Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27.914
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38959890

RESUMO

Hypothalamic neural circuits regulate instinctive behaviors such as food seeking, the fight/flight response, socialization, and maternal care. Here, we identified microdeletions on chromosome Xq23 disrupting the brain-expressed transient receptor potential (TRP) channel 5 (TRPC5). This family of channels detects sensory stimuli and converts them into electrical signals interpretable by the brain. Male TRPC5 deletion carriers exhibited food seeking, obesity, anxiety, and autism, which were recapitulated in knockin male mice harboring a human loss-of-function TRPC5 mutation. Women carrying TRPC5 deletions had severe postpartum depression. As mothers, female knockin mice exhibited anhedonia and depression-like behavior with impaired care of offspring. Deletion of Trpc5 from oxytocin neurons in the hypothalamic paraventricular nucleus caused obesity in both sexes and postpartum depressive behavior in females, while Trpc5 overexpression in oxytocin neurons in knock-in mice reversed these phenotypes. We demonstrate that TRPC5 plays a pivotal role in mediating innate human behaviors fundamental to survival, including food seeking and maternal care.

2.
Cell ; 186(9): 1950-1967.e25, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36996814

RESUMO

Little is known about the critical metabolic changes that neural cells have to undergo during development and how temporary shifts in this program can influence brain circuitries and behavior. Inspired by the discovery that mutations in SLC7A5, a transporter of metabolically essential large neutral amino acids (LNAAs), lead to autism, we employed metabolomic profiling to study the metabolic states of the cerebral cortex across different developmental stages. We found that the forebrain undergoes significant metabolic remodeling throughout development, with certain groups of metabolites showing stage-specific changes, but what are the consequences of perturbing this metabolic program? By manipulating Slc7a5 expression in neural cells, we found that the metabolism of LNAAs and lipids are interconnected in the cortex. Deletion of Slc7a5 in neurons affects the postnatal metabolic state, leading to a shift in lipid metabolism. Additionally, it causes stage- and cell-type-specific alterations in neuronal activity patterns, resulting in a long-term circuit dysfunction.


Assuntos
Aminoácidos Neutros , Transportador 1 de Aminoácidos Neutros Grandes , Feminino , Humanos , Gravidez , Aminoácidos Neutros/genética , Aminoácidos Neutros/metabolismo , Encéfalo/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes/genética , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Mutação , Neurônios/metabolismo , Animais , Camundongos
3.
Cell ; 186(10): 2111-2126.e20, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37172564

RESUMO

Microglia are specialized brain-resident macrophages that play crucial roles in brain development, homeostasis, and disease. However, until now, the ability to model interactions between the human brain environment and microglia has been severely limited. To overcome these limitations, we developed an in vivo xenotransplantation approach that allows us to study functionally mature human microglia (hMGs) that operate within a physiologically relevant, vascularized immunocompetent human brain organoid (iHBO) model. Our data show that organoid-resident hMGs gain human-specific transcriptomic signatures that closely resemble their in vivo counterparts. In vivo two-photon imaging reveals that hMGs actively engage in surveilling the human brain environment, react to local injuries, and respond to systemic inflammatory cues. Finally, we demonstrate that the transplanted iHBOs developed here offer the unprecedented opportunity to study functional human microglia phenotypes in health and disease and provide experimental evidence for a brain-environment-induced immune response in a patient-specific model of autism with macrocephaly.


