Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Angew Chem Int Ed Engl ; 63(19): e202400764, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38501852

RESUMO

Anion exchange membranes (AEMs) are core components in anion exchange membrane water electrolyzers (AEM-WEs). However, the stability of functional quaternary ammonium cations, especially under high temperatures and harsh alkaline conditions, seriously affects their performance and durability. Herein, we synthesized a 1-methyl-3,3-diphenylquinuclidinium molecular building unit. Density functional theory (DFT) calculations and accelerated aging analysis indicated that the quinine ring structure was exceedingly stable, and the SN2 degradation mechanism dominated. Through acid-catalyzed Friedel-Crafts polymerization, a series of branched poly(aryl-quinuclidinium) (PAQ-x) AEMs with controllable molecular weight and adjustable ion exchange capacity (IEC) were prepared. The stable quinine structure in PAQ-x was verified and retained in the ex situ alkaline stability. Furthermore, the branched polymer structure reduces the swelling rate and water uptake to achieve a tradeoff between dimensional stability and ionic conductivity, significantly improving the membrane's overall performance. Importantly, PAQ-5 was used in non-noble metal-based AEM-WE, achieving a high current density of 8 A cm-2 at 2 V and excellent stability over 2446 h in a gradient constant current test. Based on the excellent alkaline stability of this diaryl-quinuclidinium group, it can be further considered as a multifunctional building unit to create multi-topological polymers for energy conversion devices used in alkaline environments.

2.
Angew Chem Int Ed Engl ; 62(19): e202300388, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36897018

RESUMO

Without insight into the correlation between the structure and properties, anion exchange membranes (AEMs) for fuel cells are developed usually using the empirical trial and error method or simulation methods. Here, a virtual module compound enumeration screening (V-MCES) approach, which does not require the establishment of expensive training databases and can search the chemical space containing more than 4.2×105 candidates was proposed. The accuracy of the V-MCES model was considerably improved when the model was combined with supervised learning for the feature selection of molecular descriptors. Techniques from V-MCES, correlating the molecular structures of the AEMs with the predicted chemical stability, generated a ranking list of potential high stability AEMs. Under the guidance of V-MCES, highly stable AEMs were synthesized. With understanding of AEM structure and performance by machine learning, AEM science may enter a new era of unprecedented levels of architectural design.

3.
Macromol Rapid Commun ; 43(12): e2100610, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34821432

RESUMO

One of the important challenges in designing robust alkaline anion exchange membranes is the difficulty associated with the chemical stability of covalently bound cationic units. Here, a systematic study exploring alkaline stabilities of polymerizable hexyltrimethylammonium cations is presented, where the hexyl chain is linked to a phenyl ring through a direct carbon-carbon, phenyl ether, or benzyl ether functionality. For this work, small molecule model compounds, styrenic monomer analogs, and their homopolymers are synthesized. Alkaline stabilities of the small molecule cations and their homopolymers are compared to alkaline stability of benzyltrimethylammonium (BTMA) cation and its homopolymer poly(BTMA), respectively. All the hexyl-tethered cations and their homopolymers are significantly more stable under strongly alkaline conditions (2 m KOD at 80 °C). Moreover, ether-linked cations show comparable stability to the direct carbon-carbon linked cation. Via 1 H NMR analyses, possible degradation mechanisms are investigated for each small molecule cation. Findings of this study strongly suggest that the alkaline stability is dictated by the steric hindrance around the ß-hydrogen. This study expands beyond the limits of general knowledge on alkaline stability of alkyl-tethered ammonium cations via the Hofmann elimination route, highlights important design parameters for stable ammonium cations, and demonstrates accessible directly polymerizable alkaline stable ammonium cations.

4.
Int J Mol Sci ; 24(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36613981

RESUMO

Alkaline pectate lyases have biotechnological applications in plant fiber processing, such as ramie degumming. Previously, we characterized an alkaline pectate lyase from Bacillus clausii S10, named BacPelA, which showed potential for enzymatic ramie degumming because of its high cleavage activity toward methylated pectins in alkaline conditions. However, BacPelA displayed poor thermo-alkaline stability. Here, we report the 1.78 Å resolution crystal structure of BacPelA in apo form. The enzyme has the characteristic right-handed ß-helix fold of members of the polysaccharide lyase 1 family and shows overall structural similarity to them, but it displays some differences in the details of the secondary structure and Ca2+-binding site. On the basis of the structure, 10 sites located in flexible regions and showing high B-factor and positive ΔTm values were selected for mutation, aiming to improve the thermo-alkaline stability of the enzyme. Following site-directed saturation mutagenesis and screening, mutants A238C, R150G, and R216H showed an increase in the T5015 value at pH 10.0 of 3.0 °C, 6.5 °C, and 7.0 °C, respectively, compared with the wild-type enzyme, interestingly accompanied by a 24.5%, 46.6%, and 61.9% increase in activity. The combined mutant R150G/R216H/A238C showed an 8.5 °C increase in the T5015 value at pH 10.0, and an 86.1% increase in the specific activity at 60 °C, with approximately doubled catalytic efficiency, compared with the wild-type enzyme. Moreover, this mutant retained 86.2% activity after incubation in ramie degumming conditions (4 h, 60 °C, pH 10.0), compared with only 3.4% for wild-type BacPelA. The combined mutant increased the weight loss of ramie fibers in degumming by 30.2% compared with wild-type BacPelA. This work provides a thermo-alkaline stable, highly active pectate lyase with great potential for application in the textile industry, and also illustrates an effective strategy for rational design and improvement of pectate lyases.


Assuntos
Boehmeria , Boehmeria/química , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/química , Pectinas/química , Biotecnologia , Concentração de Íons de Hidrogênio
5.
Molecules ; 27(2)2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35056709

RESUMO

In this work we report the synthesis of poly(vinylbenzylchloride-co-hexene) copolymer grafted with N,N-dimethylhexylammonium groups to study the effect of an aliphatic backbone without ether linkage on the ionomer properties. The copolymerization was achieved by the Ziegler-Natta method, employing the complex ZrCl4 (THF)2 as a catalyst. A certain degree of crosslinking with N,N,N',N'-tetramethylethylenediamine (TEMED) was introduced with the aim of avoiding excessive swelling in water. The resulting anion exchange polymers were characterized by 1H-NMR, FTIR, TGA, and ion exchange capacity (IEC) measurements. The ionomers showed good alkaline stability; after 72 h of treatment in 2 M KOH at 80 °C the remaining IEC of 76% confirms that ionomers without ether bonds are less sensitive to a SN2 attack and suggests the possibility of their use as a binder in a fuel cell electrode formulation. The ionomers were also blended with polyvinyl alcohol (PVA) and crosslinked with glutaraldehyde. The water uptake of the blend membranes was around 110% at 25 °C. The ionic conductivity at 25 °C in the OH- form was 29.5 mS/cm.

6.
Molecules ; 27(2)2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35056678

RESUMO

Alkaline stable anion exchange membranes based on the cross-linked poly(arylene ether sulfone) grafted with dual quaternary piperidine (XPAES-DP) units were synthesized. The chemical structure of the synthesized PAES-DP was validated using 1H-NMR and FT-IR spectroscopy. The physicochemical, thermal, and mechanical properties of XPAES-DP membranes were compared with those of two linear PAES based membranes grafted with single piperidine (PAES-P) unit and conventional trimethyl amine (PAES-TM). XPAES-DP membrane showed the ionic conductivity of 0.021 S cm-1 at 40 °C which was much higher than that of PAES-P and PAES-TM because of the possession of more quaternary ammonium groups in the cross-linked structure. This cross-linked structure of the XPAES-DP membrane resulted in a higher tensile strength of 18.11 MPa than that of PAES-P, 17.09 MPa. In addition, as the XPAES-DP membrane shows consistency in the ionic conductivity even after 96 h in 3 M KOH solution with a minor change, its chemical stability was assured for the application of anion exchange membrane fuel cell. The single-cell assembled with XPAES-DP membrane displayed a power density of 109 mWcm-2 at 80 °C under 100% relative humidity.

7.
Biotechnol Appl Biochem ; 66(1): 101-107, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30334285

RESUMO

α-L-Arabinofuranosidase (Abf) is a potential enzyme because of its synergistic effect with other hemicellulases in agro-industrial field. In this study, directed evolution was applied to Abf from Geobacillus vulcani GS90 (GvAbf) using one round error-prone PCR and constructed a library of 73 enzyme variants of GvAbf. The activity screening of the enzyme variants was performed on soluble protein extracts using p-nitrophenyl α-L-arabinofuranoside as substrate. Two high activity displaying variants (GvAbf L307S and GvAbf Q90H/L307S) were selected, purified, partially characterized, and structurally analyzed. The specific activities of both variants were almost 2.5-fold more than that of GvAbf. Both GvAbf variants also exhibited higher thermal stability but lower alkaline stability in reference to GvAbf. The structural analysis of GvAbf model indicated that two mutation sites Q90H and L307S in both GvAbf variants are located in TIM barrel domain, responsible for catalytic action in many Glycoside Hydrolase Families including GH51. The structure of GvAbf model displayed that the position of L307S mutation is closer to the catalytic residues of GvAbf compared with Q90H mutation and also L307S mutation is conserved in both variants of GvAbf. Therefore, it was hypothesized that L307S amino acid substitution may play a critical role in catalytic activity of GvAbf.


Assuntos
Proteínas de Bactérias , Evolução Molecular Direcionada , Geobacillus , Glicosídeo Hidrolases , Modelos Moleculares , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Geobacillus/enzimologia , Geobacillus/genética , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Domínios Proteicos
8.
Macromol Rapid Commun ; 37(21): 1748-1753, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27717120

RESUMO

Highly conductive anion exchange membranes (AEMs), along with the ability to suppress swelling, are critical but challenging requirements for alkaline fuel cell applications. To achieve this criterion, a series of poly(ether sulfone)s (PESFs) with flexible alkyl imidazolium pendants attached directly on large planar 6,12-bis(4-hydroxyphenyl)-5,11-dihydroindolo[3,2-b]carbazole (DCP) units is reported. The planar DCP units stabilize the hydrophobic phase through strong π-π interactions and also facilitate the formation of ionic conducting channels through self assembly of hydrophilic pendants. The AEM prepared here, based on rational design, has a relatively low ion exchange capacity (IEC) of 1.86 × 10-3 mol g-1 and exhibits high hydroxide ion (OH- ) conductivity of 101 × 10-3 S cm-1 , a low swelling ratio of 9.3% and a water uptake of 39.6%. Furthermore, the AEMs reported in this paper have excellent stability in 1 m NaOH solution at 80 °C over 500 h. Therefore, the synthesized polymers offer a new insight into the design of high performance materials for AEMs.


Assuntos
Álcalis/química , Carbazóis/química , Fontes de Energia Elétrica , Polímeros/química , Sulfonas/química , Tamanho da Partícula , Polímeros/síntese química , Sulfonas/síntese química , Propriedades de Superfície
9.
Angew Chem Int Ed Engl ; 55(15): 4818-21, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-26948285

RESUMO

Four benzimidazolium hydroxide compounds, in which the C2-position is attached to a phenyl group possessing hydrogen, bromine, methyl groups, or phenyl groups at the ortho positions, are prepared and investigated for stability in a quantitative alkaline stability test. The differences between the stability of the various protecting groups in caustic solutions are rationalized on the basis of their crystal structures and DFT calculations. The highest stability was observed for the m-terphenyl-protected benzimidazolium, showing a half-life in 3 M NaOD/CD3OD/D2O at 80 °C of 3240 h. A high-molecular-weight polymer analogue of this model compound is prepared that exhibits excellent mechanical properties, high ionic conductivity and ion-exchange capacity, as well as remarkable hydroxide stability in alkaline solutions: only 5% degradation after 168 h in 2 M KOH at 80 °C. This is the most stable hydroxide-conducting benzimidazolium polymer to date.

10.
ChemSusChem ; 17(5): e202301656, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38102888

RESUMO

A major hindrance in the commercialization of alkaline polyelectrolyte-based electrochemical energy conversion devices is the development of durable anion exchange membranes (AEMs). Despite many alkali-stable cations that have been explored, the stability of these cationic moieties at the membrane scale is in the blind. Herein, we present a molecularly designed polyaromatic AEM with cationic moieties in an alternating manner to unbiasedly compare the alkaline stability of piperidinium and ammonium groups at the membrane state. Using nuclear magnetic resonance spectroscopy, we demonstrate that the pentyltrimethyl group is about 2-fold more stable than piperidinium within a polyaromatic scaffold, either in ex-situ alkaline soaking or in-situ cell operation. This finding challenges the judgment extrapolated from the stability trend of cations, that is, the piperidinium-functionalized AEM is more alkali-stable than the counterparts based on quaternary ammoniums. Moreover, the deterioration mechanism of piperidinium moiety after being embedded in polyaromatic backbone is rationalized by density functional theory.

