Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 299(10): 105214, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37660924

RESUMO

Sulfation is widespread in nature and plays an important role in modulating biological function. Among the strategies developed by microbes to access sulfated oligosaccharides as a nutrient source is the production of 6-sulfoGlcNAcases to selectively release 6-sulfoGlcNAc from target oligosaccharides. Thus far, all 6-sulfoGlcNAcases identified have belonged to the large GH20 family of ß-hexosaminidases. Ηere, we identify and characterize a new, highly specific non-GH20 6-sulfoGlcNAcase from Streptococcus pneumoniae TIGR4, Sp_0475 with a greater than 110,000-fold preference toward N-acetyl-ß-D-glucosamine-6-sulfate substrates over the nonsulfated version. Sp_0475 shares distant sequence homology with enzymes of GH20 and with the newly formed GH163 family. However, the sequence similarity between them is sufficiently low that Sp_0475 has been assigned as the founding member of a new glycoside hydrolase family, GH185. By combining results from site-directed mutagenesis with mechanistic studies and bioinformatics we provide insight into the substrate specificity, mechanism, and key active site residues of Sp_0475. Enzymes of the GH185 family follow a substrate-assisted mechanism, consistent with their distant homology to the GH20 family, but the catalytic residues involved are quite different. Taken together, our results highlight in more detail how microbes can degrade sulfated oligosaccharides for nutrients.

2.
J Biol Chem ; 298(1): 101452, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34838821

RESUMO

ß-d-fructofuranosyl glycosidases are enzymes that produce health-beneficial fructooligosaccharides from natural fructans. In a recent issue of JBC, Kashima et al. identified a novel α-d-fructofuranosyl-active enzyme, αFFase1, from the caries-associated bacterium Bifidobacterium dentium. αFFase1 reversibly forms a potential prebiotic also found in caramel, difructose dianhydride I, via intramolecular condensation of the substrate inulobiose. Kashima et al. elegantly combine NMR, X-ray crystallography, and molecular dynamics to describe an original mechanism for the reversible reactions catalyzed by αFFase1 that establishes the new glycoside hydrolase family GH172.


Assuntos
Bifidobacterium , Glicosídeo Hidrolases , Cristalografia por Raios X , Glicosídeo Hidrolases/química
3.
Glycobiology ; 33(10): 837-845, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37593920

RESUMO

Ulva is globally distributed specie and has a high economic value. Ulvan is one of the main active substances in Ulva, which has a variety of biological properties. Ulvan lyase degrades ulvan through a ß-elimination mechanism which cleaves the ß-glycosidic bond between Rha3S and GlcA or IdoA. The complex monosaccharide composition of ulvan makes it promising for use in food and pharmaceutical applications. This thesis explores a putative ulvan lyase from Alteromonas sp. KUL_42. We expressed and purified the protein, performed a series of characterizations and signal peptide had been removed. The results showed that the protein molecular weight of ULA-2 was 53.97 kDa, and it had the highest catalytic activity at 45 °C and pH 8.0 in Tris-HCl buffer. The Km and Vmax values were 2.24 mg · mL-1 and 2.048 µmol · min-1 · mL-1, respectively. The activity of ULA-2 was able to maintain more than 80% at 20 ~ 30 °C. ESI-MS analysis showed that the primary end-products were mainly disaccharides to tetrasaccharides. The study of ULA-2 enriches the ulvan lyase library, promotes the development and high-value utilization of Ulva resources, and facilitates further research applications of ulvan lyase in ulva oligosaccharides.


Assuntos
Ulva , Ulva/química , Ulva/metabolismo , Polissacarídeos/química , Oligossacarídeos/metabolismo , Dissacarídeos
4.
Microbiology (Reading) ; 169(7)2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37410634

RESUMO

Pozol is a traditional prehispanic Mexican beverage made from fermented nixtamal dough; it is still part of everyday life in many communities due to its nutritional properties. It is the product of spontaneous fermentation and has a complex microbiota composed primarily of lactic acid bacteria (LAB). Although this is a beverage that has been used for centuries, the microbial processes that participate in this fermented beverage are not well understood. We fermented corn dough to produce pozol and sampled it at four key times to follow the community and metabolic changes (0, 9 24 and 48 h) by shotgun metagenomic sequencing to determine structural changes in the bacterial community, as well as metabolic genes used for substrate fermentation, nutritional properties and product safety. We found a core of 25 abundant genera throughout the 4 key fermentation times, with the genus Streptococcus being the most prevalent throughout fermentation. We also performed an analysis focused on metagenomic assembled genomes (MAGs) to identify species from the most abundant genera. Genes involving starch, plant cell wall (PCW), fructan and sucrose degradation were found throughout fermentation and in MAGs, indicating the metabolic potential of the pozol microbiota to degrade these carbohydrates. Complete metabolic modules responsible for amino acid and vitamin biosynthesis increased considerably during fermentation, and were also found to be abundant in MAG, highlighting the bacterial contribution to the well-known nutritional properties attributed to pozol. Further, clusters of genes containing CAZymes (CGCs) and essential amino acids and vitamins were found in the reconstructed MAGs for abundant species in pozol. The results of this study contribute to our understanding of the metabolic role of micro-organisms in the transformation of corn to produce this traditional beverage and their contribution to the nutritional impact that pozol has had for centuries in the traditional cuisine of southeast Mexico.