Assuntos
Microglia , Organoides , Humanos , Encéfalo , Macrófagos , Fenótipo
4.
Cell ; 186(9): 1930-1949.e31, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37071993

RESUMO

Cortical circuits are composed predominantly of pyramidal-to-pyramidal neuron connections, yet their assembly during embryonic development is not well understood. We show that mouse embryonic Rbp4-Cre cortical neurons, transcriptomically closest to layer 5 pyramidal neurons, display two phases of circuit assembly in vivo. At E14.5, they form a multi-layered circuit motif, composed of only embryonic near-projecting-type neurons. By E17.5, this transitions to a second motif involving all three embryonic types, analogous to the three adult layer 5 types. In vivo patch clamp recordings and two-photon calcium imaging of embryonic Rbp4-Cre neurons reveal active somas and neurites, tetrodotoxin-sensitive voltage-gated conductances, and functional glutamatergic synapses, from E14.5 onwards. Embryonic Rbp4-Cre neurons strongly express autism-associated genes and perturbing these genes interferes with the switch between the two motifs. Hence, pyramidal neurons form active, transient, multi-layered pyramidal-to-pyramidal circuits at the inception of neocortex, and studying these circuits could yield insights into the etiology of autism.


Assuntos
Transtorno Autístico , Neocórtex , Células Piramidais , Animais , Feminino , Camundongos , Gravidez , Transtorno Autístico/genética , Transtorno Autístico/patologia , Mutação , Neocórtex/fisiologia , Neurônios/fisiologia , Células Piramidais/fisiologia
5.
Cell ; 186(12): 2593-2609.e18, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37209683

RESUMO

Here, we describe an approach to correct the genetic defect in fragile X syndrome (FXS) via recruitment of endogenous repair mechanisms. A leading cause of autism spectrum disorders, FXS results from epigenetic silencing of FMR1 due to a congenital trinucleotide (CGG) repeat expansion. By investigating conditions favorable to FMR1 reactivation, we find MEK and BRAF inhibitors that induce a strong repeat contraction and full FMR1 reactivation in cellular models. We trace the mechanism to DNA demethylation and site-specific R-loops, which are necessary and sufficient for repeat contraction. A positive feedback cycle comprising demethylation, de novo FMR1 transcription, and R-loop formation results in the recruitment of endogenous DNA repair mechanisms that then drive excision of the long CGG repeat. Repeat contraction is specific to FMR1 and restores the production of FMRP protein. Our study therefore identifies a potential method of treating FXS in the future.


Assuntos
Síndrome do Cromossomo X Frágil , Expansão das Repetições de Trinucleotídeos , Humanos , Estruturas R-Loop , Metilação de DNA , Síndrome do Cromossomo X Frágil/genética , Epigênese Genética , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo
6.
Cell ; 185(23): 4409-4427.e18, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36368308

RESUMO

Fully understanding autism spectrum disorder (ASD) genetics requires whole-genome sequencing (WGS). We present the latest release of the Autism Speaks MSSNG resource, which includes WGS data from 5,100 individuals with ASD and 6,212 non-ASD parents and siblings (total n = 11,312). Examining a wide variety of genetic variants in MSSNG and the Simons Simplex Collection (SSC; n = 9,205), we identified ASD-associated rare variants in 718/5,100 individuals with ASD from MSSNG (14.1%) and 350/2,419 from SSC (14.5%). Considering genomic architecture, 52% were nuclear sequence-level variants, 46% were nuclear structural variants (including copy-number variants, inversions, large insertions, uniparental isodisomies, and tandem repeat expansions), and 2% were mitochondrial variants. Our study provides a guidebook for exploring genotype-phenotype correlations in families who carry ASD-associated rare variants and serves as an entry point to the expanded studies required to dissect the etiology in the ∼85% of the ASD population that remain idiopathic.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Humanos , Transtorno do Espectro Autista/genética , Predisposição Genética para Doença , Variações do Número de Cópias de DNA/genética , Genômica
7.
Cell ; 184(24): 5916-5931.e17, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34767757

RESUMO

There is increasing interest in the potential contribution of the gut microbiome to autism spectrum disorder (ASD). However, previous studies have been underpowered and have not been designed to address potential confounding factors in a comprehensive way. We performed a large autism stool metagenomics study (n = 247) based on participants from the Australian Autism Biobank and the Queensland Twin Adolescent Brain project. We found negligible direct associations between ASD diagnosis and the gut microbiome. Instead, our data support a model whereby ASD-related restricted interests are associated with less-diverse diet, and in turn reduced microbial taxonomic diversity and looser stool consistency. In contrast to ASD diagnosis, our dataset was well powered to detect microbiome associations with traits such as age, dietary intake, and stool consistency. Overall, microbiome differences in ASD may reflect dietary preferences that relate to diagnostic features, and we caution against claims that the microbiome has a driving role in ASD.


Assuntos
Transtorno Autístico/microbiologia , Comportamento Alimentar , Microbioma Gastrointestinal , Adolescente , Fatores Etários , Transtorno Autístico/diagnóstico , Comportamento , Criança , Pré-Escolar , Fezes/microbiologia , Feminino , Humanos , Masculino , Fenótipo , Filogenia , Especificidade da Espécie
8.
Cell ; 184(18): 4772-4783.e15, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34388390

RESUMO

Throughout development and aging, human cells accumulate mutations resulting in genomic mosaicism and genetic diversity at the cellular level. Mosaic mutations present in the gonads can affect both the individual and the offspring and subsequent generations. Here, we explore patterns and temporal stability of clonal mosaic mutations in male gonads by sequencing ejaculated sperm. Through 300× whole-genome sequencing of blood and sperm from healthy men, we find each ejaculate carries on average 33.3 ± 12.1 (mean ± SD) clonal mosaic variants, nearly all of which are detected in serial sampling, with the majority absent from sampled somal tissues. Their temporal stability and mutational signature suggest origins during embryonic development from a largely immutable stem cell niche. Clonal mosaicism likely contributes a transmissible, predicted pathogenic exonic variant for 1 in 15 men, representing a life-long threat of transmission for these individuals and a significant burden on human population health.


Assuntos
Crescimento e Desenvolvimento , Mosaicismo , Espermatozoides/metabolismo , Adolescente , Envelhecimento/sangue , Alelos , Células Clonais , Estudos de Coortes , Humanos , Masculino , Modelos Biológicos , Mutação/genética , Fatores de Risco , Fatores de Tempo , Adulto Jovem
9.
Cell ; 184(19): 5053-5069.e23, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34390642

RESUMO

Genetic perturbations of cortical development can lead to neurodevelopmental disease, including autism spectrum disorder (ASD). To identify genomic regions crucial to corticogenesis, we mapped the activity of gene-regulatory elements generating a single-cell atlas of gene expression and chromatin accessibility both independently and jointly. This revealed waves of gene regulation by key transcription factors (TFs) across a nearly continuous differentiation trajectory, distinguished the expression programs of glial lineages, and identified lineage-determining TFs that exhibited strong correlation between linked gene-regulatory elements and expression levels. These highly connected genes adopted an active chromatin state in early differentiating cells, consistent with lineage commitment. Base-pair-resolution neural network models identified strong cell-type-specific enrichment of noncoding mutations predicted to be disruptive in a cohort of ASD individuals and identified frequently disrupted TF binding sites. This approach illustrates how cell-type-specific mapping can provide insights into the programs governing human development and disease.


Assuntos
Córtex Cerebral/embriologia , Cromatina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Análise de Célula Única , Astrócitos/citologia , Diferenciação Celular , Linhagem da Célula/genética , Análise por Conglomerados , Aprendizado Profundo , Epigênese Genética , Lógica Fuzzy , Glutamatos/metabolismo , Humanos , Mutação/genética , Neurônios/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética
10.
Cell ; 182(3): 754-769.e18, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32610082

RESUMO

To discover regulatory elements driving the specificity of gene expression in different cell types and regions of the developing human brain, we generated an atlas of open chromatin from nine dissected regions of the mid-gestation human telencephalon, as well as microdissected upper and deep layers of the prefrontal cortex. We identified a subset of open chromatin regions (OCRs), termed predicted regulatory elements (pREs), that are likely to function as developmental brain enhancers. pREs showed temporal, regional, and laminar differences in chromatin accessibility and were correlated with gene expression differences across regions and gestational ages. We identified two functional de novo variants in a pRE for autism risk gene SLC6A1, and using CRISPRa, demonstrated that this pRE regulates SCL6A1. Additionally, mouse transgenic experiments validated enhancer activity for pREs proximal to FEZF2 and BCL11A. Thus, this atlas serves as a resource for decoding neurodevelopmental gene regulation in health and disease.


Assuntos
Cromatina/genética , Cromatina/metabolismo , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento/genética , Córtex Pré-Frontal/embriologia , Telencéfalo/embriologia , Animais , Transtorno Autístico/genética , Linhagem Celular , Sequenciamento de Cromatina por Imunoprecipitação , Eucromatina/genética , Proteínas da Membrana Plasmática de Transporte de GABA/genética , Ontologia Genética , Predisposição Genética para Doença , Idade Gestacional , Humanos , Camundongos , Camundongos Transgênicos , Motivos de Nucleotídeos , Mutação Puntual , Córtex Pré-Frontal/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Análise Espaço-Temporal , Telencéfalo/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Cell ; 182(5): 1170-1185.e9, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32795412

RESUMO

Loss of the gene (Fmr1) encoding Fragile X mental retardation protein (FMRP) causes increased mRNA translation and aberrant synaptic development. We find neurons of the Fmr1-/y mouse have a mitochondrial inner membrane leak contributing to a "leak metabolism." In human Fragile X syndrome (FXS) fibroblasts and in Fmr1-/y mouse neurons, closure of the ATP synthase leak channel by mild depletion of its c-subunit or pharmacological inhibition normalizes stimulus-induced and constitutive mRNA translation rate, decreases lactate and key glycolytic and tricarboxylic acid (TCA) cycle enzyme levels, and triggers synapse maturation. FMRP regulates leak closure in wild-type (WT), but not FX synapses, by stimulus-dependent ATP synthase ß subunit translation; this increases the ratio of ATP synthase enzyme to its c-subunit, enhancing ATP production efficiency and synaptic growth. In contrast, in FXS, inability to close developmental c-subunit leak prevents stimulus-dependent synaptic maturation. Therefore, ATP synthase c-subunit leak closure encourages development and attenuates autistic behaviors.


Assuntos
Trifosfato de Adenosina/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Subunidades Proteicas/metabolismo , Animais , Linhagem Celular , Ciclo do Ácido Cítrico/fisiologia , Fibroblastos/metabolismo , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Células HEK293 , Humanos , Camundongos , Neurônios/metabolismo , RNA Mensageiro , Sinapses/metabolismo
12.
Cell ; 183(7): 1742-1756, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33357399

RESUMO

It is unclear how disease mutations impact intrinsically disordered protein regions (IDRs), which lack a stable folded structure. These mutations, while prevalent in disease, are frequently neglected or annotated as variants of unknown significance. Biomolecular phase separation, a physical process often mediated by IDRs, has increasingly appreciated roles in cellular organization and regulation. We find that autism spectrum disorder (ASD)- and cancer-associated proteins are enriched for predicted phase separation propensities, suggesting that IDR mutations disrupt phase separation in key cellular processes. More generally, we hypothesize that combinations of small-effect IDR mutations perturb phase separation, potentially contributing to "missing heritability" in complex disease susceptibility.


Assuntos
Doença/genética , Mutação/genética , Cromatina/metabolismo , Humanos , Proteínas Intrinsicamente Desordenadas/genética , Modelos Biológicos , Proteoma/metabolismo
13.
Cell ; 180(3): 568-584.e23, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-31981491

RESUMO

We present the largest exome sequencing study of autism spectrum disorder (ASD) to date (n = 35,584 total samples, 11,986 with ASD). Using an enhanced analytical framework to integrate de novo and case-control rare variation, we identify 102 risk genes at a false discovery rate of 0.1 or less. Of these genes, 49 show higher frequencies of disruptive de novo variants in individuals ascertained to have severe neurodevelopmental delay, whereas 53 show higher frequencies in individuals ascertained to have ASD; comparing ASD cases with mutations in these groups reveals phenotypic differences. Expressed early in brain development, most risk genes have roles in regulation of gene expression or neuronal communication (i.e., mutations effect neurodevelopmental and neurophysiological changes), and 13 fall within loci recurrently hit by copy number variants. In cells from the human cortex, expression of risk genes is enriched in excitatory and inhibitory neuronal lineages, consistent with multiple paths to an excitatory-inhibitory imbalance underlying ASD.


Assuntos
Transtorno Autístico/genética , Córtex Cerebral/crescimento & desenvolvimento , Sequenciamento do Exoma/métodos , Regulação da Expressão Gênica no Desenvolvimento , Neurobiologia/métodos , Estudos de Casos e Controles , Linhagem da Célula , Estudos de Coortes , Exoma , Feminino , Frequência do Gene , Predisposição Genética para Doença , Humanos , Masculino , Mutação de Sentido Incorreto , Neurônios/metabolismo , Fenótipo , Fatores Sexuais , Análise de Célula Única/métodos
14.
Cell ; 180(6): 1178-1197.e20, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32200800

RESUMO

Social impairment is frequently associated with mitochondrial dysfunction and altered neurotransmission. Although mitochondrial function is crucial for brain homeostasis, it remains unknown whether mitochondrial disruption contributes to social behavioral deficits. Here, we show that Drosophila mutants in the homolog of the human CYFIP1, a gene linked to autism and schizophrenia, exhibit mitochondrial hyperactivity and altered group behavior. We identify the regulation of GABA availability by mitochondrial activity as a biologically relevant mechanism and demonstrate its contribution to social behavior. Specifically, increased mitochondrial activity causes gamma aminobutyric acid (GABA) sequestration in the mitochondria, reducing GABAergic signaling and resulting in social deficits. Pharmacological and genetic manipulation of mitochondrial activity or GABA signaling corrects the observed abnormalities. We identify Aralar as the mitochondrial transporter that sequesters GABA upon increased mitochondrial activity. This study increases our understanding of how mitochondria modulate neuronal homeostasis and social behavior under physiopathological conditions.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Drosophila/metabolismo , Mitocôndrias/metabolismo , Ácido gama-Aminobutírico/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Animais Geneticamente Modificados , Ácido Aspártico/metabolismo , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/metabolismo , Glucose/metabolismo , Homeostase , Humanos , Masculino , Mitocôndrias/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas Mitocondriais/metabolismo , Neurônios/metabolismo , Comportamento Social , Transmissão Sináptica , Ácido gama-Aminobutírico/genética
15.
Cell ; 177(6): 1600-1618.e17, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31150625

RESUMO

Autism spectrum disorder (ASD) manifests as alterations in complex human behaviors including social communication and stereotypies. In addition to genetic risks, the gut microbiome differs between typically developing (TD) and ASD individuals, though it remains unclear whether the microbiome contributes to symptoms. We transplanted gut microbiota from human donors with ASD or TD controls into germ-free mice and reveal that colonization with ASD microbiota is sufficient to induce hallmark autistic behaviors. The brains of mice colonized with ASD microbiota display alternative splicing of ASD-relevant genes. Microbiome and metabolome profiles of mice harboring human microbiota predict that specific bacterial taxa and their metabolites modulate ASD behaviors. Indeed, treatment of an ASD mouse model with candidate microbial metabolites improves behavioral abnormalities and modulates neuronal excitability in the brain. We propose that the gut microbiota regulates behaviors in mice via production of neuroactive metabolites, suggesting that gut-brain connections contribute to the pathophysiology of ASD.


Assuntos
Transtorno do Espectro Autista/microbiologia , Sintomas Comportamentais/microbiologia , Microbioma Gastrointestinal/fisiologia , Animais , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/fisiopatologia , Bactérias , Comportamento Animal/fisiologia , Encéfalo/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Microbiota , Fatores de Risco
16.
Cell ; 178(4): 850-866.e26, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31398340

RESUMO

We performed a comprehensive assessment of rare inherited variation in autism spectrum disorder (ASD) by analyzing whole-genome sequences of 2,308 individuals from families with multiple affected children. We implicate 69 genes in ASD risk, including 24 passing genome-wide Bonferroni correction and 16 new ASD risk genes, most supported by rare inherited variants, a substantial extension of previous findings. Biological pathways enriched for genes harboring inherited variants represent cytoskeletal organization and ion transport, which are distinct from pathways implicated in previous studies. Nevertheless, the de novo and inherited genes contribute to a common protein-protein interaction network. We also identified structural variants (SVs) affecting non-coding regions, implicating recurrent deletions in the promoters of DLG2 and NR3C2. Loss of nr3c2 function in zebrafish disrupts sleep and social function, overlapping with human ASD-related phenotypes. These data support the utility of studying multiplex families in ASD and are available through the Hartwell Autism Research and Technology portal.


Assuntos
Transtorno do Espectro Autista/genética , Predisposição Genética para Doença/genética , Linhagem , Mapas de Interação de Proteínas/genética , Animais , Criança , Bases de Dados Genéticas , Modelos Animais de Doenças , Feminino , Deleção de Genes , Guanilato Quinases/genética , Humanos , Padrões de Herança/genética , Aprendizado de Máquina , Masculino , Núcleo Familiar , Regiões Promotoras Genéticas/genética , Receptores de Mineralocorticoides/genética , Fatores de Risco , Proteínas Supressoras de Tumor/genética , Sequenciamento Completo do Genoma , Peixe-Zebra/genética
17.
Cell ; 178(4): 867-886.e24, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31398341

RESUMO

Somatosensory over-reactivity is common among patients with autism spectrum disorders (ASDs) and is hypothesized to contribute to core ASD behaviors. However, effective treatments for sensory over-reactivity and ASDs are lacking. We found distinct somatosensory neuron pathophysiological mechanisms underlie tactile abnormalities in different ASD mouse models and contribute to some ASD-related behaviors. Developmental loss of ASD-associated genes Shank3 or Mecp2 in peripheral mechanosensory neurons leads to region-specific brain abnormalities, revealing links between developmental somatosensory over-reactivity and the genesis of aberrant behaviors. Moreover, acute treatment with a peripherally restricted GABAA receptor agonist that acts directly on mechanosensory neurons reduced tactile over-reactivity in six distinct ASD models. Chronic treatment of Mecp2 and Shank3 mutant mice improved body condition, some brain abnormalities, anxiety-like behaviors, and some social impairments but not memory impairments, motor deficits, or overgrooming. Our findings reveal a potential therapeutic strategy targeting peripheral mechanosensory neurons to treat tactile over-reactivity and select ASD-related behaviors.


Assuntos
Transtorno do Espectro Autista/metabolismo , Agonistas GABAérgicos/farmacologia , Ácidos Isonicotínicos/farmacologia , Fenótipo , Células Receptoras Sensoriais/efeitos dos fármacos , Tato/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Ansiedade/tratamento farmacológico , Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/genética , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Agonistas GABAérgicos/uso terapêutico , Ácidos Isonicotínicos/uso terapêutico , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos , Proteínas do Tecido Nervoso/genética , Inibição Pré-Pulso/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo
18.
Cell ; 177(4): 986-998.e15, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-30982599

RESUMO

By observing their social partners, primates learn about reward values of objects. Here, we show that monkeys' amygdala neurons derive object values from observation and use these values to simulate a partner monkey's decision process. While monkeys alternated making reward-based choices, amygdala neurons encoded object-specific values learned from observation. Dynamic activities converted these values to representations of the recorded monkey's own choices. Surprisingly, the same activity patterns unfolded spontaneously before partner's choices in separate neurons, as if these neurons simulated the partner's decision-making. These "simulation neurons" encoded signatures of mutual-inhibitory decision computation, including value comparisons and value-to-choice conversions, resulting in accurate predictions of partner's choices. Population decoding identified differential contributions of amygdala subnuclei. Biophysical modeling of amygdala circuits showed that simulation neurons emerge naturally from convergence between object-value neurons and self-other neurons. By simulating decision computations during observation, these neurons could allow primates to reconstruct their social partners' mental states.


Assuntos
Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/fisiologia , Tomada de Decisões/fisiologia , Animais , Comportamento Animal/fisiologia , Comportamento de Escolha/fisiologia , Relações Interpessoais , Aprendizagem/fisiologia , Macaca mulatta/fisiologia , Masculino , Neurônios/metabolismo , Neurônios/fisiologia , Recompensa
19.
Cell ; 179(3): 750-771.e22, 2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31626773

RESUMO

Tissue-specific regulatory regions harbor substantial genetic risk for disease. Because brain development is a critical epoch for neuropsychiatric disease susceptibility, we characterized the genetic control of the transcriptome in 201 mid-gestational human brains, identifying 7,962 expression quantitative trait loci (eQTL) and 4,635 spliceQTL (sQTL), including several thousand prenatal-specific regulatory regions. We show that significant genetic liability for neuropsychiatric disease lies within prenatal eQTL and sQTL. Integration of eQTL and sQTL with genome-wide association studies (GWAS) via transcriptome-wide association identified dozens of novel candidate risk genes, highlighting shared and stage-specific mechanisms in schizophrenia (SCZ). Gene network analysis revealed that SCZ and autism spectrum disorder (ASD) affect distinct developmental gene co-expression modules. Yet, in each disorder, common and rare genetic variation converges within modules, which in ASD implicates superficial cortical neurons. More broadly, these data, available as a web browser and our analyses, demonstrate the genetic mechanisms by which developmental events have a widespread influence on adult anatomical and behavioral phenotypes.


Assuntos
Transtorno do Espectro Autista/genética , Locos de Características Quantitativas/genética , Esquizofrenia/genética , Transcriptoma/genética , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/patologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Feminino , Feto/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Idade Gestacional , Humanos , Masculino , Neurônios/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Splicing de RNA/genética , Esquizofrenia/metabolismo , Esquizofrenia/patologia
20.
Cell ; 173(6): 1356-1369.e22, 2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29856954

RESUMO

Genetic changes causing brain size expansion in human evolution have remained elusive. Notch signaling is essential for radial glia stem cell proliferation and is a determinant of neuronal number in the mammalian cortex. We find that three paralogs of human-specific NOTCH2NL are highly expressed in radial glia. Functional analysis reveals that different alleles of NOTCH2NL have varying potencies to enhance Notch signaling by interacting directly with NOTCH receptors. Consistent with a role in Notch signaling, NOTCH2NL ectopic expression delays differentiation of neuronal progenitors, while deletion accelerates differentiation into cortical neurons. Furthermore, NOTCH2NL genes provide the breakpoints in 1q21.1 distal deletion/duplication syndrome, where duplications are associated with macrocephaly and autism and deletions with microcephaly and schizophrenia. Thus, the emergence of human-specific NOTCH2NL genes may have contributed to the rapid evolution of the larger human neocortex, accompanied by loss of genomic stability at the 1q21.1 locus and resulting recurrent neurodevelopmental disorders.


Assuntos
Encéfalo/embriologia , Córtex Cerebral/fisiologia , Neurogênese/fisiologia , Receptor Notch2/metabolismo , Transdução de Sinais , Animais , Diferenciação Celular , Células-Tronco Embrionárias/metabolismo , Feminino , Deleção de Genes , Genes Reporter , Gorilla gorilla , Células HEK293 , Humanos , Neocórtex/citologia , Células-Tronco Neurais/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Pan troglodytes , Receptor Notch2/genética , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA