosphorylation did not promote global dissociation with LRRK2, as determined by co-immunoprecipitation and proximal ligation assays. 14-3-3s interact with LRRK2 at several phosphorylated serine/threonine sites, including T2524 in the C-terminal helix, which can fold back to regulate the kinase domain. Interaction between 14-3-3θ and phosphorylated T2524 LRRK2 was important for 14-3-3θ's ability to regulate kinase activity, as wildtype and S232A 14-3-3θ failed to reduce the kinase activity of G2019S/T2524A LRRK2. Finally, we found that the S232D mutation failed to protect against G2019S LRRK2-induced neurite shortening in primary cultures, while the S232A mutation was protective. We conclude that 14-3-3θ phosphorylation destabilizes the interaction of 14-3-3θ with LRRK2 at T2524, which consequently promotes LRRK2 kinase activity and toxicity.

8.
Am J Hum Genet ; 109(2): 311-327, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35077669

RESUMO

Human brain organoid models that recapitulate the physiology and complexity of the human brain have a great potential for in vitro disease modeling, in particular for neurodegenerative diseases, such as Parkinson disease. In the present study, we compare single-cell RNA-sequencing data of human midbrain organoids to the developing human embryonic midbrain. We demonstrate that the in vitro model is comparable to its in vivo equivalents in terms of developmental path and cellular composition. Moreover, we investigate the potential of midbrain organoids for modeling early developmental changes in Parkinson disease. Therefore, we compare the single-cell RNA-sequencing data of healthy-individual-derived midbrain organoids to their isogenic LRRK2-p.Gly2019Ser-mutant counterparts. We show that the LRRK2 p.Gly2019Ser variant alters neurodevelopment, resulting in an untimely and incomplete differentiation with reduced cellular variability. Finally, we present four candidate genes, APP, DNAJC6, GATA3, and PTN, that might contribute to the LRRK2-p.Gly2019Ser-associated transcriptome changes that occur during early neurodevelopment.


Assuntos
Substituição de Aminoácidos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Neurogênese/genética , Organoides/metabolismo , Doença de Parkinson/genética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Diferenciação Celular , Citocinas/genética , Citocinas/metabolismo , Embrião de Mamíferos , Fator de Transcrição GATA3/genética , Fator de Transcrição GATA3/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Glicina/química , Glicina/metabolismo , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Mesencéfalo , Modelos Biológicos , Mutação , Organoides/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Análise de Sequência de RNA , Serina/química , Serina/metabolismo , Análise de Célula Única/métodos , Transcriptoma
9.
Artigo em Inglês | MEDLINE | ID: mdl-39192049

RESUMO

During the global health emergency caused by the coronavirus disease 2019 (COVID-19), evidence relating to the efficacy of convalescent plasma therapy-evidence critically needed for both public policy and clinical practice-came from multiple levels of the epistemic hierarchy. The challenges of conducting clinical research during a pandemic, combined with the biological complexities of convalescent plasma treatment, required the use of observational data to fully assess the impact of convalescent plasma therapy on COVID symptomatology, hospitalization rates, and mortality rates. Observational studies showing the mortality benefits of convalescent plasma emerged early during the COVID-19 pandemic from multiple continents and were substantiated by real-time pragmatic meta-analyses. Although many randomized clinical trials (RCTs) were initiated at the onset of the pandemic and were designed to provide high-quality evidence, the relative inflexibility in the design of clinical trials meant that findings generally lagged behind other forms of emerging information and ultimately provided inconsistent results on the efficacy of COVID-19 convalescent plasma. In the pandemic framework, it is necessary to emphasize more flexible analytic strategies in clinical trials, including secondary, subgroup, and exploratory analyses. We conclude that in totality, observational studies and clinical trials taken together provide strong evidence of a mortality benefit conferred by COVID-19 convalescent plasma, while acknowledging that some randomized clinical trials examined suboptimal uses of convalescent plasma.

10.
Brain ; 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39375207

RESUMO

Post-mortem studies have shown that patients dying from severe acute respiratory syndrome coronavirus (SARS-CoV-2) infection frequently have pathological changes in their CNS, particularly in the brainstem. Many of these changes are proposed to result from para-infectious and/or post-infection immune responses. Clinical symptoms such as fatigue, breathlessness, and chest pain are frequently reported in post-hospitalized coronavirus disease 2019 (COVID-19) patients. We propose that these symptoms are in part due to damage to key neuromodulatory brainstem nuclei. While brainstem involvement has been demonstrated in the acute phase of the illness, the evidence of long-term brainstem change on MRI is inconclusive. We therefore used ultra-high field (7 T) quantitative susceptibility mapping (QSM) to test the hypothesis that brainstem abnormalities persist in post-COVID patients and that these are associated with persistence of key symptoms. We used 7 T QSM data from 30 patients, scanned 93-548 days after hospital admission for COVID-19 and compared them to 51 age-matched controls without prior history of COVID-19 infection. We correlated the patients' QSM signals with disease severity (duration of hospital admission and COVID-19 severity scale), inflammatory response during the acute illness (C-reactive protein, D-dimer and platelet levels), functional recovery (modified Rankin scale), depression (Patient Health Questionnaire-9) and anxiety (Generalized Anxiety Disorder-7). In COVID-19 survivors, the MR susceptibility increased in the medulla, pons and midbrain regions of the brainstem. Specifically, there was increased susceptibility in the inferior medullary reticular formation and the raphe pallidus and obscurus. In these regions, patients with higher tissue susceptibility had worse acute disease severity, higher acute inflammatory markers, and significantly worse functional recovery. This study contributes to understanding the long-term effects of COVID-19 and recovery. Using non-invasive ultra-high field 7 T MRI, we show evidence of brainstem pathophysiological changes associated with inflammatory processes in post-hospitalized COVID-19 survivors.

11.
Brain ; 147(6): 1996-2008, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38804604

RESUMO

The LRRK2 G2019S variant is the most common cause of monogenic Parkinson's disease (PD); however, questions remain regarding the penetrance, clinical phenotype and natural history of carriers. We performed a 3.5-year prospective longitudinal online study in a large number of 1286 genotyped LRRK2 G2019S carriers and 109 154 controls, with and without PD, recruited from the 23andMe Research Cohort. We collected self-reported motor and non-motor symptoms every 6 months, as well as demographics, family histories and environmental risk factors. Incident cases of PD (phenoconverters) were identified at follow-up. We determined lifetime risk of PD using accelerated failure time modelling and explored the impact of polygenic risk on penetrance. We also computed the genetic ancestry of all LRRK2 G2019S carriers in the 23andMe database and identified regions of the world where carrier frequencies are highest. We observed that despite a 1 year longer disease duration (P = 0.016), LRRK2 G2019S carriers with PD had similar burden of motor symptoms, yet significantly fewer non-motor symptoms including cognitive difficulties, REM sleep behaviour disorder (RBD) and hyposmia (all P-values ≤ 0.0002). The cumulative incidence of PD in G2019S carriers by age 80 was 49%. G2019S carriers had a 10-fold risk of developing PD versus non-carriers. This rose to a 27-fold risk in G2019S carriers with a PD polygenic risk score in the top 25% versus non-carriers in the bottom 25%. In addition to identifying ancient founding events in people of North African and Ashkenazi descent, our genetic ancestry analyses infer that the G2019S variant was later introduced to Spanish colonial territories in the Americas. Our results suggest LRRK2 G2019S PD appears to be a slowly progressive predominantly motor subtype of PD with a lower prevalence of hyposmia, RBD and cognitive impairment. This suggests that the current prodromal criteria, which are based on idiopathic PD, may lack sensitivity to detect the early phases of LRRK2 PD in G2019S carriers. We show that polygenic burden may contribute to the development of PD in the LRRK2 G2019S carrier population. Collectively, the results should help support screening programmes and candidate enrichment strategies for upcoming trials of LRRK2 inhibitors in early-stage disease.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Doença de Parkinson , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Doença de Parkinson/genética , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Estudos Longitudinais , Predisposição Genética para Doença/genética , Adulto , Estudos Prospectivos , Heterozigoto , Penetrância , Idoso de 80 Anos ou mais , Transtorno do Comportamento do Sono REM/genética , Mutação
12.
Mol Ther ; 32(1): 227-240, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37925604

RESUMO

The novel severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), responsible for coronavirus disease 2019 (COVID-19), can trigger dysregulated immune responses known as the cytokine release syndrome (CRS), leading to severe organ dysfunction and respiratory distress. Our study focuses on developing an improved cell-permeable nuclear import inhibitor (iCP-NI), capable of blocking the nuclear transport of inflammation-associated transcription factors, specifically nuclear factor kappa B (NF-κB). By fusing advanced macromolecule transduction domains and nuclear localization sequences from human NF-κB, iCP-NI selectively interacts with importin α5, effectively reducing the expression of proinflammatory cytokines. In mouse models mimic SARS-CoV-2-induced pneumonitis, iCP-NI treatment demonstrated a significant decrease in mortality rates by suppressing proinflammatory cytokine production and immune cell infiltration in the lungs. Similarly, in hamsters infected with SARS-CoV-2, iCP-NI effectively protected the lung from inflammatory damage by reducing tumor necrosis factor-α, interleukin-6 (IL-6), and IL-17 levels. These promising results highlight the potential of iCP-NI as a therapeutic approach for COVID-19-related lung complications and other inflammatory lung diseases.


Assuntos
COVID-19 , Camundongos , Animais , Humanos , Fatores de Transcrição/metabolismo , Transporte Ativo do Núcleo Celular , SARS-CoV-2 , NF-kappa B/metabolismo , Inflamação , Citocinas/metabolismo , Peptídeos/metabolismo
13.
Semin Immunol ; 55: 101507, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34716096

RESUMO

Coronaviruses are evolutionarily successful RNA viruses, common to multiple avian, amphibian and mammalian hosts. Despite their ubiquity and potential impact, knowledge of host immunity to coronaviruses remains incomplete, partly owing to the lack of overt pathogenicity of endemic human coronaviruses (HCoVs), which typically cause common colds. However, the need for deeper understanding became pressing with the zoonotic introduction of three novel coronaviruses in the past two decades, causing severe acute respiratory syndromes in humans, and the unfolding pandemic of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This renewed interest not only triggered the discovery of two of the four HCoVs, but also uncovered substantial cellular and humoral cross-reactivity with shared or related coronaviral antigens. Here, we review the evidence for cross-reactive B cell memory elicited by HCoVs and its potential impact on the puzzlingly variable outcome of SARS-CoV-2 infection. The available data indicate targeting of highly conserved regions primarily in the S2 subunits of the spike glycoproteins of HCoVs and SARS-CoV-2 by cross-reactive B cells and antibodies. Rare monoclonal antibodies reactive with conserved S2 epitopes and with potent virus neutralising activity have been cloned, underscoring the potential functional relevance of cross-reactivity. We discuss B cell and antibody cross-reactivity in the broader context of heterologous humoral immunity to coronaviruses, as well as the limits of protective immune memory against homologous re-infection. Given the bidirectional nature of cross-reactivity, the unprecedented current vaccination campaign against SARS-CoV-2 is expected to impact HCoVs, as well as future zoonotic coronaviruses attempting to cross the species barrier. However, emerging SARS-CoV-2 variants with resistance to neutralisation by vaccine-induced antibodies highlight a need for targeting more constrained, less mutable parts of the spike. The delineation of such cross-reactive areas, which humoral immunity can be trained to attack, may offer the key to permanently shifting the balance of our interaction with current and future coronaviruses in our favour.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Antivirais , Humanos , Imunidade Humoral
14.
J Infect Dis ; 229(6): 1750-1758, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38271235

RESUMO

BACKGROUND: The long-term pulmonary sequelae of mild coronavirus disease 2019 (COVID-19) remains unknown. In this study, we aimed to characterize lung function trajectories in individuals with mild COVID-19 from preinfection to 2 years postinfection. METHODS: We reinvited participants 2 years after infection from our matched cohort study of the Copenhagen General Population who had initially been examined 5.4 months after infection. We repeated lung tests and questionnaires. Linear mixed models were used to estimate dynamics in lung volumes in individuals with COVID-19 patients versus uninfected controls over two intervals: from pre-infection to 6 months postinfection and 6 months postinfection to 2 years postinfection. RESULTS: 52 individuals (48.6%) attended the 2-year examination at median 1.9 years (interquartile range, 1.8-2.4) after COVID-19, all with mild infection. Individuals with COVID-19 had an adjusted excess decline in forced expiratory volume in 1 second (FEV1) of 13.0 mL per year (95% confidence interval [CI], -23.5 to -2.5; P = .02) from before infection to 6 months after infection compared to uninfected controls. From 6 to 24 months after infection, they had an excess decline of 7.5 mL per year (95% CI, -25.6-9.6; P = .40). A similar pattern was observed for forced vital capacity (FVC). Participants had a mean increase in diffusing capacity for carbon monoxide (DLco) of 3.33 (SD 7.97) between the 6- and 24-month examination. CONCLUSIONS: Our results indicate that mild COVID-19 infection affects lung function at the time of infection with limited recovery 2 years after infection.


Assuntos
COVID-19 , Pulmão , Testes de Função Respiratória , SARS-CoV-2 , Humanos , COVID-19/fisiopatologia , Masculino , Feminino , Pessoa de Meia-Idade , Pulmão/fisiopatologia , Adulto , Seguimentos , Volume Expiratório Forçado , Dinamarca/epidemiologia , Idoso , Estudos de Coortes , Capacidade Vital/fisiologia
15.
J Biol Chem ; 299(7): 104879, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37269951

RESUMO

Chronic manganese (Mn) exposure can lead to manganism, a neurological disorder sharing common symptoms with Parkinson's disease (PD). Studies have shown that Mn can increase the expression and activity of leucine-rich repeat kinase 2 (LRRK2), leading to inflammation and toxicity in microglia. LRRK2 G2019S mutation also elevates LRRK2 kinase activity. Thus, we tested if Mn-increased microglial LRRK2 kinase is responsible for Mn-induced toxicity, and exacerbated by G2019S mutation, using WT and LRRK2 G2019S knock-in mice and BV2 microglia. Mn (30 mg/kg, nostril instillation, daily for 3 weeks) caused motor deficits, cognitive impairments, and dopaminergic dysfunction in WT mice, which were exacerbated in G2019S mice. Mn induced proapoptotic Bax, NLRP3 inflammasome, IL-1ß, and TNF-α in the striatum and midbrain of WT mice, and these effects were more pronounced in G2019S mice. BV2 microglia were transfected with human LRRK2 WT or G2019S, followed by Mn (250 µM) exposure to better characterize its mechanistic action. Mn increased TNF-α, IL-1ß, and NLRP3 inflammasome activation in BV2 cells expressing WT LRRK2, which was elevated further in G2019S-expressing cells, while pharmacological inhibition of LRRK2 mitigated these effects in both genotypes. Moreover, the media from Mn-treated G2019S-expressing BV2 microglia caused greater toxicity to the cath.a-differentiated (CAD) neuronal cells compared to media from microglia expressing WT. Mn-LRRK2 activated RAB10 which was exacerbated in G2019S. RAB10 played a critical role in LRRK2-mediated Mn toxicity by dysregulating the autophagy-lysosome pathway and NLRP3 inflammasome in microglia. Our novel findings suggest that microglial LRRK2 via RAB10 plays a critical role in Mn-induced neuroinflammation.


Assuntos
Intoxicação por Manganês , Manganês , Camundongos , Humanos , Animais , Manganês/metabolismo , Microglia/metabolismo , Inflamassomos/genética , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Intoxicação por Manganês/metabolismo , Mutação , Autofagia
16.
Neurobiol Dis ; 197: 106528, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38740348

RESUMO

BACKGROUND: Brain injury has been suggested as a risk factor for neurodegenerative diseases. Accordingly, defects in the brain's intrinsic capacity to repair injury may result in the accumulation of damage and a progressive loss of brain function. The G2019S (GS) mutation in LRRK2 (leucine rich repeat kinase 2) is the most prevalent genetic alteration in Parkinson's disease (PD). Here, we sought to investigate how this LRRK2-GS mutation affects repair of the injured brain. METHODS: Brain injury was induced by stereotaxic injection of ATP, a damage-associated molecular pattern (DAMP) component, into the striatum of wild-type (WT) and LRRK2-GS mice. Effects of the LRRK2-GS mutation on brain injury and the recovery from injury were examined by analyzing the molecular and cellular behavior of neurons, astrocytes, and monocytes. RESULTS: Damaged neurons express osteopontin (OPN), a factor associated with brain repair. Following ATP-induced damage, monocytes entered injured brains, phagocytosing damaged neurons and producing exosome-like vesicles (EVs) containing OPN through activation of the inflammasome and subsequent pyroptosis. Following EV production, neurons and astrocytes processes elongated towards injured cores. In LRRK2-GS mice, OPN expression and monocytic pyroptosis were decreased compared with that in WT mice, resulting in diminished release of OPN-containing EVs and attenuated elongation of neuron and astrocyte processes. In addition, exosomes prepared from injured LRRK2-GS brains induced neurite outgrowth less efficiently than those from injured WT brains. CONCLUSIONS: The LRRK2-GS mutation delays repair of injured brains through reduced expression of OPN and diminished release of OPN-containing EVs from monocytes. These findings suggest that the LRRK2-GS mutation may promote the development of PD by delaying the repair of brain injury.


Assuntos
Lesões Encefálicas , Exossomos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Monócitos , Mutação , Osteopontina , Animais , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Camundongos , Exossomos/metabolismo , Exossomos/genética , Osteopontina/metabolismo , Osteopontina/genética , Lesões Encefálicas/metabolismo , Lesões Encefálicas/genética , Monócitos/metabolismo , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/patologia , Masculino , Astrócitos/metabolismo
18.
Emerg Infect Dis ; 30(6): 1144-1153, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38781926

RESUMO

Few precise estimates of hospitalization and fatality rates from COVID-19 exist for naive populations, especially within demographic subgroups. We estimated rates among persons with SARS-CoV-2 infection in the United States during May 1-December 1, 2020, before vaccines became available. Both rates generally increased with age; fatality rates were highest for persons >85 years of age (24%) and lowest for children 1-14 years of age (0.01%). Age-adjusted case hospitalization rates were highest for African American or Black, not Hispanic persons (14%), and case-fatality rates were highest for Asian or Pacific Islander, not Hispanic persons (4.4%). Eighteen percent of hospitalized patients and 44.2% of those admitted to an intensive care unit died. Male patients had higher hospitalization (6.2% vs. 5.2%) and fatality rates (1.9% vs. 1.5%) than female patients. These findings highlight the importance of collecting surveillance data to devise appropriate control measures for persons in underserved racial/ethnic groups and older adults.


Assuntos
COVID-19 , Hospitalização , SARS-CoV-2 , Humanos , COVID-19/mortalidade , COVID-19/epidemiologia , Hospitalização/estatística & dados numéricos , Masculino , Feminino , Adolescente , Idoso , Criança , Pré-Escolar , Pessoa de Meia-Idade , Adulto , Lactente , Estados Unidos/epidemiologia , Idoso de 80 Anos ou mais , Adulto Jovem , Recém-Nascido , Vacinas contra COVID-19/administração & dosagem , Etnicidade/estatística & dados numéricos
19.
Emerg Infect Dis ; 30(4): 711-720, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38526123

RESUMO

To examine the risk associated with bus riding and identify transmission chains, we investigated a COVID-19 outbreak in Germany in 2021 that involved index case-patients among bus-riding students. We used routine surveillance data, performed laboratory analyses, interviewed case-patients, and conducted a cohort study. We identified 191 case-patients, 65 (34%) of whom were elementary schoolchildren. A phylogenetically unique strain and epidemiologic analyses provided a link between air travelers and cases among bus company staff, schoolchildren, other bus passengers, and their respective household members. The attack rate among bus-riding children at 1 school was ≈4 times higher than among children not taking a bus to that school. The outbreak exemplifies how an airborne agent may be transmitted effectively through (multiple) short (<20 minutes) public transport journeys and may rapidly affect many persons.


Assuntos
COVID-19 , SARS-CoV-2 , Criança , Humanos , COVID-19/epidemiologia , Estudos de Coortes , Surtos de Doenças , Alemanha/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA