RESUMO
BACKGROUND & AIMS: Hepatitis B surface antigen (HBsAg) loss or functional cure (FC) is considered the optimal therapeutic outcome for patients with chronic hepatitis B (CHB). However, the immune-pathological biomarkers and underlying mechanisms of FC remain unclear. In this study we comprehensively interrogate disease-associated cell states identified within intrahepatic tissue and matched PBMCs (peripheral blood mononuclear cells) from patients with CHB or after FC, at the resolution of single cells, to provide novel insights into putative mechanisms underlying FC. METHODS: We combined single-cell transcriptomics (single-cell RNA sequencing) with multiparametric flow cytometry-based immune phenotyping, and multiplexed immunofluorescence to elucidate the immunopathological cell states associated with CHB vs. FC. RESULTS: We found that the intrahepatic environment in CHB and FC displays specific cell identities and molecular signatures that are distinct from those found in matched PBMCs. FC is associated with the emergence of an altered adaptive immune response marked by CD4 cytotoxic T lymphocytes, and an activated innate response represented by liver-resident natural killer cells, specific Kupffer cell subtypes and marginated neutrophils. Surprisingly, we found MHC class II-expressing hepatocytes in patients achieving FC, as well as low but persistent levels of covalently closed circular DNA and pregenomic RNA, which may play an important role in FC. CONCLUSIONS: Our study provides conceptually novel insights into the immuno-pathological control of HBV cure, and opens exciting new avenues for clinical management, biomarker discovery and therapeutic development. We believe that the discoveries from this study, as it relates to the activation of an innate and altered immune response that may facilitate sustained, low-grade inflammation, may have broader implications in the resolution of chronic viral hepatitis. IMPACT AND IMPLICATIONS: This study dissects the immuno-pathological cell states associated with functionally cured chronic hepatitis B (defined by the loss of HBV surface antigen or HBsAg). We identified the sustained presence of very low viral load, accessory antigen-presenting hepatocytes, adaptive-memory-like natural killer cells, and the emergence of helper CD4 T cells with cytotoxic or effector-like signatures associated with functional cure, suggesting previously unsuspected alterations in the adaptive immune response, as well as a key role for the innate immune response in achieving or maintaining functional cure. Overall, the insights generated from this study may provide new avenues for the development of alternative therapies as well as patient surveillance for better clinical management of chronic hepatitis B.
Assuntos
Imunidade Adaptativa , Hepatite B Crônica , Imunidade Inata , Análise de Célula Única , Humanos , Hepatite B Crônica/imunologia , Hepatite B Crônica/virologia , Imunidade Inata/imunologia , Imunidade Adaptativa/imunologia , Análise de Célula Única/métodos , Vírus da Hepatite B/imunologia , Vírus da Hepatite B/genética , Masculino , Feminino , Linfócitos T Citotóxicos/imunologia , Adulto , Fígado/imunologia , Fígado/patologia , Antígenos de Superfície da Hepatite B/imunologia , Pessoa de Meia-Idade , Células Matadoras Naturais/imunologiaRESUMO
Supercentenarians, people who have reached 110 y of age, are a great model of healthy aging. Their characteristics of delayed onset of age-related diseases and compression of morbidity imply that their immune system remains functional. Here we performed single-cell transcriptome analysis of 61,202 peripheral blood mononuclear cells (PBMCs), derived from 7 supercentenarians and 5 younger controls. We identified a marked increase of cytotoxic CD4 T cells (CD4 cytotoxic T lymphocytes [CTLs]) as a signature of supercentenarians. Furthermore, single-cell T cell receptor sequencing of 2 supercentenarians revealed that CD4 CTLs had accumulated through massive clonal expansion, with the most frequent clonotypes accounting for 15 to 35% of the entire CD4 T cell population. The CD4 CTLs exhibited substantial heterogeneity in their degree of cytotoxicity as well as a nearly identical transcriptome to that of CD8 CTLs. This indicates that CD4 CTLs utilize the transcriptional program of the CD8 lineage while retaining CD4 expression. Indeed, CD4 CTLs extracted from supercentenarians produced IFN-γ and TNF-α upon ex vivo stimulation. Our study reveals that supercentenarians have unique characteristics in their circulating lymphocytes, which may represent an essential adaptation to achieve exceptional longevity by sustaining immune responses to infections and diseases.
Assuntos
Linfócitos T CD4-Positivos , Adulto , Idoso , Idoso de 80 Anos ou mais , Linfócitos B , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Estudos de Casos e Controles , Diferenciação Celular , Células Cultivadas , Evolução Clonal , Perfilação da Expressão Gênica , Humanos , Interferon gama/metabolismo , Leucócitos Mononucleares/fisiologia , Pessoa de Meia-Idade , Análise de Célula Única , Fator de Necrose Tumoral alfa/metabolismoRESUMO
BACKGROUND: IgG4-related disease (IgG4-RD) is an immune-mediated fibrotic disorder that has been linked to CD4+ cytotoxic T lymphocytes (CD4+CTLs). The effector phenotype of CD4+CTLs and the relevance of both CD8+ cytotoxic T lymphocytes (CD8+CTLs) and apoptotic cell death remain undefined in IgG4-RD. OBJECTIVE: We sought to define CD4+CTL heterogeneity, characterize the CD8+CTL response in the blood and in lesions, and determine whether enhanced apoptosis may contribute to the pathogenesis of IgG4-RD. METHODS: Blood analyses were undertaken using flow cytometry, cell sorting, transcriptomic analyses at the population and single-cell levels, and next-generation sequencing for the TCR repertoire. Tissues were interrogated using multicolor immunofluorescence. Results were correlated with clinical data. RESULTS: We establish that among circulating CD4+CTLs in IgG4-RD, CD27loCD28loCD57hi cells are the dominant effector subset, exhibit marked clonal expansion, and differentially express genes relevant to cytotoxicity, activation, and enhanced metabolism. We also observed prominent infiltration of granzyme A-expressing CD8+CTLs in disease tissues and clonal expansion in the blood of effector/memory CD8+ T cells with an activated and cytotoxic phenotype. Tissue studies revealed an abundance of cells undergoing apoptotic cell death disproportionately involving nonimmune, nonendothelial cells of mesenchymal origin. Apoptotic cells showed significant upregulation of HLA-DR. CONCLUSIONS: CD4+CTLs and CD8+CTLs may induce apoptotic cell death in tissues of patients with IgG4-RD with preferential targeting of nonendothelial, nonimmune cells of mesenchymal origin.
Assuntos
Antígenos CD/imunologia , Apoptose/imunologia , Linfócitos T CD4-Positivos/imunologia , Doença Relacionada a Imunoglobulina G4/imunologia , Células-Tronco Mesenquimais/imunologia , Linfócitos T Citotóxicos/imunologia , Adulto , Linfócitos T CD4-Positivos/patologia , Feminino , Fibrose , Humanos , Doença Relacionada a Imunoglobulina G4/patologia , Masculino , Células-Tronco Mesenquimais/patologia , Linfócitos T Citotóxicos/patologiaRESUMO
Macrophages play critical roles in both innate and adaptive immunity and are known for their high plasticity in response to various external signals. Macrophages are involved in regulating systematic iron homeostasis and they sequester iron by phagocytotic activity, which triggers M1 macrophage polarization and typically exerts antitumor effects. We previously developed a novel cryo-thermal therapy that can induce the mass release of tumor antigens and damage-associated molecular patterns (DAMPs), promoting M1 macrophage polarization. However, that study did not examine whether iron released after cryo-thermal therapy induced M1 macrophage polarization; this question still needed to be addressed. We hypothesized that cryo-thermal therapy would cause the release of a large quantity of iron to augment M1 macrophage polarization due to the disruption of tumor cells and blood vessels, which would further enhance antitumor immunity. In this study, we investigated iron released in primary tumors, the level of iron in splenic macrophages after cryo-thermal therapy and the effect of iron on macrophage polarization and CD4+ T cell differentiation in metastatic 4T1 murine mammary carcinoma. We found that a large amount of iron was released after cryo-thermal therapy and could be taken up by splenic macrophages, which further promoted M1 macrophage polarization by inhibiting ERK phosphorylation. Moreover, iron promoted DC maturation, which was possibly mediated by iron-induced M1 macrophages. In addition, iron-induced M1 macrophages and mature DCs promoted the differentiation of CD4+ T cells into the CD4 cytolytic T lymphocytes (CTL) subset and inhibited differentiation into Th2 and Th17 cells. This study explains the role of iron in cryo-thermal therapy-induced antitumor immunity from a new perspective.
Assuntos
Linfócitos T CD4-Positivos/efeitos dos fármacos , Crioterapia/efeitos adversos , Ferro/metabolismo , Ferro/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Linfócitos T Citotóxicos/efeitos dos fármacos , Animais , Linfócitos T CD4-Positivos/fisiologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Polaridade Celular/efeitos dos fármacos , Células Cultivadas , Feminino , Quelantes de Ferro/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Ativação de Macrófagos/fisiologia , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Células RAW 264.7 , Linfócitos T Citotóxicos/fisiologiaRESUMO
Cytotoxic CD4+ T cells (CD4 CTL) are terminally differentiated T helper cells that contribute to autoimmune diseases, such as multiple sclerosis. We developed a novel triple co-culture transwell assay to study mutual interactions between CD4 CTL, conventional TH cells, and regulatory T cells (Tregs) simultaneously. We show that, while CD4 CTL are resistant to suppression by Tregs in vitro, the conditioned medium of CD4 CTL accentuates the suppressive phenotype of Tregs by upregulating IL-10, Granzyme B, CTLA-4, and PD-1. We demonstrate that CD4 CTL conditioned medium skews memory TH cells to a TH17 phenotype, suggesting that the CD4 CTL induce bystander polarization. In our triple co-culture assay, the CD4 CTL secretome promotes the proliferation of TH cells, even in the presence of Tregs. However, when cell-cell contact is established between CD4 CTL and TH cells, the proliferation of TH cells is no longer increased and Treg-mediated suppression is restored. Taken together, our results suggest that when TH cells acquire cytotoxic properties, these Treg-resistant CD4 CTL affect the proliferation and phenotype of conventional TH cells in their vicinity. By creating such a pro-inflammatory microenvironment, CD4 CTL may favor their own persistence and expansion, and that of other potentially pathogenic TH cells, thereby contributing to pathogenic responses in autoimmune disorders.
Assuntos
Doenças Autoimunes/imunologia , Proliferação de Células , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Adulto , Antígeno CTLA-4/imunologia , Feminino , Granzimas/imunologia , Humanos , Interleucina-10/imunologia , Masculino , Pessoa de Meia-Idade , Receptor de Morte Celular Programada 1/imunologia , Linfócitos T Reguladores/citologia , Células Th17/citologiaRESUMO
Chronic infections induce CD4+ T-cells with cytotoxic functions (CD4 CTLs); at present, it is still unknown whether latent tuberculosis (LTB) and active tuberculosis (ATB) induce CD4 CTLs. Plasma and cells from four patient groups-uninfected contact (UC), LTB, and ATB (divided as sensitive [DS-TB]- or resistant [DR-TB]-drug)-were evaluated by flow cytometry, q-PCR, and proteomics. The data showed that ATB patients had an increased frequency of CD4+ T-cells and a decreased frequency of CD8+ T-cells. The latter displays an exhausted-like profile characterized by CD39, CD279, and TIM-3 expression. ATB had a high frequency of CD4 + perforin+ cells, suggesting a CD4 CTL profile. The expression (at the transcriptional level) of granzyme A, granzyme B, granulysin, and perforin, as well as the genes T-bet (Tbx21) and NKG2D (Klrk1), in enriched CD4+ T-cells, confirmed the cytotoxic signature of CD4+ T-cells during ATB (which was stronger in DS-TB than in DR-TB). Moreover, proteomic analysis revealed the presence of HSP70 (in DS-TB) and annexin A5 (in DR-TB), which are molecules that have been associated with favoring the CD4 CTL profile. Finally, we found that lipids from Mycobacterium tuberculosis increased the presence of CD4 CTLs in DR-TB patients. Our data suggest that ATB is characterized by exhausted-like CD8+ T-cells, which, together with a specific microenvironment, favor the presence of CD4 CTLs.
Assuntos
Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Granzimas , Receptor Celular 2 do Vírus da Hepatite A , Perforina , Tuberculose , Humanos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Masculino , Granzimas/metabolismo , Granzimas/genética , Granzimas/imunologia , Perforina/metabolismo , Perforina/genética , Perforina/imunologia , Adulto , Feminino , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Receptor Celular 2 do Vírus da Hepatite A/imunologia , Tuberculose/imunologia , Tuberculose/microbiologia , Tuberculose Latente/imunologia , Tuberculose Latente/microbiologia , Pessoa de Meia-Idade , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo , Mycobacterium tuberculosis/imunologia , Proteínas com Domínio T/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/imunologia , Antígenos CD/metabolismo , Antígenos CD/imunologia , Antígenos CD/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Proteômica/métodos , Antígenos de Diferenciação de Linfócitos T , ApiraseRESUMO
BACKGROUND: Accumulating evidence supports the involvement of adaptive immunity in the development of radiation-induced brain injury (RIBI). Our previous work has emphasized the cytotoxic function of CD8+ T cells in RIBI. In this study, we aimed to investigate the presence and potential roles of cytotoxic CD4+ T cells (CD4+ CTLs) in RIBI to gain a more comprehensive understanding of adaptive immunity in this context. MAIN TEXT: Utilizing single-cell RNA sequencing (scRNA-seq), we analyzed 3934 CD4+ T cells from the brain lesions of four RIBI patients and identified six subclusters within this population. A notable subset, the cytotoxic CD4+ T cells (CD4+ CTLs), was marked with high expression of cytotoxicity-related genes (NKG7, GZMH, GNLY, FGFBP2, and GZMB) and several chemokine and chemokine receptors (CCL5, CX3CR1, and CCL4L2). Through in-depth pseudotime analysis, which simulates the development of CD4+ T cells, we observed that the CD4+ CTLs exhibited signatures of terminal differentiation. Their functions were enriched in protein serine/threonine kinase activity, GTPase regulator activity, phosphoprotein phosphatase activity, and cysteine-type endopeptidase activity involved in the apoptotic signaling pathway. Correspondingly, mice subjected to gamma knife irradiation on the brain showed a time-dependent infiltration of CD4+ T cells, an increase of MHCII+ cells, and the existence of CD4+ CTLs in lesions, along with an elevation of apoptotic-related proteins. Finally, and most crucially, single-cell T-cell receptor sequencing (scTCR-seq) analysis at the patient level determined a large clonal expansion of CD4+ CTLs in lesion tissues of RIBI. Transcriptional factor-encoding genes TBX21, RORB, and EOMES showed positive correlations with the cytotoxic functions of CD4+ T cells, suggesting their potential to distinguish RIBI-related CD4+ CTLs from other subsets. CONCLUSION: The present study enriches the understanding of the transcriptional landscape of adaptive immune cells in RIBI patients. It provides the first description of a clonally expanded CD4+ CTL subset in RIBI lesions, which may illuminate new mechanisms in the development of RIBI and offer potential biomarkers or therapeutic targets for the disease.
Assuntos
Antineoplásicos , Lesões Encefálicas , Humanos , Camundongos , Animais , Linfócitos T CD8-Positivos , Linfócitos T CD4-Positivos , Linfócitos T Citotóxicos , Encéfalo , Lesões Encefálicas/metabolismoRESUMO
CD4+ T cells play an important role in immune responses against pathogens and cancer cells. Although their main task is to provide help to other effector immune cells, a growing number of infections and cancer entities have been described in which CD4+ T cells exhibit direct effector functions against infected or transformed cells. The most important cell type in this context are cytotoxic CD4+ T cells (CD4+ CTL). In infectious diseases anti-viral CD4+ CTL are mainly found in chronic viral infections. Here, they often compensate for incomplete or exhausted CD8+ CTL responses. The induction of CD4+ CTL is counter-regulated by Tregs, most likely because they can be dangerous inducers of immunopathology. In viral infections, CD4+ CTL often kill via the Fas/FasL pathway, but they can also facilitate the exocytosis pathway of killing. Thus, they are very important effectors to keep persistent virus in check and guarantee host survival. In contrast to viral infections CD4+ CTL attracted attention as direct anti-tumor effectors in solid cancers only recently. Anti-tumor CD4+ CTL are defined by the expression of cytolytic markers and have been detected within the lymphocyte infiltrates of different human cancers. They kill tumor cells in an antigen-specific MHC class II-restricted manner not only by cytolysis but also by release of IFNγ. Thus, CD4+ CTL are interesting tools for cure approaches in chronic viral infections and cancer, but their potential to induce immunopathology has to be carefully taken into consideration.
Assuntos
Neoplasias , Linfócitos T Citotóxicos , Humanos , Linfócitos T CD4-PositivosRESUMO
Cytotoxic CD4 T cell effectors (ThCTLs) kill virus-infected major histocompatibility complex (MHC) class II+ cells, contributing to viral clearance. We identify key factors by which influenza A virus infection drives non-cytotoxic CD4 effectors to differentiate into lung tissue-resident ThCTL effectors. We find that CD4 effectors must again recognize cognate antigen on antigen-presenting cells (APCs) within the lungs. Both dendritic cells and B cells are sufficient as APCs, but CD28 co-stimulation is not needed. Optimal generation of ThCTLs requires signals induced by the ongoing infection independent of antigen presentation. Infection-elicited type I interferon (IFN) induces interleukin-15 (IL-15), which, in turn, supports CD4 effector differentiation into ThCTLs. We suggest that these multiple spatial, temporal, and cellular requirements prevent excessive lung ThCTL responses when virus is already cleared but ensure their development when infection persists. This supports a model where continuing infection drives the development of multiple, more differentiated subsets of CD4 effectors by distinct pathways.
Assuntos
Antineoplásicos , Interferon Tipo I , Interleucina-15 , Linfócitos T CD4-Positivos , Antígenos de Histocompatibilidade Classe II/metabolismo , Linfócitos T Citotóxicos , AntígenosRESUMO
Once regarded as an experimental artefact, cytotoxic CD4+ T cells (CD4 CTL) are presently recognized as a biologically relevant T cell subset with important functions in anti-viral, anti-tumor, and autoimmune responses. Despite the potentially large impact on their micro-environment, the absolute cell counts of CD4 CTL within the peripheral circulation are relatively low. With the rise of single cell analysis techniques, detection of these cells is greatly facilitated. This led to a renewed appraisal of CD4 CTL and an increased insight into their heterogeneous nature and ontogeny. In this review, we summarize the developmental path from naïve CD4+ T cells to terminally differentiated CD4 CTL, and present markers that can be used to detect or isolate CD4 CTL and their precursors. Subsets of CD4 CTL and their divergent functionalities are discussed. Finally, the importance of local cues as triggers for CD4 CTL differentiation is debated, posing the question whether CD4 CTL develop in the periphery and migrate to site of inflammation when called for, or that circulating CD4 CTL reflect cells that returned to the circulation following differentiation at the local inflammatory site they previously migrated to. Even though much remains to be learned about this intriguing T cell subset, it is clear that CD4 CTL represent interesting therapeutic targets for several pathologies.
Assuntos
Subpopulações de Linfócitos T , Linfócitos T Citotóxicos , Linfócitos T CD4-Positivos , Diferenciação Celular , Contagem de LinfócitosRESUMO
Activated cytotoxic CD4 T cells (HLA-DR+) play an important role in the control of EBV infection, especially in cells with latency I (EBNA-1). One of the evasion mechanisms of these latency cells is generated by gp42, which, via peripherally binding to the ß1 domain of the ß chain of MHC class II (HLA-DQ, -DR, and -DP) of the infected B lymphocyte, can block/alter the HLA class II/T-cell receptor (TCR) interaction, and confer an increased level of susceptibility towards the development of EBV-associated autoimmune diseases or cancer in genetically predisposed individuals (HLA-DRB1* and DQB1* alleles). The main developments predisposing the factors of these diseases are: EBV infection; HLA class II risk alleles; sex; and tissue that is infiltrated with EBV-latent cells, forming ectopic lymphoid structures. Therefore, there is a need to identify treatments for eliminating cells with EBV latency, because the current treatments (e.g., antivirals and rituximab) are ineffective.
RESUMO
The food colorant Red 40 is an environmental risk factor for colitis development in mice with increased expression of interleukin (IL)-23. This immune response is mediated by CD4+ T cells, but mechanistic insights into how these CD4+ T cells trigger and perpetuate colitis have remained elusive. Here, using single-cell transcriptomic analysis, we found that several CD4+ T-cell subsets are present in the intestines of colitic mice, including an interferon (IFN)-γ-producing subset. In vivo challenge of primed mice with Red 40 promoted rapid activation of CD4+ T cells and caused marked intestinal epithelial cell (IEC) apoptosis that was attenuated by depletion of CD4+ cells and blockade of IFN-γ. Ex vivo experiments showed that intestinal CD4+ T cells from colitic mice directly promoted apoptosis of IECs and intestinal enteroids. CD4+ T cell-mediated cytotoxicity was contact-dependent and required FasL, which promoted caspase-dependent cell death in target IECs. Genetic ablation of IFN-γ constrained IL-23- and Red 40-induced colitis development, and blockade of IFN-γ inhibited epithelial cell death in vivo. These results advance the understanding of the mechanisms regulating colitis development caused by IL-23 and food colorants and identify IFN-γ+ cytotoxic CD4+ T cells as a new potential therapeutic target for colitis.
Assuntos
Linfócitos T CD4-Positivos , Colite , Corantes de Alimentos , Interleucina-23 , Animais , Linfócitos T CD4-Positivos/imunologia , Colite/induzido quimicamente , Colite/imunologia , Corantes de Alimentos/efeitos adversos , Interferon gama/metabolismo , Interleucina-23/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Most people infected by EBV acquire specific immunity, which then controls latent infection throughout their life. Immune surveillance of EBV-infected cells by cytotoxic CD4+ T cells has been recognized; however, the molecular mechanism of generating cytotoxic effector T cells of the CD4+ subset remains poorly understood. Here we compared phenotypic features and the transcriptome of EBV-specific effector-memory CD4+ T cells and CD8+ T cells in mice and found that both T cell types show cytotoxicity and, to our surprise, widely similar gene expression patterns relating to cytotoxicity. Similar to cytotoxic CD8+ T cells, EBV-specific cytotoxic CD4+ T cells from human peripheral blood expressed T-bet, Granzyme B, and Perforin and upregulated the degranulation marker, CD107a, immediately after restimulation. Furthermore, T-bet expression in cytotoxic CD4+ T cells was highly correlated with Granzyme B and Perforin expression at the protein level. Thus, differentiation of EBV-specific cytotoxic CD4+ T cells is possibly controlled by mechanisms shared by cytotoxic CD8+ T cells. T-bet-mediated transcriptional regulation may explain the similarity of cytotoxic effector differentiation between CD4+ T cells and CD8+ T cells, implicating that this differentiation pathway may be directed by environmental input rather than T cell subset.
RESUMO
CD4+ T cells are crucial in cytomegalovirus (CMV) infection, but their role in infection remains unclear. The heterogeneity and potential functions of CMVpp65-reactivated CD4+ T cell subsets isolated from human peripheral blood, as well as their potential interactions, were analyzed by single-cell RNA-seq and T cell receptor (TCR) sequencing. Tregs comprised the largest population of these reactivated cells, and analysis of Treg gene expression showed transcripts associated with both inflammatory and inhibitory functions. The detailed phenotypes of CMV-reactivated CD4+ cytotoxic T1 (CD4+ CTL1), CD4+ cytotoxic T2 (CD4+ CTL2), and recently activated CD4+ T (Tra) cells were analyzed in single cells. Assessment of the TCR repertoire of CMV-reactivated CD4+ T cells confirmed the clonal expansion of stimulated CD4+ CTL1 and CD4+ CTL2 cells, which share a large number of TCR repertoires. This study provides clues for resolving the functions of CD4+ T cell subsets and their interactions during CMV infection. The specific cell groups defined in this study can provide resources for understanding T cell responses to CMV infection.
Assuntos
Linfócitos T CD4-Positivos/imunologia , Infecções por Citomegalovirus/imunologia , RNA-Seq/métodos , Receptores de Antígenos de Linfócitos T/genética , Análise de Célula Única/métodos , Citomegalovirus/imunologia , Genes Codificadores dos Receptores de Linfócitos T , HumanosRESUMO
Myalgic encephalomyelitis or chronic fatigue syndrome (ME/CFS) affects approximately 1% of the general population. It is a chronic, disabling, multi-system disease for which there is no effective treatment. This is probably related to the limited knowledge about its origin. Here, we summarized the current knowledge about the pathogenesis of ME/CFS and revisit the immunopathobiology of Epstein-Barr virus (EBV) infection. Given the similarities between EBV-associated autoimmune diseases and cancer in terms of poor T cell surveillance of cells with EBV latency, expanded EBV-infected cells in peripheral blood and increased antibodies against EBV, we hypothesize that there could be a common etiology generated by cells with EBV latency that escape immune surveillance. Albeit inconclusive, multiple studies in patients with ME/CFS have suggested an altered cellular immunity and augmented Th2 response that could result from mechanisms of evasion to some pathogens such as EBV, which has been identified as a risk factor in a subset of ME/CFS patients. Namely, cells with latency may evade the immune system in individuals with genetic predisposition to develop ME/CFS and in consequence, there could be poor CD4 T cell immunity to mitogens and other specific antigens, as it has been described in some individuals. Ultimately, we hypothesize that within ME/CFS there is a subgroup of patients with DRB1 and DQB1 alleles that could confer greater susceptibility to EBV, where immune evasion mechanisms generated by cells with latency induce immunodeficiency. Accordingly, we propose new endeavors to investigate if anti-EBV therapies could be effective in selected ME/CFS patients.
Assuntos
Infecções por Vírus Epstein-Barr/etiologia , Síndrome de Fadiga Crônica/etiologia , Herpesvirus Humano 4/patogenicidade , Antígenos Virais/imunologia , Linfócitos B/imunologia , Linfócitos B/virologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Infecções por Vírus Epstein-Barr/imunologia , Infecções por Vírus Epstein-Barr/virologia , Síndrome de Fadiga Crônica/imunologia , Síndrome de Fadiga Crônica/virologia , Predisposição Genética para Doença , Antígenos HLA-D/imunologia , Herpesvirus Humano 4/imunologia , Humanos , Imunidade Celular , Ativação Linfocitária , Modelos ImunológicosRESUMO
IgG4-related disease (IgG4-RD) is a systemic condition of unknown cause characterized by highly fibrotic lesions, with dense lymphoplasmacytic infiltrates containing a preponderance of IgG4-expressing plasma cells. CD4+ T cells and B cells constitute the major inflammatory cell populations in IgG4-RD lesions. IgG4-RD patients with active, untreated disease show a marked expansion of plasmablasts in the circulation. Although the therapeutic depletion of B cells suggests a role for these cells in the disease, a direct role for B cells or IgG4 in the pathogenesis of IgG4-RD is yet to be demonstrated. Among the CD4+ T-cell subsets, Th2 cells were initially thought to contribute to IgG4-RD pathogenesis, but many previous studies were confounded by the concomitant history of allergic diseases in the patients studied and the failure to use multi-color staining to definitively identify T-cell subsets in tissue samples. More recently, using an unbiased approach to characterize CD4+ T-cell subsets in patients with IgG4-RD - based on their clonal expansion and ability to infiltrate affected tissue sites - CD4+ CTLs have been identified as the major CD4+ T-cell subset in disease lesions as well as in the circulation. CD4+ CTLs in affected tissues secrete pro-fibrotic cytokines including IL-1ß, TGF-ß1, and IFN-γ as well as cytolytic molecules such as perforin and granzymes A and B. In this review, we examine possible mechanisms by which activated B cells and plasmablasts may collaborate with the expanded CD4+ CTLs in driving the fibrotic pathology of the disease and describe the lacunae in the field and in our understanding of IgG4-RD pathogenesis.
Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Evolução Clonal/imunologia , Citotoxicidade Imunológica , Suscetibilidade a Doenças , Imunoglobulina G/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Comunicação Celular , Citocinas/metabolismo , Fibrose , Humanos , Switching de Imunoglobulina/genética , Switching de Imunoglobulina/imunologia , Ativação LinfocitáriaRESUMO
CD4+ T cells with cytotoxic activity (CD4 CTL) have been observed in various immune responses. These cells are characterized by their ability to secrete granzyme B and perforin and to kill the target cells in an MHC class II-restricted fashion. Although CD4 CTLs were once thought to be an in vitro artifact associated with long-term culturing, they have since been identified in vivo and shown to play important roles in antiviral and antitumor immunity, as well as in inflammation. Functional characterization of CD4 CTL suggests their potential significance for therapeutic purposes. However, in order to develop effective CD4 CTL therapy it is necessary to understand the differentiation and generation of these cells. Although the mechanisms regulating development of various CD4+ Th subsets have been clarified in terms of the cytokine and transcription factor requirement, the CD4 CTL differentiation mechanism remains elusive. These cells are thought to be most closely related to Th1 cells secreting IFNγ and regulated by eomesodermin and/or T-bet transcription factors for their differentiation. However, our studies and those of others have identified CD4 CTLs within other CD4+ T cell subsets, including naïve T cells. We have identified class I-restricted T cell-associated molecule as a marker of CD4 CTL and, by using this marker, we detected a subset of naïve T cells that have the potential to differentiate into CD4 CTL. CD4 CTL develops at sites of infections as well as inflammation. In this review, we summarize recent findings about the generation of CD4 CTL and propose a model with several differentiation pathways.
RESUMO
CD4+ T cells represent an entire arm of the immune system that has hitherto been incompletely understood, but their potential to act as both helper and effector may make them optimal protagonists in immunotherapeutic approaches to treat cancer. Cytokine therapy can activate this population in a manner that ensures maximal diversification of effector function for a robust immune response.