11.
Membranes (Basel) ; 14(4)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38668113

RESUMO

In recent years, anion exchange membranes (AEMs) have aroused widespread interest in hydrogen production via water electrolysis using renewable energy sources. The two current commercial low-temperature water electrolysis technologies used are alkaline water electrolysis (AWE) and proton exchange membrane (PEM) water electrolysis. The AWE technology exhibited the advantages of high stability and increased cost-effectiveness with low hydrogen production efficiency. In contrast, PEM water electrolysis exhibited high hydrogen efficiency with low stability and cost-effectiveness, respectively. Unfortunately, the major challenges that AEMs, as well as the corresponding ion transportation membranes, including alkaline hydrogen separator and proton exchange membranes, still face are hydrogen production efficiency, long-term stability, and cost-effectiveness under working conditions, which exhibited critical issues that need to be addressed as a top priority. This review comprehensively presented research progress on AEMs in recent years, providing a thorough understanding of academic studies and industrial applications. It focused on analyzing the chemical structure of polymers and the performance of AEMs and established the relationship between the structure and efficiency of the membranes. This review aimed to identify approaches for improving AEM ion conductivity and alkaline stability. Additionally, future research directions for the commercialization of anion exchange membranes were discussed based on the analysis and assessment of the current applications of AEMs in patents.

12.
ACS Appl Mater Interfaces ; 16(3): 4003-4012, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38207002

RESUMO

N-Spirocyclic cations have excellent alkali resistance stability, and precise design of the structure of N-spirocyclic anion-exchange membranes (AEMs) improves their comprehensive performance. Here, we design and synthesize high-performance poly(triphenylene piperidine) membranes based on the "fishbone" design of amino/N-spirocyclic cations. The "fishbone" design does not disrupt the overall stabilized conformation but promotes a microphase separation structure, while exerting the synergistic effect of piperidine cations and spirocyclic cations, resulting in a membrane with good conductivity and alkali resistance stability. The hydroxide conductivity of the QPTPip-ASU-X membrane reached up to 133.5 mS cm-1 at 80 °C. The QPTPip-ASU-15 membrane was immersed in a 2 M NaOH solution at 80 °C for 1200 h, and the conductivity was maintained at 91.02%. In addition, the QPTPip-ASU-5 membrane had the highest peak power density of 255 mW cm-2.

13.
ACS Appl Mater Interfaces ; 16(6): 7894-7903, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38300277

RESUMO

A series of SEBS-C6-PIP-yPTP (y = 0-15%) AEMs with good mechanical and chemical stability were prepared by combining the strong rigidity of p-triphenyl, good toughness of SEBS, and excellent stability of PIP cations. After the introduction of a p-triphenyl polymer into the main chain, a clear hydrophilic-hydrophobic phase separation structure was constructed within the membrane, forming a continuous and interconnected ion transport channel to improve ion transport efficiency. Moreover, the molecular chains of the cross-linked AEMs change from chain-like to network-like, and the tighter binding between each molecule increases the tensile strength. The special structure of the six-membered ring makes PIP have a significant constraint effect; when nucleophilic substitution and Hoffman elimination occur at the α and ß positions, the required transition state potential energy increases, making the reaction difficult to occur and improving the alkaline stability of the polymer membrane. The SEBS-C6-PIP-15%PTP membrane has the best mechanical properties (Ts = 38.79 MPa, Eb = 183.09% at 80 °C, 100% RH), the highest ion conductivity (102.02 mS. cm-1 at 80 °C), and the best alkaline stability (6.23% degradation at 80 °C in a 2 M NaOH solution for 1400 h). It can be seen that organic-organic covalent cross-linking is an effective means to improve the comprehensive performance of AEMs.

14.
Adv Mater ; 35(51): e2306675, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37548334

RESUMO

Anion-exchange-membrane (AEM) water electrolysis is a promising technology for hydrogen production from renewable energy sources. However, the bottleneck of its development is the poor comprehensive performance of AEM, especially the stability at highly concentrated alkaline condition and temperature. Herein, a new cationic group N-methylquinuclidinium with enhanced alkaline stability is proposed and hereby a full-carbon chain poly(aryl quinuclidinium) AEM is prepared. Compared with reported AEMs, it shows ultrahigh comprehensive alkaline stability (no chemical decomposition, no decay of conductivity) in 10 m NaOH aqueous solution at 80 °C for more than 1800 h, excellent dimensional stability (swelling ratio: <10% in pure water, <2% in 10 m NaOH) in OH- form at 80 °C, high OH- conductivity (≈139.1 mS cm-1 at 80 °C), and high mechanical properties (tensile strength: 41.5 MPa, elongation at break: 50%). The water electrolyzer using the AEM exhibits a high current density (1.94 A cm-2 at 2.0 V) when assembled with nickel-alloy foam electrodes, and high durability when assembled with nickel foam electrodes.

15.
Polymers (Basel) ; 15(6)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36987313

RESUMO

Alkaline anion exchange membranes (AAEMs) are an enabling component for next-generation electrochemical devices, including alkaline fuel cells, water and CO2 electrolyzers, and flow batteries. While commercial systems, notably fuel cells, have traditionally relied on proton-exchange membranes, hydroxide-ion conducting AAEMs hold promise as a method to reduce cost-per-device by enabling the use of non-platinum group electrodes and cell components. AAEMs have undergone significant material development over the past two decades; however, challenges remain in the areas of durability, water management, high temperature performance, and selectivity. In this review, we survey crosslinking as a tool capable of tuning AAEM properties. While crosslinking implementations vary, they generally result in reduced water uptake and increased transport selectivity and alkaline stability. We survey synthetic methodologies for incorporating crosslinks during AAEM fabrication and highlight necessary precautions for each approach.

16.
Polymers (Basel) ; 16(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38201764

RESUMO

Mechanically robust anion-exchange membranes (AEMs) with high conductivity and long-term alkali resistance are needed for water electrolysis application. In this work, aryl-ether free polyaromatics containing isatin moieties were prepared via super acid-catalyzed copolymerization, followed by functionalization with alkaline stable cyclic quaternary ammonium (QA) cationic groups, to afford high performance AEMs for application in water electrolysis. The incorporation of side functional cationic groups (pyrrolidinium and piperidinium) onto a polymer backbone via a flexible alkyl spacer aimed at conductivity and alkaline stability improvement. The effect of cation structure on the properties of prepared AEMs was thoroughly studied. Pyrrolidinium- and piperidinium-based AEMs showed similar electrolyte uptakes and no obvious phase separation, as revealed by SAXS and further supported by AFM and TEM data. In addition, these AEMs displayed high conductivity values (81. 5 and 120 mS cm-1 for pyrrolidinium- and piperidinium-based AEM, respectively, at 80 °C) and excellent alkaline stability after 1 month aging in 2M KOH at 80 °C. Especially, a pyrrolidinium-based AEM membrane preserved 87% of its initial conductivity value, while at the same time retaining its flexibility and mechanical robustness after storage in alkaline media (2M KOH) for 1 month at 80 °C. Based on 1H NMR data, the conductivity loss observed after the aging test is mainly related to the piperidinium degradation that took place, probably via ring-opening Hofmann elimination, alkyl spacer scission and nucleophilic substitution reactions as well. The synthesized AEMs were also tested in an alkaline water electrolysis cell. Piperidinium-based AEM showed superior performance compared to its pyrrolidinium analogue, owing to its higher conductivity as revealed by EIS data, further confirming the ex situ conductivity measurements.

17.
Membranes (Basel) ; 12(10)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36295748

RESUMO

Recently, alkaline membrane water electrolysis, in which membranes are in direct contact with water or alkaline solutions, has gained attention. This necessitates new approaches to membrane characterization. We show how the mechanical properties of FAA3, PiperION, Nafion 212 and reinforced FAA3-PK-75 and PiperION PI-15 change when stress−strain curves are measured in temperature-controlled water. Since membranes show dimensional changes when the temperature changes and, therefore, may experience stresses in the application, we investigated seven different membrane types to determine if they follow the expected spring-like behavior or show hysteresis. By using a very simple setup which can be implemented in most laboratories, we measured the "true hydroxide conductivity" of membranes in temperature-controlled water and found that PI-15 and mTPN had higher conductivity at 60 °C than Nafion 212. The same setup was used to monitor the alkaline stability of membranes, and it was found that stability decreased in the order mTPN > PiperION > FAA3. XPS analysis showed that FAA3 was degraded by the attack of hydroxide ions on the benzylic position. Water permeability was analyzed, and mTPN had approximately two times higher permeability than PiperION and 50% higher permeability than FAA3.

18.
3 Biotech ; 12(10): 269, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36097631

RESUMO

Alkaline cellobiohydrolases have the potential for application in various industries, including pulp processing and laundry where operation under high pH conditions is preferred. In this study, variants of CtCel6A cellobiohydrolase from Chaetomium thermophilum were generated by structural-based protein engineering with the rationale of increasing catalytic activity and alkaline stability. The variants included removal of the carbohydrate-binding module (CBM) and substitution of residues 173 and 200. The CBM-deleted enzyme with Y200F mutation predicted to mediate conformational change at the N-terminal loop demonstrated increased alkaline stability at 60 °C, pH 8.0 for 24 h up to 2.25-fold compared with the wild-type enzyme. Another CBM-deleted enzyme with L173E mutation predicted to induce a new hydrogen bond in the substrate-binding cleft showed enhanced hydrolysis yield of pretreated sugarcane trash up to 4.65-fold greater than that of the wild-type enzyme at the pH 8.0. The variant enzymes could thus be developed for applications on cellulose hydrolysis and plant fiber modification operated under alkaline conditions. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03339-4.

19.
Nanomaterials (Basel) ; 12(5)2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35269354

RESUMO

The present work investigates the direct mixing of aqueous zeolitic imidazolate framework-8 (ZIF-8) suspension into a polyvinyl alcohol (PVA) and crosslinked with glutaraldehyde (GA) to form swelling-resistant, mechanically robust and conductivity retentive composite membranes. This drying-free nanofiller incorporation method enhances the homogeneous ZIF-8 distributions in the PVA/ZIF-8/GA composites to overcome the nanofiller aggregation problem in the mixed matrix membranes. Various ZIF-8 concentrations (25.4, 40.5 and 45.4 wt.%) are used to study the suitability of the resulting GA-crosslinked composites for direct alkaline methanol fuel cell (DAMFC). Surface morphological analysis confirmed homogeneous ZIF-8 particle distribution in the GA-crosslinked composites with a defect- and crack-free structure. The increased ionic conductivity (21% higher than the ZIF-free base material) and suppressed alcohol permeability (94% lower from the base material) of PVA/40.5%ZIF-8/GA resulted in the highest selectivity among the prepared composites. In addition, the GA-crosslinked composites' selectivity increased to 1.5−2 times that of those without crosslink. Moreover, the ZIF-8 nanofillers improved the mechanical strength and alkaline stability of the composites. This was due to the negligible volume swelling ratio (<1.4%) of high (>40%) ZIF-8-loaded composites. After 168 h of alkaline treatment, the PVA/40.5%ZIF-8/GA composite had almost negligible ionic conductivity loss (0.19%) compared with the initial material. The maximum power density (Pmax) of PVA/40.5%ZIF-8/GA composite was 190.5 mW cm−2 at 60 °C, an increase of 181% from the PVA/GA membrane. Moreover, the Pmax of PVA/40.5%ZIF-8/GA was 10% higher than that without GA crosslinking. These swelling-resistant and stable solid electrolytes are promising in alkaline fuel cell applications.

20.
Polymers (Basel) ; 14(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36433047

RESUMO

Anion exchange membranes (AEMs) with desirable properties are the crucial components for numerous energy devices such as AEM fuel cells (AEMFCs), AEM water electrolyzers (AEMWEs), etc. However, the lack of suitable AEMs severely limits the performance of devices. Here, a series of physically and chemically stable AEMs have been prepared by the reaction between the alkyl bromine terminal ether-bond-free aryl backbone and the urea group-containing crosslinker. Morphology analyses confirm that the hydrogen bonding interaction between urea groups is capable of driving the ammonium cations to aggregate and further form continuous ion-conducting channels. Therefore, the resultant AEM demonstrates remarkable OH− conductivity (59.1 mS cm−1 at 30 °C and 122.9 mS cm−1 at 90 °C) despite a moderate IEC (1.77 mmol g−1). Simultaneously, due to the adoption of ether-bond-free aryl backbone and alkylene chain-modified trimethylammonium cation, the AEM possesses excellent alkaline stability (87.3% IEC retention after soaking in 1 M NaOH for 1080 h). Moreover, the prepared AEM shows desirable mechanical properties (tensile stress > 25 MPa) and dimensional stability (SR = 20.3% at 90 °C) contributed by the covalent-bond and hydrogen-bond crosslinking network structures. Moreover, the resulting AEM reaches a peak power density of 555 mW cm−2 in an alkaline H2/O2 single fuel cell at 70 °C without back pressure. This rational structural design presented here provides inspiration for the development of high-performance AEMs, which are crucial for membrane technologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA