RESUMO
BACKGROUND: The phylum Bacteroidota represents a significant proportion of heterotrophic bacteria found in marine ecosystems. Members of the phylum Bacteroidota are actively involved in the degradation of biopolymers such as polysaccharides and proteins. Bacteroidota genomes exhibit a significant enrichment of various enzymes, including carbohydrate-active enzymes (CAZymes), carboxypeptidases, esterases, isomerases, peptidases, phosphatases, and sulfatases. The genus Marivirga, a member of the family Marivirgaceae within the phylum Bacteroidota, comprises six documented species. During a microbial diversity study, three novel Marivirga strains (BKB1-2 T, ABR2-2, and BDSF4-3 T) were isolated from the West Sea, Republic of Korea. RESULTS: To explore the taxonomic status and genomic characteristics of the novel isolates, we employed a polyphasic taxonomic approach, which included phylogenetic, chemotaxonomic and comprehensive genome analysis. The three isolates were Gram-stain-negative, aerobic, rod-shaped, moderately halophilic, and had a gliding motility. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values among the two isolates, BKB1-2 T and BDSF4-3 T, and the six reference strains were 70.5-76.5% for ANI and 18.1-25.7% for dDDH. Interestingly, the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the strains harbor genes for a comprehensive pathway for dissimilatory nitrate reduction to ammonium (DNRA), as well as other nitrogen pathways for the reduction of nitrite, nitric oxide, and nitrous oxide. Additionally, the antiSMASH analysis indicated that the strains contained three to eight biosynthetic gene clusters (BGCs) associated with the synthesis of secondary metabolites. Furthermore, the strains carried a high number of CAZyme ranging from 53 to 152, which was also demonstrated by an in vitro analysis of degradation of the polysaccharide cellulose, chitin, laminarin, starch, and xylan. Additionally, all the strains carried genes for the metabolism of heavy metals, and exhibited tolerance to heavy metals, with minimum inhibitory concentrations (MICs) in millimoles (mM) in ranges of Co2+ (3-6), Cu2+ (0.2-0.4), Ni2+ (3-5), Zn2+ (2-4), Mn2+ (20-50), and Hg2+ (0.3). CONCLUSIONS: Based on polyphasic taxonomic approach, the three isolated strains represent two novel species names Marivirga arenosa sp. nov. (BKB1-2 T = KCTC 82989 T = InaCC B1618T), and Marivirga salinae sp. nov. (BDSF4-3 T = KCTC 82973 T = InaCC B1619T).
Assuntos
DNA Bacteriano , Genoma Bacteriano , Filogenia , RNA Ribossômico 16S , República da Coreia , DNA Bacteriano/genética , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Técnicas de Tipagem Bacteriana , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Bacteroidetes/classificação , Análise de Sequência de DNA , Hibridização de Ácido NucleicoRESUMO
A Gram-stain-negative, aerobic, non-spore-forming, nonmotile, rod-shaped, and yellow-pigmented bacterium, designated strain JXAS1T, was isolated from a freshwater sample collected from Poyang Lake in China. Phylogenetic analysis based on 16S rRNA gene sequence revealed that the isolate belonged to the genus Flavobacterium, being closest to Flavobacterium pectinovorum DSM 6368T (98.61â%). The genome size of strain JXAS1T was 4.66 Mb with DNA G+C content 35.7 mol%. The average nucleotide identity and in silico DNA-DNA hybridization values between strain JXAS1T and its closest relatives were below the threshold values of 95 and 70â%, respectively. The strain contained menaquinone 6 (MK-6) as the predominant menaquinone and the major polar lipids were phosphatidylethanolamine, one unidentified glycolipid, and one unidentified polar lipid. The major fatty acids (>5â%) were iso-C15â:â0, summed feature 3 (C16â:â1 ω7c and/or C16â:â1 ω6c), C15â:â0, iso-C17â:â0 3OH, iso-C15â:â0 3OH, and summed feature 9 (iso-C17â:â1 ω9c and/or 10-methyl C16â:â0). Based on phylogenetic, genotypic, and phenotypic evidence, the isolated strain represents a new species in the genus Flavobacterium, and the name Flavobacterium poyangense is proposed. The type strain is JXAS1T (=GDMCC 1.1378T=KCTC 62719T).
Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Ácidos Graxos , Flavobacterium , Lagos , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Vitamina K 2 , Flavobacterium/genética , Flavobacterium/classificação , Flavobacterium/isolamento & purificação , Lagos/microbiologia , China , RNA Ribossômico 16S/genética , Vitamina K 2/análogos & derivados , Vitamina K 2/análise , DNA Bacteriano/genética , Fosfatidiletanolaminas , Glicolipídeos/análise , Fosfolipídeos/análiseRESUMO
Strain Ran72T, a novel Gram-stain-negative, obligately aerobic, non-motile, and rod-shaped bacterium, was isolated from the faeces of the rhinoceros species Ceratotherium simum. The novel bacterial strain grew optimally in Reasoner's 2A medium under the following conditions: 0â% (w/v) NaCl, pH 7.5, and 30â°C. Based on phylogenetic analysis using 16S rRNA gene sequencing, strain Ran72T was found to be most closely related to Chryseobacterium faecale F4T (98.4â%), Kaistella soli DKR-2T (98.0â%), and Kaistella haifensis H38T (97.4â%). A comprehensive genome-level comparison between strain Ran72T with C. faecale F4T, K. soli DKR-2T, and K. haifensis H38T revealed average nucleotide identity, digital DNA-DNA hybridization, and average amino acid identity values of ≤74.9, ≤19.3, and ≤78.7â%, respectively. The major fatty acids were anteiso-C15â:â0 (22.3â%), with MK-6 being the predominant respiratory quinone. The major polar lipids of strain Ran72T were phosphatidylethanolamine, four unidentified aminolipids, and two unidentified lipids. Based on our chemotaxonomic, genotypic, and phenotype characterizations, strain Ran72T was identified as representing a novel species in the genus Kaistella, for which the name Kaistella rhinocerotis sp. nov. is proposed, with the type strain Ran72T (=KACC 23136T=JCM 36038T). Based on the outcomes of our phylogenomic study, Chryseobacterium faecale should be reclassified under the genus Kaistella as Kaistella faecalis comb. nov.
Assuntos
Chryseobacterium , Animais , Filogenia , RNA Ribossômico 16S/genética , Ácidos Graxos/química , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , Fezes , PerissodáctilosRESUMO
A Gram-stain-negative, yellow-pigmented, and facultatively aerobic bacterium, designated strain GPA1T, was isolated from plastic waste landfill soil in the Republic of Korea. The cells were non-motile short rods exhibiting oxidase-negative and catalase-positive activities. Growth was observed at 15-40â°C (optimum, 30â°C), at pH 6.0-9.0 (optimum, pH 7.0-8.0) and in the presence of 0-2.5â% (w/v) NaCl (optimum, 0â%). Menaquinone-7 was the sole respiratory quinone, and iso-C15â:â0, C16â:â1 ω5c, and iso-C17â:â0 3-OH were the major cellular fatty acids (>10â% of the total fatty acids). Phosphatidylethanolamine was identified as a major polar lipid. Phylogenetic analyses based on 16S rRNA gene sequences and 120 concatenated marker protein sequences revealed that strain GPA1T formed a distinct lineage within the genus Chitinophaga. The genome of strain GPA1T was 6078 kb in size with 53.8 mol% G+C content. Strain GPA1T exhibited the highest similarity to Chitinophaga rhizosphaerae T16R-86T, with a 98.6â% 16S rRNA gene sequence similarity, but their average nucleotide identity and digital DNA-DNA hybridization values were 82.5 and 25.9â%, respectively. Based on its phenotypic, chemotaxonomic, and phylogenetic characteristics, strain GPA1T represents a novel species of the genus Chitinophaga, for which the name Chitinophaga pollutisoli sp. nov. is proposed. The type strain is GPA1T (=KACC 23415T=JCM 36644T).
Assuntos
Técnicas de Tipagem Bacteriana , Bacteroidetes , Composição de Bases , DNA Bacteriano , Ácidos Graxos , Sedimentos Geológicos , Fosfatidiletanolaminas , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Microbiologia do Solo , Vitamina K 2 , RNA Ribossômico 16S/genética , República da Coreia , Ácidos Graxos/química , Vitamina K 2/análogos & derivados , Vitamina K 2/química , Vitamina K 2/análise , DNA Bacteriano/genética , Sedimentos Geológicos/microbiologia , Bacteroidetes/isolamento & purificação , Bacteroidetes/classificação , Bacteroidetes/genética , Hibridização de Ácido Nucleico , Instalações de Eliminação de Resíduos , Genoma BacterianoRESUMO
Strain ELA7T, a novel Gram-negative, non-motile bacterium with a white pigment and rod-shaped morphology, was isolated from the faeces of an eland at Seoul Grand Park, a zoo in the Republic of Korea. The novel bacterial strain grew optimally in R2A medium under the following conditions: 0â% (w/v) NaCl, pH 8.0, and 34â°C. Based on phylogenetic analyses using 16S rRNA gene sequencing, strain ELA7T was found to have the closest relatedness to Pedobacter ginsengisoli Gsoil 104T (97.8â%), P. frigoris RP-3-15T (97.2â%), P. humi THG S15-2T (97.0â%), P. seoulensis THG-G12T (97.0â%), and P. foliorum LMG 31463T (96.9â%). The genome size and genomic DNA G+C content of strain ELA7T were 3.63 Mbp and 46.5â%, respectively. A whole genome-level comparison of strain ELA7T with P. ginsengisoli Gsoil 104T, P. frigoris RP-3-15T, P. africanus DSM 12126T, and P. psychroterrae RP-1-14T revealed average nucleotide identity values of 72.0, 71.8, 71.9, and 71.6â%, respectively. The major fatty acids were summed feature 3 (comprising C16â:â1 ω7c and/or C16â:â1 ω6c) and MK-7 was the predominant respiratory quinone. The major polar lipids of strain ELA7T were phosphatidylethanolamine, sphingolipid, unidentified aminolipid, unidentified phosphoglycolipid, unidentified glycolipid, and eight unidentified lipids. Considering our chemotaxonomic, genotypic, and phenotypic findings, strain ELA7T (=KACC 23137T=JCM 36003T) is identified as representing a novel species within the genus Pedobacter, for which the name Pedobacter faecalis sp. nov. is proposed.
Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Ácidos Graxos , Fezes , Pedobacter , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Vitamina K 2 , Ácidos Graxos/análise , Ácidos Graxos/química , RNA Ribossômico 16S/genética , Fezes/microbiologia , DNA Bacteriano/genética , Pedobacter/genética , Pedobacter/isolamento & purificação , Pedobacter/classificação , República da Coreia , Animais , Vitamina K 2/análogos & derivados , Vitamina K 2/análise , Animais de Zoológico/microbiologia , Genoma Bacteriano , Hibridização de Ácido Nucleico , Ruminantes/microbiologiaRESUMO
This study describes two Gram-negative, flexirubin-producing, biofilm-forming, motile-by-gliding and rod-shaped bacteria, isolated from the marine sponges Ircinia variabilis and Sarcotragus spinosulus collected off the coast of Algarve, Portugal. Both strains, designated Aq135T and Aq349T, were classified into the genus Aquimarina by means of 16S rRNA gene sequencing. We then performed phylogenetic, phylogenomic and biochemical analyses to determine whether these strains represent novel Aquimarina species. Whereas the closest 16S rRNA gene relatives to strain Aq135T were Aquimarina macrocephali JAMB N27T (97.8â%) and Aquimarina sediminis w01T (97.1â%), strain Aq349T was more closely related to Aquimarina megaterium XH134T (99.2â%) and Aquimarina atlantica 22II-S11-z7T (98.1â%). Both strains showed genome-wide average nucleotide identity scores below the species level cut-off (95â%) with all Aquimarina type strains with publicly available genomes, including their closest relatives. Digital DNA-DNA hybridization further suggested a novel species status for both strains since values lower than 70â% hybridization level with other Aquimarina type strains were obtained. Strains Aq135T and Aq349T grew from 4 to 30°C and with between 1-5â% (w/v) NaCl in marine broth. The most abundant fatty acids were iso-C17â:â03-OH and iso-C15â:â0 and the only respiratory quinone was MK-6. Strain Aq135T was catalase-positive and ß-galactosidase-negative, while Aq349T was catalase-negative and ß-galactosidase-positive. These strains hold unique sets of secondary metabolite biosynthetic gene clusters and are known to produce the peptide antibiotics aquimarins (Aq135T) and the trans-AT polyketide cuniculene (Aq349T), respectively. Based on the polyphasic approach employed in this study, we propose the novel species names Aquimarina aquimarini sp. nov. (type strain Aq135T=DSM 115833T=UCCCB 169T=ATCC TSD-360T) and Aquimarina spinulae sp. nov. (type strain Aq349T=DSM 115834T=UCCCB 170T=ATCC TSD-361T).
Assuntos
Flavobacteriaceae , Poríferos , Animais , Água do Mar/microbiologia , Catalase/genética , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Composição de Bases , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , beta-Galactosidase/genética , Vitamina K 2RESUMO
Two bacteria, UG2_1T and UG2_2, were isolated from the gill tissues of the mangrove fiddler crab Cranuca inversa collected on the east coast of the Red Sea (Thuwal, Saudi Arabia). The cells are Gram-negative, rod-shaped, orange-pigmented, motile by gliding with no flagella, strictly aerobic, and grow at 20-37â°C (optimum, 28-35â°C), at pH 5.0-9.0 (optimum, pH 6.0-7.0), and with 1-11â% (w/v) NaCl (optimum, 2-4â%). They were positive for oxidase and catalase activity. Phylogenetic analysis based on 16S rRNA gene sequences indicated that isolates UG2_1T and UG2_2 belong to the genus Mangrovimonas, showing the highest similarity to Mangrovimonas spongiae HN-E26T (99.4â%). Phylogenomic analysis based on the whole genomes, independently using 49 and 120 concatenated genes, showed that strains UG2_1T and UG2_2 formed a monophyletic lineage in a different cluster from other type strain species within the genus Mangrovimonas. The genome sizes were 3.08 and 3.07 Mbp for UG2_1T and UG2_2, respectively, with a G+C content of 33.8âmol% for both strains. Values of average nucleotide identity and digital DNA-DNA hybridization between the strains and closely related species were 91.0 and 43.5â%, respectively. Chemotaxonomic analysis indicated that both strains had iso-C15â:â0 and iso-C15â:â1 G as dominant fatty acids, and the primary respiratory quinone was identified as MK-6. The major polar lipids comprised phosphatidylethanolamine, one unidentified glycolipid, one unidentified phospholipid, two unidentified aminolipids, and four unidentified lipids. Based on phylogenetic, phylogenomic, genome relatedness, phenotypic, and chemotaxonomical data, the two isolates represent a novel species within the genus Mangrovimonas, with the proposed name Mangrovimonas cancribranchiae sp. nov., and the type strain UG2_1T (=KCTC 102158T=DSM 117025T).
Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , Braquiúros , DNA Bacteriano , Ácidos Graxos , Brânquias , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , RNA Ribossômico 16S/genética , Ácidos Graxos/análise , DNA Bacteriano/genética , Oceano Índico , Animais , Brânquias/microbiologia , Braquiúros/microbiologia , Arábia Saudita , Áreas Alagadas , Vitamina K 2/análogos & derivados , Vitamina K 2/análise , Fosfolipídeos/análiseRESUMO
BACKGROUND: The association of the oral microbiome with SARS-CoV-2 infections and disease progression has been documented in European, Asian, and American populations but not in Africa. METHODS: We conducted a study in Ghana to evaluate and compare the naso-oropharyngeal microbiome in SARS-CoV-2-infected and uninfected persons before (pre-vaccine) and after vaccine availability (post-vaccine) in the country. 16S rRNA V3-V4 variable region was sequenced and analysed from DNA extracted from naso-oropharyngeal swabs. RESULTS: Considering only the infection status, infected and uninfected groups had no difference in their within-group diversity and was evident in the study population pre- and post-vaccine availability. The introduction of vaccines reduced the diversity of the naso-oropharyngeal microbiome particularly among SARS-CoV-2 positive persons and, vaccinated individuals (both infected and uninfected) had higher microbial diversity compared to their unvaccinated counterparts. SARS-CoV-2-positive and -negative individuals were largely compositionally similar varying by 4-7% but considering vaccination*infection statuses, the genetic distance increased to 12% (P = 0.003) and was mainly influenced by vaccination. Common among the pre- and post-vaccine samples, Atopobium and Finegoldia were abundant in infected and uninfected individuals, respectively. Bacteria belonging to major butyrate-producing phyla, Bacillota (particularly class Clostridia) and Bacteroidota showed increased abundance more strikingly in infected individuals before vaccines were available. They reduced significantly after vaccines were introduced into the country with Fusobacterium and Lachnoanaerobaculum being the only common bacteria between pre-vaccine infected persons and vaccinated individuals, suggesting that natural infection and vaccination correlate with high abundance of short-chain fatty acids. CONCLUSION: Our results show, in an African cohort, the abundance of bacteria taxa known for their protective pathophysiological processes, especially during infection, suggesting that this population is protected against severe COVID-19. The immune-related roles of the members of Bacillota and Bacteroidota that were found associated with infection and vaccination require further studies, and how these may be linked to ethnicity, diet and age. We also recommend expansion of microbiome-disease association studies across Africa to identify possible bacterial-mediated therapeutics for emerging infections.
Assuntos
Bactérias , COVID-19 , Orofaringe , SARS-CoV-2 , Humanos , COVID-19/microbiologia , Masculino , Adulto , Feminino , SARS-CoV-2/genética , Gana/epidemiologia , Pessoa de Meia-Idade , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Orofaringe/microbiologia , Orofaringe/virologia , Butiratos/metabolismo , Microbiota , RNA Ribossômico 16S/genética , Índice de Gravidade de Doença , Vacinas contra COVID-19 , Nasofaringe/microbiologia , Nasofaringe/virologia , Idoso , Adulto JovemRESUMO
Bacteria produce an array of diverse, dynamic and often complex lipid structures, some of which function beyond their typical role in membrane structure. The model organism, E. coli, has three major membrane lipids, which are glycerophosphoglycerol (phosphatidylglycerol), glycerophosphoethanolamine (phosphatidylethanolamine) and cardiolipin. However, it is now appreciated that some bacteria have the capacity to synthesize a range of lipids, including glycerophosphocholines, glycerophosphoinositols, 'phosphorous-free' N-acyl amines, sphingolipids and plasmalogens. In recent years, some of these bacterial lipids have emerged as influential contributors to the microbe-host molecular dialogue. This review outlines our current knowledge of bacterial lipid diversity, with a focus on the membrane lipids of microbiome-associated bacteria that have documented roles as signalling molecules.
Assuntos
Microbioma Gastrointestinal , Lipídeos de Membrana , Lipídeos de Membrana/química , Escherichia coli/genética , Escherichia coli/química , CardiolipinasRESUMO
Strain KK2020170T, a Gram-stain negative, yellow colony-forming bacterium, was isolated from surface seawater sampled in Kojima Bay, Okayama, Japan. Phylogenetic analysis based on the 16S rRNA gene revealed that strain KK2020170T belongs to the genus Flavobacterium, with Flavobacterium haoranii LQY-7T (98.1% similarity) being its closest relative, followed by Flavobacterium sediminis MEBiC07310T (96.9%) and Flavobacterium urocaniciphilum YIT 12746T (96.0%). Whole-genome shotgun sequencing showed that strain KK2020170T, when paralleled with F. haoranii LQY-7 T, had 81.3% average nucleotide identity, and 24.6% in silico DNA-DNA hybridization values, respectively. The DNA G + C content of strain KK2020170T was 31.1 mol%. The most abundant fatty acids (> 10%) of strain KK2020170T were iso-C15:â0, iso-C17:â0 3-OH and iso-C15:â1 G. The dominant respiratory quinone of the strain was menaquinone MK-6. Based on the phylogenetic and phenotypic analysis results, we propose that strain KK2020170T represents a novel species, for which the name Flavobacterium okayamense sp. nov. has been proposed. The type strain is KK2020170T (= ATCC TSD-280 T = NBRC 115344 T).
Assuntos
Flavobacterium , Água do Mar , Filogenia , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Análise de Sequência de DNA , Técnicas de Tipagem Bacteriana , Água do Mar/microbiologia , Ácidos Graxos/análise , Vitamina K 2RESUMO
A Gram-stain-negative, non-motile, rod-shaped bacterial strain, designated C281T, was isolated from seawater sampled at the Marshallese seamount chain. Results of 16S rRNA gene analysis revealed that strain C281T was most closely related to Membranihabitans marinus CZ-AZ5T with 92.7â% sequence similarity. Phylogenetic analysis indicated that the new isolate represented a novel species by forming a distinctive lineage within the family Saprospiraceae. The DNA G+C content of strain C281T was 38.4âmol%. The genome sizes of strain C281T and the reference strain M. marinus CZ-AZ5T were 5 962 917 and 5 395 999 bp, respectively. The average nucleotide identity and in silico DNA-DNA hybridization values between strains C281T and M. marinus CZ-AZ5T were found to be low (69.3 and 17.6â%, respectively). Different functional genes were found in the genome of strain C281T, such as CZC CBA, polysaccharide utilization loci and linear azol(in)e-containing peptide cluster coding genes. The NaCl range for growth was 0.5-15.0â%. Positive results were obtained for hydrolysis of Tween 60 and urease. MK-7 was the sole respiratory quinone. The major fatty acids were C16â:â1 ω6c and/or C16â:â1 ω7c, iso-C15â:â0 and iso-C15â:â1 F. The major polar lipids of strain C281T were phosphatidylethanolamine, phosphatidylglycerol, two unidentified lipids and five unidentified glycolipids. On the basis of its taxonomic characteristics, the isolate represents a novel species of the genus Membranihabitans, for which the name Membranihabitans maritimus sp. nov. (type strain C281T=KCTC 92171T=MCCC M27001T) is proposed.
Assuntos
Ácidos Graxos , Fosfolipídeos , Ácidos Graxos/química , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Composição de Bases , Análise de Sequência de DNA , Técnicas de Tipagem Bacteriana , Água do Mar/microbiologiaRESUMO
A Gram-stain-negative, yellow-pigmented and facultatively aerobic bacterium, designated strain U1T, was isolated from plastic dumped soil sampled in the Republic of Korea. Cell of strain U1T were non-motile rods showing catalase-negative and oxidase-positive activities. Strain U1T was shown to grow at 10-37 °C (optimum, 25-30 °C) and pH 6.0-9.0 (optimum, pH 8.0), and in the presence of 0-0.5â% (w/v) NaCl (optimum, 0â%). Strain U1T contained iso-C15â:â0, C16â:â0, C16â:â1 ω5c and summed feature 3 (comprising C16â:â1 ω6c and/or C16â:â1 ω7c) as the major cellular fatty acids (>5â%) and menaquinone-7 as the sole respiratory quinone. Phosphatidylethanolamine, two unidentified aminolipids and three unidentified lipids were identified as the major polar lipids. The DNA G+C content of strain U1T calculated from the whole-genome sequence was 45.5âmol%. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain U1T formed a distinct phylogenetic lineage within the genus Dyadobacter. Strain U1T has the highest 16S rRNA sequence similarity to Dyadobacter bucti QTA69T (97.9â%). Average nucleotide identity and digital DNA-DNA hybridization values between strain U1T and D. bucti QTA69T were 74.6â% and 18.9â%, respectively. Based on phenotypic, chemotaxonomic and molecular features, strain U1T represents a novel species of the genus Dyadobacter, for which the name Dyadobacter pollutisoli sp. nov. is proposed. The type strain is U1T (= KACC 22210T=JCM 34491T).
Assuntos
Cytophagaceae , Ácidos Graxos , Ácidos Graxos/química , Solo , Filogenia , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Composição de Bases , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNARESUMO
Rod-shaped Gram-stain-negative, aerobic bacterial strains, designated PC14 and PC15T, were isolated from a forest soil sample collected in Pyeongchang county, Gangwon-do, Republic of Korea. Strains PC14 and PC15T grew at 15-37 °C (optimum, 28-30 °C in tryptone soya agar and Mueller-Hinton agar), hydrolysed chitin and casein, and tolerated pH 8.5 and 2â% (w/v) NaCl. The strains were most closely related to members of the genus Chitinophaga, namely Chitinophaga arvensicola DSM 3695T (98.4â%), Chitinophaga longshanensis Z29T (98.3â%), Chitinophaga ginsengisegetis Gsoil 040T (97.8â%), Chitinophaga polysaccharea MRP-15T (97.8â%) and Chitinophaga niastensis JS16-4T (97.7â%). The type strain grew well on conventional commercial media in the laboratory, including tryptone soya agar, Mueller-Hinton agar, Reasoner's 2A agar, nutrient agar and Luria-Bertani agar. The major polar lipid profile comprised phosphatidylethanolamine, an unidentified aminolipid and unidentified polar lipids. The major respiratory quinone was menaquinone-7. The main fatty acids were iso-C15:0, C16:1 ω5c, C16:0 3-OH, iso-C15:0 3-OH and iso-C17:0 3-OH. The DNA G+C content of the isolated strain based on the whole genome sequence was 46.6 mol%. The average nucleotide identity and digital DNA-DNA hybridization values between strains PC14 and PC15T and the reference type strains ranged from 71.0 to 76.5â%, and from 20.3 to 20.7â%, respectively. Based on phenotypic, chemotypic and genotypic evidence, strain PC15T could be differentiated phylogenetically and phenotypically from the recognized species of the genus Chitinophaga. Therefore, strain PC15T is considered to represent a novel species, for which the name Chitinophaga nivalis sp. nov. is proposed. The type strain is PC15T (=KACC 22893T=JCM 35788T).
Assuntos
Ácidos Graxos , Gammaproteobacteria , Ágar , Composição de Bases , Ácidos Graxos/química , Filogenia , Análise de Sequência de DNA , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , República da Coreia , FlorestasRESUMO
A novel Gram-reaction-negative, facultatively anaerobic, rod-shaped, non-motile, non-spore forming, orange-pigmented bacterium identified as M10.2AT, was isolated from marine residues submerged on the Malva-rosa beach (València, Spain), on the western coast of the Mediterranean Sea. This strain was catalase-positive and oxidase-negative and grew under mesophilic, neutrophilic and halophilic conditions. With respect to the 16S rRNA gene sequences, M10.2AT showed similarities with Gillisia mitskevichiae DSM 19839T and Gillisia hiemivida IC154T (97.57 and 97.50â% gene sequence similarity, respectively). The genome of M10.2AT was sequenced and has been deposited in the DDBJ/ENA/GenBank databases under the accession code JAKGTH000000000. The genomic DNA G+C content was 36.13â%. Its adscription to a novel species of the genus Gillisia was confirmed by the genomic indexes average nucleotide identity by blast (ANIb) and digital DNA-DNA hybridisation (dDDH). The major fatty acids were iso-C15â:â0, iso-C15â:â1G, iso-C16â:â0 3-OH, iso-C17â:â0 3-OH and summed feature 3 (C16â:â1ω7c/C16â:â1ω6c). According to the results of this polyphasic study, strain M10.2AT represents a novel species of the genus Gillisia, for which name Gillisia lutea sp. nov. (type strain M10.2AT = CECT 30308T = DSM 112385T) is proposed.
Assuntos
Alumínio , Ácidos Graxos , Ácidos Graxos/química , RNA Ribossômico 16S/genética , Mar Mediterrâneo , DNA Bacteriano/genética , Análise de Sequência de DNA , Composição de Bases , Filogenia , Técnicas de Tipagem Bacteriana , Vitamina K 2/químicaRESUMO
A novel Gram-stain-negative, long rod-shaped, aerobic, non-motile, non-spore-forming and orange-pigmented bacterium, designated LB-30T, was isolated from activated sludge. Growth was observed at 15-40â°C (optimum 30â°C), pH 6.0-9.0 (optimum 7.0) and salinities of 0-3.0â% (w/v; optimum 2.0â%). LB-30T showed less than 89.9â% sequence similarities to the recognized taxa of the order Cytophagales. The results of phylogenetic analysis based on 16S rRNA gene sequences and phylogenomic tree indicated that LB-30T formed a distinct lineage within the order Cytophagales. The average amino acid identity (AAI) values between LB-30T and members of the related families Cyclobacteriaceae, Fulvivirgaceae, Roseivirgaceae, Reichenbachiellaceae, Cesiribacteraceae, Cytophagaceae and Hymenobacteraceae in the order Cytophagales were 50.5-54.6â%. The sole respiratory quinone of LB-31T was menaquinone 7 (MK-7). The major polar lipids were phosphatidylethanolamine, aminolipid and four unidentified lipids. The major fatty acids were iso-C15â:â0, iso-C15â:â1G and iso-C17â:â0 3-OH. The DNA G+C content was 43.8 mol%, calculated from the genome sequence. On the basis of differences in the phenotypic, physiological and biochemical characteristics, and distinct phylogenetic relationships, strain LB-30T is proposed to represent a novel species in a novel genus for which the name Shiella aurantiaca gen. nov., sp. nov is proposed, within a novel family Shiellaceae fam. nov. of the order Cytophagales. The type strain is LB-30T (=GDMCC 1.3629T= KCTC 92689T).
Assuntos
Ácidos Graxos , Esgotos , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Composição de Bases , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , BacteroidetesRESUMO
Two Gram-stain-negative, catalase- and oxidase-positive, aerobic non-motile and motile rod bacteria, strains MSW6T and RSW2T, were isolated from surface seawater. Strain MSW6T optimally grew at 20â°C, pH 7.0 and 3â% NaCl, while strain RSW2T optimally grew at 25â°C, pH 7.0-8.0 and 2â% NaCl. Strain MSW6T possessed menaquinone-6 as the major respiratory quinone, and its major fatty acids were iso-C15â:â1 G, iso-C15â:â0 and iso-C15â:â0 3-OH. The major polar lipid identified in strain MSW6T was phosphatidylethanolamine (PE). On the other hand, strain RSW2T had ubiquinone-8 as the predominant respiratory quinone, and its major fatty acids consisted of summed feature 3 (C16â:â1 ω7c and/or C16â:â1 ω6c), summed feature 8 (C18â:â1 ω7c and/or C18â:â1 ω6c) and C16â:â0. The major polar lipids identified in strain RSW2T were PE and phosphatidylglycerol. As the sole respiratory quinone, strain MSW6T possessed menaquinone-6, while strain RSW2T had ubiquinone-8. The DNA G+C contents of strains MSW6T and RSW2T were 31.9 and 43.4âmol%, respectively. Phylogenetic analyses based on 16S rRNA and core gene sequences showed that strain MSW6T formed a phylogenic lineage with Psychroserpens mesophilus KOPRI 13649T, while strain RSW2T formed a phylogenic lineage with Marinomonas primoryensis KMM 3633T. Strain MSW6T shared 97.9â% 16S rRNA gene sequence similarity and 80.7â% average nucleotide identity (ANI) ith P. mesophilus KOPRI 13649T, and strain RSW2T shared 99.1â% 16S rRNA gene sequence similarity and 93.1â% ANI with M. primoryensis KMM 3633T. Based on the results of phenotypic, chemotaxonomic and phylogenetic analyses, strains MSW6T and RSW2T represent novel species of the genera Psychroserpens and Marinomonas, respectively, for which the names Psychroserpens ponticola sp. nov. and Marinomonas maritima sp. nov. are proposed, respectively. The type strain of P. ponticola is MSW6T (=KACC 22338T=JCM 35022T) and the type strain of M. maritima is RSW2T (=KACC 22716T=JCM 35550T).
Assuntos
Ácidos Graxos , Marinomonas , Ácidos Graxos/química , Ubiquinona/química , Filogenia , RNA Ribossômico 16S/genética , Vitamina K 2/química , Cloreto de Sódio , DNA Bacteriano/genética , Hibridização de Ácido Nucleico , Composição de Bases , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , Água do Mar/microbiologia , Fosfolipídeos/químicaRESUMO
The genus Belliella belongs to the family Cyclobacteriaceae (order Cytophagales, phylum Bacteroidota) and harbours aerobic chemoheterotrophic bacteria. Members of this genus were isolated from various aquatic habitats, and our analysis based on global amplicon sequencing data revealed that their relative abundance can reach up to 5-10â% of the bacterioplankton in soda lakes and pans. Although a remarkable fraction of the most frequent genotypes that we identified from continental aquatic habitats is still uncultured, five new alkaliphilic Belliella strains were characterized in detail in this study, which were isolated from three different soda lakes and pans of the Carpathian Basin (Hungary). Cells of all strains were Gram-stain-negative, obligate aerobic, rod-shaped, non-motile and non-spore-forming. The isolates were oxidase- and catalase-positive, red-coloured, but did not contain flexirubin-type pigments; they formed bright red colonies that were circular, smooth and convex. Their major isoprenoid quinone was MK-7 and the predominant fatty acids were iso-C15â:â0, iso-C17â:â0 3-OH and summed feature 3 containing C16â:â1 ω6c and/or C16â:â1 ω7c. The polar lipid profiles contained phosphatidylethanolamine, an unidentified aminophospholipid, an unidentified glycolipid, and several unidentified lipids and aminolipids. Based on whole-genome sequences, the DNA G+C content was 37.0, 37.1 and 37.8 molâ% for strains R4-6T, DMA-N-10aT and U6F3T, respectively. The distinction of three new species was confirmed by in silico genomic comparison. Orthologous average nucleotide identity (<85.4â%) and digital DNA-DNA hybridization values (<38.9â%) supported phenotypic, chemotaxonomic and 16S rRNA gene sequence data and, therefore, the following three novel species are proposed: Belliella alkalica sp. nov. (represented by strains R4-6T=DSM 111903T=JCM 34281T=UCCCB122T and S4-10), Belliella calami sp. nov. (DMA-N-10aT=DSM 107340T=JCM 34280T=UCCCB121T) and Belliella filtrata sp. nov. (U6F3T=DSM 111904T=JCM 34282T=UCCCB123T and U6F1). Emended descriptions of species Belliella aquatica, Belliella baltica, Belliella buryatensis, Belliella kenyensis and Belliella pelovolcani are also presented.
Assuntos
Ácidos Graxos , Fosfolipídeos , Ácidos Graxos/química , Fosfolipídeos/análise , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Análise de Sequência de DNA , Composição de Bases , Filogenia , Técnicas de Tipagem Bacteriana , BacteroidetesRESUMO
Oral and gut Bacteroidetes produce unique classes of serine-glycine lipodipeptides and glycine aminolipids that signal through host Toll-like receptor 2. These glycine lipids have also been detected in human arteries, but their effects on atherosclerosis are unknown. Here, we sought to investigate the bioactivity of bacterial glycine lipids in mouse models of atherosclerosis. Lipid 654 (L654), a serine-glycine lipodipeptide species, was first tested in a high-fat diet (HFD)-fed Ldlr-/- model of atherosclerosis. Intraperitoneal administration of L654 over 7 weeks to HFD-fed Ldlr-/- mice resulted in hypocholesterolemic effects and significantly attenuated the progression of atherosclerosis. We found that L654 also reduced liver inflammatory and extracellular matrix gene expression, which may be related to inhibition of macrophage activation as demonstrated in vivo by lower major histocompatibility complex class II gene expression and confirmed in cell experiments. In addition, L654 and other bacterial glycine lipids in feces, liver, and serum were markedly reduced alongside changes in Bacteroidetes relative abundance in HFD-fed mice. Finally, we tested the bioactivities of L654 and related lipid 567 in chow-fed Apoe-/- mice, which displayed much higher fecal glycine lipids relative to HFD-fed Ldlr-/- mice. Administration of L654 or lipid 567 for 7 weeks to these mice reduced the liver injury marker alanine aminotransferase, but other effects seen in Ldlr-/- were not observed. Therefore, we conclude that conditions in which gut microbiome-derived glycine lipids are lost, such as HFD, may exacerbate the development of atherosclerosis and liver injury, whereas correction of such depletion may protect from these disorders.
Assuntos
Aterosclerose , Microbioma Gastrointestinal , Animais , Aterosclerose/genética , Bactérias , Bacteroidetes , Dieta Hiperlipídica/efeitos adversos , Glicina/farmacologia , Fígado , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , SerinaRESUMO
A Gram-stain-negative and rod-shaped bacterial strain (WSW3-B6T) was isolated from red alga collected from the West Sea, Republic of Korea. Cells of strain WSW3-B6T were non-motile, aerobic and produced slightly yellow and mucoid colonies on marine agar. The strain grew optimally at 23-30 °C, with 0.5-4â% NaCl (w/v) and at pH 6.5-8.5. A phylogenetic analysis of the 16S rRNA gene revealed that strain WSW3-B6T belongs to the genus Flavobacterium within the family Flavobacteriaceae, having the highest sequence similarity to Flavobacterium arcticum SM1502T (96.7%), followed by Flavobacterium salilacus subsp. altitudinum LaA7.5T (96.2%) and Flavobacterium salilacus subsp. salilacus SaA2.12T (96.2%). The complete sequence of a circular chromosome of strain WSW3-B6T determined by combination of Oxford Nanopore and Illumina platforms comprised a total 2â725â095 bp with G+C content of 37.1 mol%. A comparative analysis based on the whole genome also showed the distinctiveness of strain WSW3-B6T. The average nucleotide identity (ANI) values between strain WSW3-B6T and the closest strains F. arcticum SM1502T, F. salilacus subsp. altitudinum LaA7.5T and F. salilacus subsp. salilacus SaA2.12T were 78.3, 77.8 and 77.7â%, respectively, while the digital DNA-DNA hybridization (dDDH) values between strain WSW3-B6T and the above closely related strains were 21.0, 20.4 and 20.3â%, respectively. Both the ANI and dDDH values supported the creation of a new species in the genus Flavobacterium. The major fatty acids (>10â%) were iso-C15â:â0 (19.3â%), C16â:â0 (14.0â%), iso-C17â:â0 3-OH (13.1â%) and C18â:â0 (10.7â%). The polar lipids of strain WSW3-B6T included phosphatidylethanolamine, three unidentified aminolipids and three unidentified lipids. Moreover, MK-6 was the only respiratory quinone. A comparison of the phylogenetic distinctiveness and the unique phenotypic and chemotaxonomic characteristics among strain WSW3-B6T and closely related type strains supported that strain WSW3-B6T (=KCTC 82708T=GDMCC 1.2627T) represents a novel species of the genus Flavobacterium, for which the name Flavobacterium litorale sp. nov. is proposed.
Assuntos
Flavobacteriaceae , Rodófitas , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Flavobacteriaceae/genética , Flavobacterium , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/químicaRESUMO
A novel, Gram-stain-negative, rod-shaped, strictly anaerobic bacterium of genus Proteiniphilum of the phylum Bacteroidota, named strain JNU-WLY501T, was isolated from pit clay used to produce strong aroma-type liquor in PR China. The genomic DNA G+C content and genome size of JNU-WLY501T were 41.4â% and 3.9 Mbp, respectively. The results of phylogenetic analysis based on 16S rRNA gene sequences indicated that JNU-WLY501T was closely related to Proteiniphilum acetatigenes DSM 18083T (95.7â%) and Proteiniphilum saccharofermentans M3/6T (94.9â%). The pairwise average nucleotide identity based on blast and average amino acid identity values of JNU-WLY501T compared with Proteiniphilum saccharofermentans M3/6T were 73.6 and 77.3â%, respectively, which both were lower than the threshold values for bacterial species delineation. The strain grew at 20-40 °C, with optimum growth at 37 °C. The pH range for growth was 5.4-9.1, with optimum growth at pH 7.5. The sodium chloride range for growth was 0.0-4.0â%, with optimum growth at 0â%. The strain did not use glucose, maltose, fructose or starch. Yeast extract, tryptone and peptone supported the growth of JNU-WLY501T, and the main fermentation products were acetate and propionate. The predominant cellular fatty acids (>5â%) of JNU-WLY501T were anteiso-C15â:â0 (30.6â%), anteiso-C17â:â0 (26.1â%), C16â:â0 (7.7â%), iso-C16â:â0 (5.0â%) and iso-C17â:â0 (5.0â%). The respiratory quinone of JNU-WLY501T was MK-5. On the basis of the morphological, physiological, biochemical, chemotaxonomic, genotypic and phylogenetic results, JNU-WLY501T represents a novel species of the genus Proteiniphilum, for which the name Proteiniphilum propionicum sp. nov. is proposed. The type strain is JNU-WLY501T (=GDMCC 1.2686T=JCM 34753T).