Assuntos
Bactérias , Zea mays , Zea mays/microbiologia , México , Bactérias/genética , Streptococcus/metabolismo , Fermentação
5.
Fungal Genet Biol ; 169: 103828, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37657751

RESUMO

Despite the economic losses due to the walnut anthracnose, Ophiognomonia leptostyla is an orphan fungus with respect to genomic resources. In the present study, the transcriptome of O. leptostyla was assembled for the first time. RNA sequencing was conducted for the fungal mycelia grown in a liquid media, and the inoculated leaf samples of walnut with the fungal conidia sampled at 48, 96 and 144 h post inoculation (hpi). The completeness, correctness, and contiguity of the de novo transcriptome assemblies generated with Trinity, Oases, SOAPdenovo-Trans and Bridger were compared to identify a single superior reference assembly. In most of the assessment criteria including N50, Transrate score, number of ORFs with known description in gene bank, the percentage of reads mapped back to the transcript (RMBT), BUSCO score, Swiss-Prot coverage bin and RESM-EVAL score, the Bridger assembly was the superior and thus used as a reference for profiling the O. leptostyla transcriptome in liquid media vs. during walnut infection. The k-means clustering of transcripts resulted in four distinct transcription patterns across the three sampling time points. Most of the detected CAZy transcripts had elevated transcription at 96 hpi that is hypothetically concurrent with the start of intracellular growth. The in-silico analysis revealed 103 candidate effectors of which six were members of Necrosis and Ethylene Inducing Like Protein (NLP) gene family belonging to three distinct k-means clusters. This study provided a complex and temporal pattern of the CAZys and candidate effectors transcription during six days post O. leptostyla inoculation on walnut leaves, introducing a list of candidate virulence genes for validation in future studies.


Assuntos
Ascomicetos , Juglans , Transcriptoma/genética , Juglans/genética , Virulência/genética , Ascomicetos/genética
6.
Appl Environ Microbiol ; 89(5): e0027223, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37098943

RESUMO

Perenniporia fraxinea can colonize living trees and cause severe damage to standing hardwoods by secreting a number of carbohydrate-activate enzymes (CAZymes), unlike other well-studied Polyporales. However, significant knowledge gaps exist in understanding the detailed mechanisms for this hardwood-pathogenic fungus. To address this issue, five monokaryotic P. fraxinea strains, SS1 to SS5, were isolated from the tree species Robinia pseudoacacia, and high polysaccharide-degrading activities and the fastest growth were found for P. fraxinea SS3 among the isolates. The whole genome of P. fraxinea SS3 was sequenced, and its unique CAZyme potential for tree pathogenicity was determined in comparison to the genomes of other nonpathogenic Polyporales. These CAZyme features are well conserved in a distantly related tree pathogen, Heterobasidion annosum. Furthermore, the carbon source-dependent CAZyme secretions of P. fraxinea SS3 and a nonpathogenic and strong white-rot Polyporales member, Phanerochaete chrysosporium RP78, were compared by activity measurements and proteomic analyses. As seen in the genome comparisons, P. fraxinea SS3 exhibited higher pectin-degrading activities and higher laccase activities than P. chrysosporium RP78, which were attributed to the secretion of abundant glycoside hydrolase family 28 (GH28) pectinases and auxiliary activity family 1_1 (AA1_1) laccases, respectively. These enzymes are possibly related to fungal invasion into the tree lumens and the detoxification of tree defense substances. Additionally, P. fraxinea SS3 showed secondary cell wall degradation capabilities at the same level as that of P. chrysosporium RP78. Overall, this study suggested mechanisms for how this fungus can attack the cell walls of living trees as a serious pathogen and differs from other nonpathogenic white-rot fungi. IMPORTANCE Many studies have been done to understand the mechanisms underlying the degradation of plant cell walls of dead trees by wood decay fungi. However, little is known about how some of these fungi weaken living trees as pathogens. P. fraxinea belongs to the Polyporales, a group of strong wood decayers, and is known to aggressively attack and fell standing hardwood trees all over the world. Here, we report CAZymes potentially related to plant cell wall degradation and pathogenesis factors in a newly isolated fungus, P. fraxinea SS3, by genome sequencing in conjunction with comparative genomic and secretomic analyses. The present study provides insights into the mechanisms of the degradation of standing hardwood trees by the tree pathogen, which will contribute to the prevention of this serious tree disease.


Assuntos
Phanerochaete , Polyporales , Árvores , Proteômica , Genoma Fúngico , Polyporales/metabolismo , Genômica , Phanerochaete/genética
7.
J Bacteriol ; 204(3): e0059721, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35129368

RESUMO

The Gram-negative periodontal pathogen Tannerella forsythia is inherently auxotrophic for N-acetylmuramic acid (MurNAc), which is an essential carbohydrate constituent of the peptidoglycan (PGN) of the bacterial cell wall. Thus, to build up its cell wall, T. forsythia strictly depends on the salvage of exogenous MurNAc or sources of MurNAc, such as polymeric or fragmentary PGN, derived from cohabiting bacteria within the oral microbiome. In our effort to elucidate how T. forsythia satisfies its demand for MurNAc, we recognized that the organism possesses three putative orthologs of the exo-ß-N-acetylmuramidase BsNamZ from Bacillus subtilis, which cleaves nonreducing end, terminal MurNAc entities from the artificial substrate pNP-MurNAc and the naturally-occurring disaccharide substrate MurNAc-N-acetylglucosamine (MurNAc-GlcNAc). TfNamZ1 and TfNamZ2 were successfully purified as soluble, pure recombinant His6-fusions and characterized as exo-lytic ß-N-acetylmuramidases with distinct substrate specificities. The activity of TfNamZ1 was considerably lower compared to TfNamZ2 and BsNamZ, in the cleavage of MurNAc-GlcNAc. When peptide-free PGN glycans were used as substrates, we revealed striking differences in the specificity and mode of action of these enzymes, as analyzed by mass spectrometry. TfNamZ1, but not TfNamZ2 or BsNamZ, released GlcNAc-MurNAc disaccharides from these glycans. In addition, glucosamine (GlcN)-MurNAc disaccharides were generated when partially N-deacetylated PGN glycans from B. subtilis 168 were applied. This characterizes TfNamZ1 as a unique disaccharide-forming exo-lytic ß-N-acetylmuramidase (exo-disaccharidase), and, TfNamZ2 and BsNamZ as sole MurNAc monosaccharide-lytic exo-ß-N-acetylmuramidases. IMPORTANCE Two exo-N-acetylmuramidases from T. forsythia belonging to glycosidase family GH171 (www.cazy.org) were shown to differ in their activities, thus revealing a functional diversity within this family: NamZ1 releases disaccharides (GlcNAc-MurNAc/GlcN-MurNAc) from the nonreducing ends of PGN glycans, whereas NamZ2 releases terminal MurNAc monosaccharides. This work provides a better understanding of how T. forsythia may acquire the essential growth factor MurNAc by the salvage of PGN from cohabiting bacteria in the oral microbiome, which may pave avenues for the development of anti-periodontal drugs. On a broad scale, our study indicates that the utilization of PGN as a nutrient source, involving exo-lytic N-acetylmuramidases with different modes of action, appears to be a general feature of bacteria, particularly among the phylum Bacteroidetes.


Assuntos
Peptidoglicano , Tannerella forsythia , Acetilglucosamina/metabolismo , Bacillus subtilis/metabolismo , Parede Celular/metabolismo , Dissacarídeos/metabolismo , Peptidoglicano/metabolismo , Especificidade por Substrato , Tannerella forsythia/genética
8.
J Plant Res ; 135(2): 145-156, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35000024

RESUMO

Plants possess an outer cell layer called the cell wall. This matrix comprises various molecules, such as polysaccharides and proteins, and serves a wide array of physiologically important functions. This structure is not static but rather flexible in response to the environment. One of the factors responsible for this plasticity is the xyloglucan endotransglucosylase/hydrolase (XTH) family, which cleaves and reconnects xyloglucan molecules. Since xyloglucan molecules have been hypothesised to tether cellulose microfibrils forming the main load-bearing network in the primary cell wall, XTHs have been thought to play a central role in cell wall loosening for plant cell expansion. However, multiple lines of recent evidence have questioned this classic model. Nevertheless, reverse genetic analyses have proven the biological importance of XTHs; therefore, a major challenge at present is to reconsider the role of XTHs in planta. Recent advances in analytical techniques have allowed for gathering rich information on the structure of the primary cell wall. Thus, the integration of accumulated knowledge in current XTH studies may offer a turning point for unveiling the precise functions of XTHs. In the present review, we redefine the biological function of the XTH family based on the recent architectural model of the cell wall. We highlight three key findings regarding this enzyme family: (1) XTHs are not strictly required for cell wall loosening during plant cell expansion but play vital roles in response to specific biotic or abiotic stresses; (2) in addition to their transglycosylase activity, the hydrolase activity of XTHs is involved in physiological benefits; and (3) XTHs can recognise a wide range of polysaccharides other than xyloglucans.


Assuntos
Parede Celular , Glicosiltransferases , Parede Celular/metabolismo , Glicosiltransferases/química , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Hidrolases/metabolismo , Polissacarídeos/metabolismo
9.
Int J Mol Sci ; 23(21)2022 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-36362382

RESUMO

Pyranose oxidase (POx, glucose 2-oxidase; EC 1.1.3.10, pyranose:oxygen 2-oxidoreductase) is an FAD-dependent oxidoreductase and a member of the auxiliary activity (AA) enzymes (subfamily AA3_4) in the CAZy database. Despite the general interest in fungal POxs, only a few bacterial POxs have been studied so far. Here, we report the biochemical characterization of a POx from Streptomyces canus (ScPOx), the sequence of which is positioned in a separate, hitherto unexplored clade of the POx phylogenetic tree. Kinetic analyses revealed that ScPOx uses monosaccharide sugars (such as d-glucose, d-xylose, d-galactose) as its electron-donor substrates, albeit with low catalytic efficiencies. Interestingly, various C- and O-glycosides (such as puerarin) were oxidized by ScPOx as well. Some of these glycosides are characteristic substrates for the recently described FAD-dependent C-glycoside 3-oxidase from Microbacterium trichothecenolyticum. Here, we show that FAD-dependent C-glycoside 3-oxidases and pyranose oxidases are enzymes belonging to the same sequence space.


Assuntos
Flavina-Adenina Dinucleotídeo , Oxirredutases , Filogenia , Oxirredutases/genética , Oxirredutases/metabolismo , Monossacarídeos , Cinética , Bactérias/metabolismo , Glicosídeos
10.
Antonie Van Leeuwenhoek ; 114(8): 1225-1235, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34129122

RESUMO

A novel strictly anaerobic, Gram-negative bacterium, designated as strain FXJYN30E22T, was isolated from the feces of a healthy woman in Yining county, Xinjiang province, China. This strain was non-spore-forming, bile-resistant, non-motile and rod-shaped. It was found to belong to a single separate group in the Phocaeicola genus based on its 16 S ribosomal RNA (rRNA) gene sequence. Alignments of 16 S rRNA gene sequences showed only a low sequence identity (≤ 95.5 %) between strain FXJYN30E22T and all other Phocaeicola strains in public data bases. The genome (43.0% GC) of strain FXJYN30E22T was sequenced, and used for phylogenetic analysis which showed that strain FXJYN30E22T was most closely related to the type strain Phocaeicola massiliensis JCM 13223T. The average nucleotide identity (ANI) value and digital DNA-DNA hybridization (dDDH) between FXJYN30E22T and P. massiliensis JCM 13223T were 90.4 and 41.9 %, which were lower than the generally accepted species boundaries (94.0 and 70 %, respectively). The major cellular fatty acids and polar lipids were anteiso-branched C15:0 and phosphatidylethanolamine, respectively. The result of genome annotation and KEGG analysis showed that strain FXJYN30E22T contains a number of genes in polysaccharide and fatty acid synthesis that indicated adaptation to the human gut system. Furthermore, a pbpE (penicillin-binding protein) gene was found in the genome of strain FXJYN30E22T but in no other Phocaeicola species, which suggested this gene might be contribute to the adaptive capacity of strain FXJYN30E22T. Based on our data, strain FXJYN30E22T (= CGMCC1.17870T/KCTC25195T) was classified as a novel Phocaeicola species, and the name Phocaeicola faecalis sp. nov., was proposed.


Assuntos
Ecossistema , Ácidos Graxos , Anaerobiose , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Feminino , Humanos , Hibridização de Ácido Nucleico , Fosfolipídeos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
11.
Biosci Biotechnol Biochem ; 85(7): 1782-1788, 2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-33942872

RESUMO

Brown rot fungi show a two-step wood degradation mechanism comprising oxidative radical-based and enzymatic saccharification systems. Recent studies have demonstrated that the brown rot fungus Rhodonia placenta expresses oxidoreductase genes ahead of glycoside hydrolase genes and spatially protects the saccharification enzymes from oxidative damage of the oxidoreductase reactions. This study aimed to assess the generality of the spatial gene regulation of these genes in other brown rot fungi and examine the effects of carbon source on the gene regulation. Gene expression analysis was performed on 14 oxidoreductase and glycoside hydrolase genes in the brown rot fungus Gloeophyllum trabeum, directionally grown on wood, sawdust-agar, and glucose-agar wafers. In G. trabeum, both oxidoreductase and glycoside hydrolase genes were expressed at higher levels in sections behind the wafers. The upregulation of glycoside hydrolase genes was significantly higher in woody substrates than in glucose, whereas the oxidoreductase gene expression was not affected by substrates.


Assuntos
Basidiomycota/genética , Carbono/metabolismo , Expressão Gênica , Madeira , Basidiomycota/metabolismo
12.
Genomics ; 112(2): 1988-1999, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31759120

RESUMO

We analyzed the whole genomes of cecum microbiomes of Ethiopian indigenous chickens from two distinct geographical zones: Afar (AF) district (Dulecha, 730 m above sea level) and Amhara (AM) district (Menz Gera Midir, 3300 m). Through metagenomic analysis we found that microbial populations were mainly dominated by Bacteroidetes and Firmicutes. We identified 2210 common genes in the two groups. LEfSe showed that the distribution of Coprobacter, Geobacter, Cronobacter, Alloprevotella, and Dysgonomonas were more abundant in AF than AM. Analyses using KEGG, eggNOG, and CAZy databases indicated that the pathways of metabolism, genetic information processing, environmental information processing, and cellular process were significantly enriched. Functional abundance was found to be associated with the nutrient absorption and microbial localization of indigenous chickens. We also investigated antibiotic resistant genes and found antibiotics like LSM, cephalosporin, and tetracycline were significantly more abundant in AF than AM.


Assuntos
Galinhas/microbiologia , Farmacorresistência Bacteriana , Microbioma Gastrointestinal , Metagenoma , Animais , Bacteroidetes/genética , Bacteroidetes/patogenicidade , Ceco/microbiologia , Etiópia , Firmicutes/genética , Firmicutes/patogenicidade , Metagenômica/métodos , Sequenciamento Completo do Genoma/métodos
13.
Int J Mol Sci ; 22(3)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33572987

RESUMO

Glycosyltransferases (GTs) catalyze the synthesis of glycosidic linkages and are essential in the biosynthesis of glycans, glycoconjugates (glycolipids and glycoproteins), and glycosides. Plant genomes generally encode many more GTs than animal genomes due to the synthesis of a cell wall and a wide variety of glycosylated secondary metabolites. The Arabidopsis thaliana genome is predicted to encode over 573 GTs that are currently classified into 42 diverse families. The biochemical functions of most of these GTs are still unknown. In this study, we updated the JBEI Arabidopsis GT clone collection by cloning an additional 105 GT cDNAs, 508 in total (89%), into Gateway-compatible vectors for downstream characterization. We further established a functional analysis pipeline using transient expression in tobacco (Nicotiana benthamiana) followed by enzymatic assays, fractionation of enzymatic products by reversed-phase HPLC (RP-HPLC) and characterization by mass spectrometry (MS). Using the GT14 family as an exemplar, we outline a strategy for identifying effective substrates of GT enzymes. By addition of UDP-GlcA as donor and the synthetic acceptors galactose-nitrobenzodiazole (Gal-NBD), ß-1,6-galactotetraose (ß-1,6-Gal4) and ß-1,3-galactopentose (ß-1,3-Gal5) to microsomes expressing individual GT14 enzymes, we verified the ß-glucuronosyltransferase (GlcAT) activity of three members of this family (AtGlcAT14A, B, and E). In addition, a new family member (AT4G27480, 248) was shown to possess significantly higher activity than other GT14 enzymes. Our data indicate a likely role in arabinogalactan-protein (AGP) biosynthesis for these GT14 members. Together, the updated Arabidopsis GT clone collection and the biochemical analysis pipeline present an efficient means to identify and characterize novel GT catalytic activities.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Glicosiltransferases/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Genoma de Planta , Glicosiltransferases/metabolismo , Mucoproteínas/genética , Mucoproteínas/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Especificidade por Substrato
14.
Int J Mol Sci ; 22(4)2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33671736

RESUMO

Proper management of agricultural disease is important to ensure sustainable food security. Staple food crops like rice, wheat, cereals, and other cash crops hold great export value for countries. Ensuring proper supply is critical; hence any biotic or abiotic factors contributing to the shortfall in yield of these crops should be alleviated. Rhizoctonia solani is a major biotic factor that results in yield losses in many agriculturally important crops. This paper focuses on genome informatics of our Malaysian Draft R. solani AG1-IA, and the comparative genomics (inter- and intra- AG) with four AGs including China AG1-IA (AG1-IA_KB317705.1), AG1-IB, AG3, and AG8. The genomic content of repeat elements, transposable elements (TEs), syntenic genomic blocks, functions of protein-coding genes as well as core orthologous genic information that underlies R. solani's pathogenicity strategy were investigated. Our analyses show that all studied AGs have low content and varying profiles of TEs. All AGs were dominant for Class I TE, much like other basidiomycete pathogens. All AGs demonstrate dominance in Glycoside Hydrolase protein-coding gene assignments suggesting its importance in infiltration and infection of host. Our profiling also provides a basis for further investigation on lack of correlation observed between number of pathogenicity and enzyme-related genes with host range. Despite being grouped within the same AG with China AG1-IA, our Draft AG1-IA exhibits differences in terms of protein-coding gene proportions and classifications. This implies that strains from similar AG do not necessarily have to retain similar proportions and classification of TE but must have the necessary arsenal to enable successful infiltration and colonization of host. In a larger perspective, all the studied AGs essentially share core genes that are generally involved in adhesion, penetration, and host colonization. However, the different infiltration strategies will depend on the level of host resilience where this is clearly exhibited by the gene sets encoded for the process of infiltration, infection, and protection from host.


Assuntos
Rhizoctonia/genética , Rhizoctonia/patogenicidade , China , Elementos de DNA Transponíveis , Enzimas/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Genômica , Malásia , Doenças das Plantas/microbiologia , Sinais Direcionadores de Proteínas/genética , Rhizoctonia/fisiologia , Sintenia
15.
Appl Environ Microbiol ; 87(1)2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33067195

RESUMO

Improved sequencing technologies and the maturation of metagenomic approaches allow the identification of gene variants with potential industrial applications, including cellulases. Cellulase identification from metagenomic environmental surveys is complicated by inconsistent nomenclature and multiple categorization systems. Here, we summarize the current classification and nomenclature systems, with recommendations for improvements to these systems. Addressing the issues described will strengthen the annotation of cellulose-active enzymes from environmental sequence data sets-a rapidly growing resource in environmental and applied microbiology.


Assuntos
Bactérias/isolamento & purificação , Celulase/análise , Microbiologia Ambiental , Metagenoma , Metagenômica/métodos
16.
Microb Cell Fact ; 19(1): 61, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32143621

RESUMO

BACKGROUND: In the last decade, increasing evidence has shown that changes in human gut microbiota are associated with diseases, such as obesity. The excreted/secreted proteins (secretome) of the gut microbiota affect the microbial composition, altering its colonization and persistence. Furthermore, it influences microbiota-host interactions by triggering inflammatory reactions and modulating the host's immune response. The metatranscriptome is essential to elucidate which genes are expressed under diseases. In this regard, little is known about the expressed secretome in the microbiome. Here, we use a metatranscriptomic approach to delineate the secretome of the gut microbiome of Mexican children with normal weight (NW) obesity (O) and obesity with metabolic syndrome (OMS). Additionally, we performed the 16S rRNA profiling of the gut microbiota. RESULTS: Out of the 115,712 metatranscriptome genes that codified for proteins, 30,024 (26%) were predicted to be secreted, constituting the Secrebiome of the gut microbiome. The 16S profiling confirmed an increased abundance in Firmicutes and decreased in Bacteroidetes in the obesity groups, and a significantly higher richness and diversity than the normal weight group. We found novel biomarkers for obesity with metabolic syndrome such as increased Coriobacteraceae, Collinsela, and Collinsella aerofaciens; Erysipelotrichaceae, Catenibacterium and Catenibacterium sp., and decreased Parabacteroides distasonis, which correlated with clinical and anthropometric parameters associated to obesity and metabolic syndrome. Related to the Secrebiome, 16 genes, homologous to F. prausniitzi, were overexpressed for the obese and 15 genes homologous to Bacteroides, were overexpressed in the obesity with metabolic syndrome. Furthermore, a significant enrichment of CAZy enzymes was found in the Secrebiome. Additionally, significant differences in the antigenic density of the Secrebiome were found between normal weight and obesity groups. CONCLUSIONS: These findings show, for the first time, the role of the Secrebiome in the functional human-microbiota interaction. Our results highlight the importance of metatranscriptomics to provide novel information about the gut microbiome's functions that could help us understand the impact of the Secrebiome on the homeostasis of its human host. Furthermore, the metatranscriptome and 16S profiling confirmed the importance of treating obesity and obesity with metabolic syndrome as separate conditions to better understand the interplay between microbiome and disease.


Assuntos
Bactérias/classificação , Microbioma Gastrointestinal/genética , Perfilação da Expressão Gênica , Síndrome Metabólica/microbiologia , Obesidade Infantil/microbiologia , Bactérias/metabolismo , Criança , Estudos de Coortes , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/fisiologia , Expressão Gênica , Interações entre Hospedeiro e Microrganismos , Humanos , Masculino , Síndrome Metabólica/etiologia , México , Obesidade Infantil/complicações , RNA Ribossômico 16S/genética , Via Secretória
17.
Adv Exp Med Biol ; 1221: 139-167, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32274709

RESUMO

The retaining endo-ß-D-glucuronidase Heparanase (HPSE) is the primary mammalian enzyme responsible for breakdown of the glycosaminoglycan heparan sulfate (HS). HPSE activity is essential for regulation and turnover of HS in the extracellular matrix, and its activity affects diverse processes such as inflammation, angiogenesis and cell migration. Aberrant heparanase activity is strongly linked to cancer metastasis, due to structural breakdown of extracellular HS networks and concomitant release of sequestered HS-binding growth factors. A full appreciation of HPSE activity in health and disease requires a structural understanding of the enzyme, and how it engages with its HS substrates. This chapter summarizes key findings from the recent crystal structures of human HPSE and its proenzyme. We present details regarding the 3-dimensional protein structure of HPSE and the molecular basis for its interaction with HS substrates of varying sulfation states. We also examine HPSE in a wider context against related ß-D-glucuronidases from other species, highlighting the structural features that control exo/endo - glycosidase selectivity in this family of enzymes.


Assuntos
Glucuronidase , Animais , Matriz Extracelular , Glucuronidase/química , Glucuronidase/metabolismo , Glicosaminoglicanos , Heparitina Sulfato , Humanos , Especificidade por Substrato
18.
Prep Biochem Biotechnol ; 50(4): 390-400, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31829795

RESUMO

Aspergillus flavipes FP-500 is a Mexican native strain that has been reported as a good producer of xylanases and pectinases; therefore, it promises a strong impact on biotechnology. To provide an overview of protein secretion by A. flavipes, we carried out a comparative proteome analysis of extracellular proteins in liquid cultures with two heterogeneous agro-industrial residues; corn cob (CC) and wheat bran (WB), as carbon sources. Extracellular proteins obtained from both cultures were identified using MS/MS spectrometry. We identified 134 proteins, which were classified into four groups: glycosyl hydrolases (GH), esterases/proteases, miscellaneous proteins, and unidentified proteins. Around 50% of the total proteins identified were GH such as xylanases, ß-xylosidases, ß-galactosidases, cellulolytic enzymes like ß-glucosidase, endoglucanases, and cellobiohydrolases. From this family, a core of 22 (16%) of the proteins identified were found in both substrates, CC and WB, whereas 30% and 54% were unique for CC and WB, respectively. In the esterases/proteases group, proteases, lipases and esterases like feruloylesterases, and acetyl-xylanesterase were identified. Proteins with diverse functions such as monophosphate dehydrogenase or N-acetylglucosaminidase were present. Here, we present strong evidences indicating that the composition and heterogeneity of the used carbon source determine the specific set of protein secreted by the fungus.


Assuntos
Aspergillus/enzimologia , Fibras na Dieta , Proteínas Fúngicas/análise , Glicosídeo Hidrolases/análise , Triticum/metabolismo , Zea mays/metabolismo , Aspergillus/metabolismo , Proteínas Fúngicas/isolamento & purificação , Glicosídeo Hidrolases/isolamento & purificação
19.
J Biol Chem ; 293(9): 3451-3467, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29317495

RESUMO

Glycoside phosphorylases have considerable potential as catalysts for the assembly of useful glycans for products ranging from functional foods and prebiotics to novel materials. However, the substrate diversity of currently identified phosphorylases is relatively small, limiting their practical applications. To address this limitation, we developed a high-throughput screening approach using the activated substrate 2,4-dinitrophenyl ß-d-glucoside (DNPGlc) and inorganic phosphate for identifying glycoside phosphorylase activity and used it to screen a large insert metagenomic library. The initial screen, based on release of 2,4-dinitrophenyl from DNPGlc in the presence of phosphate, identified the gene bglP, encoding a retaining ß-glycoside phosphorylase from the CAZy GH3 family. Kinetic and mechanistic analysis of the gene product, BglP, confirmed a double displacement ping-pong mechanism involving a covalent glycosyl-enzyme intermediate. X-ray crystallographic analysis provided insights into the phosphate-binding mode and identified a key glutamine residue in the active site important for substrate recognition. Substituting this glutamine for a serine swapped the substrate specificity from glucoside to N-acetylglucosaminide. In summary, we present a high-throughput screening approach for identifying ß-glycoside phosphorylases, which was robust, simple to implement, and useful in identifying active clones within a metagenomics library. Implementation of this screen enabled discovery of a new glycoside phosphorylase class and has paved the way to devising simple ways in which enzyme specificity can be encoded and swapped, which has implications for biotechnological applications.


Assuntos
Biblioteca Gênica , Glicosídeos/metabolismo , Metagenômica , Fosforilases/metabolismo , Domínio Catalítico , Celulose/metabolismo , Cinética , Modelos Moleculares , Fosforilases/química , Fosforilases/genética , Fosforilação
20.
Appl Environ Microbiol ; 86(1)2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31653790

RESUMO

Plant polysaccharide breakdown by microbes in the rumen is fundamental to digestion in ruminant livestock. Bacterial species belonging to the rumen genera Butyrivibrio and Pseudobutyrivibrio are important degraders and utilizers of lignocellulosic plant material. These bacteria degrade polysaccharides and ferment the released monosaccharides to yield short-chain fatty acids that are used by the ruminant for growth and the production of meat, milk, and fiber products. Although rumen Butyrivibrio and Pseudobutyrivibrio species are regarded as common rumen inhabitants, their polysaccharide-degrading and carbohydrate-utilizing enzymes are not well understood. In this study, we analyzed the genomes of 40 Butyrivibrio and 6 Pseudobutyrivibrio strains isolated from the plant-adherent fraction of New Zealand dairy cows to explore the polysaccharide-degrading potential of these important rumen bacteria. Comparative genome analyses combined with phylogenetic analysis of their 16S rRNA genes and short-chain fatty acid production patterns provide insight into the genomic diversity and physiology of these bacteria and divide Butyrivibrio into 3 species clusters. Rumen Butyrivibrio bacteria were found to encode a large and diverse spectrum of degradative carbohydrate-active enzymes (CAZymes) and binding proteins. In total, 4,421 glycoside hydrolases (GHs), 1,283 carbohydrate esterases (CEs), 110 polysaccharide lyases (PLs), 3,605 glycosyltransferases (GTs), and 1,706 carbohydrate-binding protein modules (CBM) with predicted activities involved in the depolymerization and transport of the insoluble plant polysaccharides were identified. Butyrivibrio genomes had similar patterns of CAZyme families but varied greatly in the number of genes within each category in the Carbohydrate-Active Enzymes database (CAZy), suggesting some level of functional redundancy. These results suggest that rumen Butyrivibrio species occupy similar niches but apply different degradation strategies to be able to coexist in the rumen.IMPORTANCE Feeding a global population of 8 billion people and climate change are the primary challenges facing agriculture today. Ruminant livestock are important food-producing animals, and maximizing their productivity requires an understanding of their digestive systems and the roles played by rumen microbes in plant polysaccharide degradation. Members of the genera Butyrivibrio and Pseudobutyrivibrio are a phylogenetically diverse group of bacteria and are commonly found in the rumen, where they are a substantial source of polysaccharide-degrading enzymes for the depolymerization of lignocellulosic material. Our findings have highlighted the immense enzymatic machinery of Butyrivibrio and Pseudobutyrivibrio species for the degradation of plant fiber, suggesting that these bacteria occupy similar niches but apply different degradation strategies in order to coexist in the competitive rumen environment.


Assuntos
Butyrivibrio/genética , Metabolismo dos Carboidratos/genética , Rúmen/microbiologia , Animais , Butyrivibrio/classificação , Butyrivibrio/isolamento & purificação , Butyrivibrio/metabolismo , Bovinos , Esterases/genética , Genoma Bacteriano , Genômica , Glicosídeo Hidrolases/genética , Glicosiltransferases/genética , Liases/genética , Filogenia , Polissacarídeos/metabolismo , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA