Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Radiat Environ Biophys ; 55(2): 255-64, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26846648

RESUMO

The thermoluminescence (TL) and optically stimulated luminescence (OSL) properties of human nails and hairs containing α-keratin proteins have been investigated. For the present studies, black hairs and finger nails were selectively collected from individuals with ages between 25 and 35 years. The collected hairs/nails were cut to a size of < 1 mm and cleaned with distilled water to remove dirt and other potential physical sources of contamination. All samples were optically beached with 470 nm of LED light at 60 mW/cm(2) intensity and irradiated by a (60)Co γ source. The hair and nail samples showed overlapping multiple TL glow peaks in the temperature range from 70 to 210 ° C. Continuous wave (CW)-OSL measurements of hair samples at a wavelength of 470 nm showed the presence of two distinct OSL components with photoionization cross section (PIC) values of about 1.65 × 10(-18) cm(2) and about 3.48 × 10(-19) cm(2), while measurements of nail samples showed PIC values of about 6.98 × 10(-18) cm(2) and about 8.7 × 10(-19) cm(2), respectively. This difference in PIC values for hair and nail samples from the same individual is attributed to different arrangement of α-keratin protein concentrations in the samples. The OSL sensitivity was found to vary ± 5 times among nail and hair samples from different individuals, with significant fading (60% in 11 h) at room temperature. The remaining signal (after fading) can be useful for dose estimation when a highly sensitive OSL reader is used. In the absorbed dose range of 100 mGy-100 Gy, both the TL and OSL signals of hair and nail samples showed linear dose dependence. The results obtained in the present study suggest that OSL using hair and nail samples may provide a supplementary method of dose estimation in radiological and nuclear emergencies.


Assuntos
Cabelo/metabolismo , Queratinas/metabolismo , Medições Luminescentes , Unhas/metabolismo , Fenômenos Ópticos , Radiometria/métodos , Adulto , Feminino , Cabelo/efeitos da radiação , Humanos , Masculino , Unhas/efeitos da radiação
2.
J Cancer Res Ther ; 19(Supplement): S0, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37147959

RESUMO

Aim: The aim of this study was to carried out the audit of radiotherapy centers practicing conformal radiotherapy techniques and demonstrate the suitability of this indigenous optically stimulated luminescence (OSL) disc dosimeters in beam quality audit and verification of patient-specific dosimetry in conventional and conformal treatments in radiotherapy. Materials and Methods: Dose audit in conventional and conformal (intensity-modulated radiotherapy and volumetric-modulated arc therapy) radiotherapy techniques was conducted using in-house developed Al2O3:C-based OSL disc dosimeter and commercially available Gafchromic EBT3 film in 6 MV (flat and unflat) photon and 6 and 15 MeV electron beams. OSL disc dosimeter and Gafchromic EBT3 film measured dose values were verified using the ionization chamber measurements. Results: Percentage variations of doses measured by OSL disc dosimeters and EBT3 Gafchromic film for conventional radiotherapy technique were in the range of 0.15%-4.6% and 0.40%-5.45%, respectively, with respect to the treatment planning system calculated dose values. For conformal radiotherapy techniques, the percentage variations of OSL disc and EBT3 film measured doses were in the range of 0.1%-4.9% and 0.3%-5.0%, respectively. Conclusion: The results of this study supported by statistical evidence provided the confidence that indigenously developed Al2O3:C-based OSL disc dosimeters are suitable for dose audit in conventional and advanced radiotherapy techniques.


Assuntos
Dosimetria por Luminescência Estimulada Opticamente , Dosímetros de Radiação , Humanos , Luminescência , Radiometria , Óxido de Alumínio
3.
Phys Med Biol ; 66(8)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33571973

RESUMO

The response of Al2O3:C optically stimulated luminescence detectors (OSLDs) was investigated in a 250 MeV pencil proton beam. The OSLD response was mapped for a wide range of average dose rates up to 9000 Gy s-1, corresponding to a ∼150 kGy s-1instantaneous dose rate in each pulse. Two setups for ultra-high dose rate (FLASH) experiments are presented, which enable OSLDs or biological samples to be irradiated in either water-filled vials or cylinders. The OSLDs were found to be dose rate independent for all dose rates, with an average deviation <1% relative to the nominal dose for average dose rates of (1-1000) Gy s-1when irradiated in the two setups. A third setup for irradiations in a 9000 Gy s-1pencil beam is presented, where OSLDs are distributed in a 3 × 4 grid. Calculations of the signal averaging of the beam over the OSLDs were in agreement with the measured response at 9000 Gy s-1. Furthermore, a new method was presented to extract the beam spot size of narrow pencil beams, which is in agreement within a standard deviation with results derived from radiochromic films. The Al2O3:C OSLDs were found applicable to support radiobiological experiments in proton beams at ultra-high dose rates.


Assuntos
Dosimetria por Luminescência Estimulada Opticamente , Dosímetros de Radiação , Luminescência , Prótons , Radiometria
4.
Appl Radiat Isot ; 178: 109947, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34536830

RESUMO

In the aftermath of an orphan radiation source find, a complex retrospective dose reconstruction can be required to estimate doses of persons who were staying in the vicinity. In retrospective dose reconstructions based on luminescence measurements of quartz extracted from bricks, high sensitivity thermoluminescence detectors (TLD) can be used as an ancillary tool for dose distribution measurements or natural radiation background measurement. We investigated the potential and limits of Al2O3:C, CaF2:Mn and LiF:Mg,Cu,P detectors for such applications. We measured depth-dose profiles in bricks using quartz and the TLDs. We factored in important dosimetry characteristics such as dose response, energy response and detection threshold. The work included Monte Carlo simulations. Depth-dose profiles and radiation spectra inside of the bricks were calculated for purposes of comparison and interpretation. The measurements and calculations were performed for two different photon spectra with mean energies of 662 and 118 keV. As regards comparison of the measured and Monte Carlo calculated depth-dose profiles, the best agreement was found for LiF:Mg,Cu,P. Quartz, Al2O3:C and CaF2:Mn tend to overestimate dose for lower photon energies and greater depths in bricks. The overestimation was the most marked for CaF2:Mn. For measurements related to quartz, especially for natural radiation background dose measurement, the most suitable TLDs are Al2O3:C and LiF:Mg,Cu,P. CaF2:Mn is the least useful material.

5.
Materials (Basel) ; 13(18)2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32906792

RESUMO

The wetting behavior was measured for Al2O3-C in contact with AlSi7Mg with a conventional sessile drop test (vacuum, 950 °C and 180 min) and a sessile drop test with a capillary purification unit (vacuum, 730 °C and 30 min). The conventional test yielded contact angles of around 92°, whereas the sessile drop measurement with capillary purification showed a strongly non-wetting behavior with a determined apparent contact angle of the rolling drop of 157°. Filtration tests, which were repeated twice, showed that the Al2O3-C filter possessed a better filtration behavior than the Al2O3 reference filter. For both filtration trials, the PoDFA (porous disc filtration analysis) index of the Al2O3-C filter sample was equal to half of the PoDFA index of the Al2O3 reference filter sample, indicating a significantly improved filtration performance when using Al2O3-C filter. Notable is the observation of a newly formed layer between the aluminum and the Al2O3-C coating. The layer possessed a thickness between 10 µm up to 50 µm and consisted of Al, C, and O, however, with different ratios than the original Al2O3-C coating. Thermodynamic calculations based on parameters of the wetting and filtration trials underline the possible formation of an Al4O4C-layer.

6.
Appl Radiat Isot ; 141: 234-240, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29759887

RESUMO

New materials have been widely investigated for ionizing radiation dosimetry for medical procedures. Carbon-doped alumina (α-Al2O3:C) have been reported to be excellent thermoluminescent (TL) and optically stimulated luminescence (OSL) radiation dosimeters. In the present study, we have synthetized nano and micro-sized α-Al2O3:C polycrystals, doped with different percentages of carbon atoms aiming to compare their efficiency as TL dosimeters. The dosimetric characteristics for X ray and gamma fields were investigated. Samples doped with different amounts of carbon atoms were sintered under different atmosphere conditions, at temperatures ranging from 1300 °C to 1750 °C. Among the investigated samples, the micro-sized alumina doped with 0.01% of carbon and sintered at 1700 °C under reducing atmosphere, has presented a very high TL output. The main TL peak is centered at 250 °C and has a linear behavior with photon dose in the dose range of 0.02-to-5000 mGy, with correlation coefficient very close to one (0.99991). Samples produced by using nanosized alumina have shown much lower TL output when compared to the samples with microsized alumina. The micro-sized alumina obtained by the methodology used in this work is a suitable candidate to be explored for application in X and Gamma radiation dosimetry.

7.
Appl Radiat Isot ; 140: 69-75, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29957536

RESUMO

We report the effect of pre-dose on the thermoluminescence (TL) and optically stimulated luminescence (OSL) dose response of α-Al2O3:C,Mg and α-Al2O3:C. Before any luminescence measurement, the samples were irradiated with different doses, namely 100, 500 and 1000 Gy to populate the deep electron traps. This is the pre-dose. The results from TL and OSL studies are compared with results from samples used without any pre-measurement dose. The TL glow curves and OSL decay curves of α-Al2O3:C,Mg recorded after pre-doses of 100, 500 and 1000 Gy are identical to those from a sample used without any pre-dose. Further, the TL and OSL dose response of all α-Al2O3:C,Mg samples are similar regardless of pre-dose. In comparison, the TL glow curves and OSL decay curves of α-Al2O3:C are influenced by pre-dose. We conclude that the differences in the TL and OSL dose response of various pre-dosed samples of α-Al2O3:C are due to the concentration of charge in the deep traps. On the other hand, owing to the lower concentration of such deep traps in α-Al2O3:C,Mg, the TL or OSL dose responses are not affected by pre-dose in this material.

8.
Appl Radiat Isot ; 119: 23-27, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27829183

RESUMO

The scattered doses received by the area surrounding the target that has been subjected to x-rays were investigated. Two experiments were carried out: 1- Al2O3: C was used as dosimeter and the luminescence counts was measured using both the RisØ TL/OSL system and an ion chamber. 2- BeO aliquots were used and the counts were read using the IBEOX/OSL system. According to the results, the doses absorbed by the area surrounding the target are significantly amount.

9.
Appl Radiat Isot ; 100: 7-10, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25698672

RESUMO

The principle of IMRT is to treat a patient from a number of different directions (or continuous arcs) with beams of nonuniform fluences, which have been optimized to deliver a high dose to the target volume and an acceptably low dose to the surrounding normal structures (Khan, 2010). This study intends to provide information to the physicist regarding the application of different dosimeters type, phantoms and analysis technique for Intensity Modulated Radiation Therapy (IMRT) dose distributions evaluation. The measures were performed using dosimeters of LiF:Mg,Ti and Al2O3:C evaluated by techniques of thermoluminescent (TL) and Optically Stimulated Luminescence (OSL). A polymethylmethacrylate (PMMA) phantom with five cavities, two principal target volumes considered like tumours to be treated and other three cavities to measure the scattered radiation dose was developed to carried out the measures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA