Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.151
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 186(4): 803-820.e25, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36738734

RESUMO

Complex diseases often involve the interplay between genetic and environmental factors. Charcot-Marie-Tooth type 2 neuropathies (CMT2) are a group of genetically heterogeneous disorders, in which similar peripheral neuropathology is inexplicably caused by various mutated genes. Their possible molecular links remain elusive. Here, we found that upon environmental stress, many CMT2-causing mutant proteins adopt similar properties by entering stress granules (SGs), where they aberrantly interact with G3BP and integrate into SG pathways. For example, glycyl-tRNA synthetase (GlyRS) is translocated from the cytoplasm into SGs upon stress, where the mutant GlyRS perturbs the G3BP-centric SG network by aberrantly binding to G3BP. This disrupts SG-mediated stress responses, leading to increased stress vulnerability in motoneurons. Disrupting this aberrant interaction rescues SG abnormalities and alleviates motor deficits in CMT2D mice. These findings reveal a stress-dependent molecular link across diverse CMT2 mutants and provide a conceptual framework for understanding genetic heterogeneity in light of environmental stress.


Assuntos
Doença de Charcot-Marie-Tooth , Proteínas com Motivo de Reconhecimento de RNA , Grânulos de Estresse , Animais , Camundongos , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/metabolismo , Doença de Charcot-Marie-Tooth/patologia , Citoplasma , Neurônios Motores , Proteínas com Motivo de Reconhecimento de RNA/metabolismo
2.
Cell ; 176(1-2): 56-72.e15, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30612743

RESUMO

Local translation regulates the axonal proteome, playing an important role in neuronal wiring and axon maintenance. How axonal mRNAs are localized to specific subcellular sites for translation, however, is not understood. Here we report that RNA granules associate with endosomes along the axons of retinal ganglion cells. RNA-bearing Rab7a late endosomes also associate with ribosomes, and real-time translation imaging reveals that they are sites of local protein synthesis. We show that RNA-bearing late endosomes often pause on mitochondria and that mRNAs encoding proteins for mitochondrial function are translated on Rab7a endosomes. Disruption of Rab7a function with Rab7a mutants, including those associated with Charcot-Marie-Tooth type 2B neuropathy, markedly decreases axonal protein synthesis, impairs mitochondrial function, and compromises axonal viability. Our findings thus reveal that late endosomes interact with RNA granules, translation machinery, and mitochondria and suggest that they serve as sites for regulating the supply of nascent pro-survival proteins in axons.


Assuntos
Endossomos/fisiologia , Biossíntese de Proteínas/fisiologia , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Axônios/metabolismo , Endossomos/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , RNA/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/fisiologia , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/fisiologia , Ribossomos/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/fisiologia , proteínas de unión al GTP Rab7
3.
Am J Hum Genet ; 110(8): 1394-1413, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37467750

RESUMO

DExD/H-box RNA helicases (DDX/DHX) are encoded by a large paralogous gene family; in a subset of these human helicase genes, pathogenic variation causes neurodevelopmental disorder (NDD) traits and cancer. DHX9 encodes a BRCA1-interacting nuclear helicase regulating transcription, R-loops, and homologous recombination and exhibits the highest mutational constraint of all DDX/DHX paralogs but remains unassociated with disease traits in OMIM. Using exome sequencing and family-based rare-variant analyses, we identified 20 individuals with de novo, ultra-rare, heterozygous missense or loss-of-function (LoF) DHX9 variant alleles. Phenotypes ranged from NDDs to the distal symmetric polyneuropathy axonal Charcot-Marie-Tooth disease (CMT2). Quantitative Human Phenotype Ontology (HPO) analysis demonstrated genotype-phenotype correlations with LoF variants causing mild NDD phenotypes and nuclear localization signal (NLS) missense variants causing severe NDD. We investigated DHX9 variant-associated cellular phenotypes in human cell lines. Whereas wild-type DHX9 was restricted to the nucleus, NLS missense variants abnormally accumulated in the cytoplasm. Fibroblasts from an individual with an NLS variant also showed abnormal cytoplasmic DHX9 accumulation. CMT2-associated missense variants caused aberrant nucleolar DHX9 accumulation, a phenomenon previously associated with cellular stress. Two NDD-associated variants, p.Gly411Glu and p.Arg761Gln, altered DHX9 ATPase activity. The severe NDD-associated variant p.Arg141Gln did not affect DHX9 localization but instead increased R-loop levels and double-stranded DNA breaks. Dhx9-/- mice exhibited hypoactivity in novel environments, tremor, and sensorineural hearing loss. All together, these results establish DHX9 as a critical regulator of mammalian neurodevelopment and neuronal homeostasis.


Assuntos
Doença de Charcot-Marie-Tooth , Transtornos do Neurodesenvolvimento , Animais , Humanos , Camundongos , Linhagem Celular , Doença de Charcot-Marie-Tooth/genética , RNA Helicases DEAD-box/genética , Diclorodifenil Dicloroetileno , DNA Helicases , Mamíferos , Proteínas de Neoplasias/genética
4.
Proc Natl Acad Sci U S A ; 120(44): e2313010120, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37878717

RESUMO

Inter-organelle contact sites between mitochondria and lysosomes mediate the crosstalk and bidirectional regulation of their dynamics in health and disease. However, mitochondria-lysosome contact sites and their misregulation have not been investigated in peripheral sensory neurons. Charcot-Marie-Tooth type 2B disease is an autosomal dominant axonal neuropathy affecting peripheral sensory neurons caused by mutations in the GTPase Rab7. Using live super-resolution and confocal time-lapse microscopy, we showed that mitochondria-lysosome contact sites dynamically form in the soma and axons of peripheral sensory neurons. Interestingly, Charcot-Marie-Tooth type 2B mutant Rab7 led to prolonged mitochondria-lysosome contact site tethering preferentially in the axons of peripheral sensory neurons, due to impaired Rab7 GTP hydrolysis-mediated contact site untethering. We further generated a Charcot-Marie-Tooth type 2B mutant Rab7 knock-in mouse model which exhibited prolonged axonal mitochondria-lysosome contact site tethering and defective downstream axonal mitochondrial dynamics due to impaired Rab7 GTP hydrolysis as well as fragmented mitochondria in the axon of the sciatic nerve. Importantly, mutant Rab7 mice further demonstrated preferential sensory behavioral abnormalities and neuropathy, highlighting an important role for mutant Rab7 in driving degeneration of peripheral sensory neurons. Together, this study identifies an important role for mitochondria-lysosome contact sites in the pathogenesis of peripheral neuropathy.


Assuntos
Doença de Charcot-Marie-Tooth , Proteínas rab de Ligação ao GTP , Animais , Camundongos , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7 , Doença de Charcot-Marie-Tooth/metabolismo , Células Receptoras Sensoriais/metabolismo , Mutação , Mitocôndrias/metabolismo , Lisossomos/metabolismo , Guanosina Trifosfato/metabolismo
5.
EMBO J ; 40(8): e103811, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33644875

RESUMO

HSP27 is a human molecular chaperone that forms large, dynamic oligomers and functions in many aspects of cellular homeostasis. Mutations in HSP27 cause Charcot-Marie-Tooth (CMT) disease, the most common inherited disorder of the peripheral nervous system. A particularly severe form of CMT disease is triggered by the P182L mutation in the highly conserved IxI/V motif of the disordered C-terminal region, which interacts weakly with the structured core domain of HSP27. Here, we observed that the P182L mutation disrupts the chaperone activity and significantly increases the size of HSP27 oligomers formed in vivo, including in motor neurons differentiated from CMT patient-derived stem cells. Using NMR spectroscopy, we determined that the P182L mutation decreases the affinity of the HSP27 IxI/V motif for its own core domain, leaving this binding site more accessible for other IxI/V-containing proteins. We identified multiple IxI/V-bearing proteins that bind with higher affinity to the P182L variant due to the increased availability of the IxI/V-binding site. Our results provide a mechanistic basis for the impact of the P182L mutation on HSP27 and suggest that the IxI/V motif plays an important, regulatory role in modulating protein-protein interactions.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Proteínas de Choque Térmico/química , Chaperonas Moleculares/química , Adulto , Sítios de Ligação , Células Cultivadas , Células HeLa , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Simulação de Dinâmica Molecular , Neurônios Motores/citologia , Neurônios Motores/metabolismo , Mutação de Sentido Incorreto , Ligação Proteica , Multimerização Proteica
6.
Brain ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38938188

RESUMO

Charcot-Marie-Tooth (CMT) disease is a neuromuscular disorder affecting the peripheral nervous system. The diagnostic yield in demyelinating CMT (CMT1) is typically ∼80-95%, of which at least 60% is due to the PMP22 gene duplication. The remainder of CMT1 is more genetically heterogeneous. We used whole exome and whole genome sequencing data included in the GENESIS database to investigate novel causal genes and mutations in a cohort of ∼2,670 individuals with CMT neuropathy. A recurrent heterozygous missense variant p.Thr1424Met in the recently described CMT gene ITPR3, encoding IP3R3 (inositol 1,4,5-trisphosphate receptor 3) was identified. This previously reported p.Thr1424Met change was present in 33 affected individuals from nine unrelated families from multiple populations, representing an unusual recurrence rate at a mutational hotspot, strengthening the gene-disease relationship (GnomADv4 allele frequency 1.76e-6). Sanger sequencing confirmed the co-segregation of the CMT phenotype with the presence of the mutation in autosomal dominant and de novo inheritance patterns, including a four-generation family with multiple affected second-degree cousins. Probands from all families presented with slow nerve conduction velocities, matching the diagnostic category of CMT1. Remarkably, we observed a uniquely variable clinical phenotype for age at onset and phenotype severity in p.Thr1424Met carrying patients, even within families. Finally, we present data supportive of a dominant-negative effect of the p.Thr1424Met mutation with associated changes in protein expression in patient-derived cells.

7.
Brain ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39021275

RESUMO

Dominant mutations in the calcium-permeable ion channel TRPV4 (transient receptor potential vanilloid 4) cause diverse and largely distinct channelopathies, including inherited forms of neuromuscular disease, skeletal dysplasias, and arthropathy. Pathogenic TRPV4 mutations cause gain of ion channel function and toxicity that can be rescued by small molecule TRPV4 antagonists in cellular and animal models, suggesting that TRPV4 antagonism could be therapeutic for patients. Numerous variants in TRPV4 have been detected with targeted and whole exome/genome sequencing, but for the vast majority, their pathogenicity remains unclear. Here, we used a combination of clinical information and experimental structure-function analyses to evaluate 30 TRPV4 variants across various functional protein domains. We report clinical features of seven patients with TRPV4 variants of unknown significance and provide extensive functional characterization of these and an additional 17 variants, including structural position, ion channel function, subcellular localization, expression level, cytotoxicity, and protein-protein interactions. We find that gain-of-function mutations within the TRPV4 intracellular ankyrin repeat domain target charged amino acid residues important for RhoA interaction, whereas ankyrin repeat domain residues outside of the RhoA interface have normal or reduced ion channel activity. We further identify a cluster of gain-of-function variants within the intracellular intrinsically disordered region that may cause toxicity via altered interactions with membrane lipids. In contrast, assessed variants in the transmembrane domain and other regions of the intrinsically disordered region do not cause gain of function and are likely benign. Clinical features associated with gain of function and cytotoxicity include congenital onset of disease, vocal cord weakness, and motor predominant disease, whereas patients with likely benign variants often demonstrated late-onset and sensory-predominant disease. These results provide a framework for assessing additional TRPV4 variants with respect to likely pathogenicity, which will yield critical information to inform patient selection for future clinical trials for TRPV4 channelopathies.

8.
Brain ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538210

RESUMO

Biallelic SORD mutations cause one of the most frequent forms of recessive hereditary neuropathy, estimated to affect approximately 10,000 patients in North America and Europe alone. Pathogenic SORD loss-of-function changes in the encoded enzyme sorbitol dehydrogenase result in abnormally high sorbitol levels in cells and serum. How sorbitol accumulation leads to peripheral neuropathy remains to be elucidated. A reproducible animal model for SORD neuropathy is essential to illuminate the pathogenesis of SORD deficiency and for preclinical studies of potential therapies. Therefore, we have generated a Sord knockout (KO), Sord-/-, Sprague Dawley rat, to model the human disease and to investigate the pathophysiology underlying SORD deficiency. We have characterized the phenotype in these rats with a battery of behavioral tests as well as biochemical, physiological, and comprehensive histological examinations. Sord-/- rats had remarkably increased levels of sorbitol in serum, cerebrospinal fluid (CSF), and peripheral nerve. Moreover, serum from Sord-/- rats contained significantly increased levels of neurofilament light chain, NfL, an established biomarker for axonal degeneration. Motor performance significantly declined in Sord-/- animals starting at ∼7 months of age. Gait analysis evaluated with video motion tracking confirmed abnormal gait patterns in the hindlimbs. Motor nerve conduction velocities of the tibial nerves were slowed. Light and electron microscopy of the peripheral nervous system revealed degenerating myelinated axons, de- and remyelinated axons, and a likely pathognomonic finding - enlarged "ballooned" myelin sheaths. These findings mainly affected myelinated motor axons; myelinated sensory axons were largely spared. In summary, Sord-/- rats develop a motor-predominant neuropathy that closely resembles the human phenotype. Our studies revealed novel significant aspects of SORD deficiency, and this model will lead to an improved understanding of the pathophysiology and the therapeutic options for SORD neuropathy.

9.
Brain ; 147(6): 2114-2127, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38227798

RESUMO

Mutations in the Microrchidia CW-type zinc finger 2 (MORC2) GHKL ATPase module cause a broad range of neuropathies, such as Charcot-Marie-Tooth disease type 2Z; however, the aetiology and therapeutic strategy are not fully understood. Previously, we reported that the Morc2a p.S87L mouse model exhibited neuropathy and muscular dysfunction through DNA damage accumulation. In the present study, we analysed the gene expression of Morc2a p.S87L mice and designated the primary causing factor. We investigated the pathological pathway using Morc2a p.S87L mouse embryonic fibroblasts and human fibroblasts harbouring MORC2 p.R252W. We subsequently assessed the therapeutic effect of gene therapy administered to Morc2a p.S87L mice. This study revealed that Morc2a p.S87L causes a protein synthesis defect, resulting in the loss of function of Morc2a and high cellular apoptosis induced by high hydroxyl radical levels. We considered the Morc2a GHKL ATPase domain as a therapeutic target because it simultaneously complements hydroxyl radical scavenging and ATPase activity. We used the adeno-associated virus (AAV)-PHP.eB serotype, which has a high CNS transduction efficiency, to express Morc2a or Morc2a GHKL ATPase domain protein in vivo. Notably, AAV gene therapy ameliorated neuropathy and muscular dysfunction with a single treatment. Loss-of-function characteristics due to protein synthesis defects in Morc2a p.S87L were also noted in human MORC2 p.S87L or p.R252W variants, indicating the correlation between mouse and human pathogenesis. In summary, CMT2Z is known as an incurable genetic disorder, but the present study demonstrated its mechanisms and treatments based on established animal models. This study demonstrates that the Morc2a p.S87L variant causes hydroxyl radical-mediated neuropathy, which can be rescued through AAV-based gene therapy.


Assuntos
Terapia Genética , Animais , Humanos , Camundongos , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/metabolismo , Doença de Charcot-Marie-Tooth/terapia , Dependovirus/genética , Fibroblastos/metabolismo , Terapia Genética/métodos , Radical Hidroxila/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Brain ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38917025

RESUMO

Dominant missense mutations of the calcium-permeable cation channel TRPV4 cause Charcot-Marie-Tooth disease (CMT) type 2C and two forms of distal spinal muscular atrophy. These conditions are collectively referred to as TRPV4-related neuromuscular disease and share features of motor greater than sensory dysfunction and frequent vocal fold weakness. Pathogenic variants lead to gain of ion channel function that can be rescued by TRPV4 antagonists in cellular and animal models. As small molecule TRPV4 antagonists have proven safe in trials for other disease indications, channel inhibition is a promising therapeutic strategy for TRPV4 patients. However, the current knowledge of the clinical features and natural history of TRPV4-related neuromuscular disease is insufficient to enable rational clinical trial design. To address these issues, we developed a TRPV4 patient database and administered a TRPV4-specific patient questionnaire. Here, we report demographic and clinical information, including CMT examination scores (CMTES), from 68 patients with known pathogenic TRPV4 variants, 40 of whom also completed the TRPV4 patient questionnaire. TRPV4 patients showed a bimodal age of onset, with the largest peak occurring in the first 2 years of life. Compared to CMT1A patients, TRPV4 patients showed distinct symptoms and signs, manifesting more ambulatory difficulties and more frequent involvement of proximal arm and leg muscles. Although patients reported fewer sensory symptoms, sensory dysfunction was often detected clinically. Many patients were affected by vocal fold weakness (55%) and shortness of breath (55%), and 11% required ventilatory support. Skeletal abnormalities were common, including scoliosis (64%), arthrogryposis (33%), and foot deformities. Strikingly, patients with infantile onset of disease showed less sensory involvement and less progression of symptoms. These results highlight distinctive clinical features in TRPV4 patients, including motor-predominant disease, proximal arm and leg weakness, severe ambulatory difficulties, vocal fold weakness, respiratory dysfunction, and skeletal involvement. In addition, patients with infantile onset of disease appeared to have a distinct phenotype with less apparent disease progression based on CMTES. These collective observations indicate that clinical trial design for TRPV4-related neuromuscular disease should include outcome measures that reliably capture non-length dependent motor dysfunction, vocal fold weakness, and respiratory disease.

11.
Cell Mol Life Sci ; 81(1): 279, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916773

RESUMO

Mutations in the human INF2 gene cause autosomal dominant focal segmental glomerulosclerosis (FSGS)-a condition characterized by podocyte loss, scarring, and subsequent kidney degeneration. To understand INF2-linked pathogenicity, we examined the effect of pathogenic INF2 on renal epithelial cell lines and human primary podocytes. Our study revealed an increased incidence of mitotic cells with surplus microtubule-organizing centers fostering multipolar spindle assembly, leading to nuclear abnormalities, particularly multi-micronucleation. The levels of expression of exogenous pathogenic INF2 were similar to those of endogenous INF2. The aberrant nuclear phenotypes were observed regardless of the expression method used (retrovirus infection or plasmid transfection) or the promoter (LTR or CMV) used, and were absent with exogenous wild type INF2 expression. This indicates that the effect of pathogenic INF2 is not due to overexpression or experimental cell manipulation, but instead to the intrinsic properties of pathogenic INF2. Inactivation of the INF2 catalytic domain prevented aberrant nuclei formation. Pathogenic INF2 triggered the translocation of the transcriptional cofactor MRTF into the nucleus. RNA sequencing revealed a profound alteration in the transcriptome that could be primarily attributed to the sustained activation of the MRTF-SRF transcriptional complex. Cells eventually underwent mitotic catastrophe and death. Reducing MRTF-SRF activation mitigated multi-micronucleation, reducing the extent of cell death. Our results, if validated in animal models, could provide insights into the mechanism driving glomerular degeneration in INF2-linked FSGS and may suggest potential therapeutic strategies for impeding FSGS progression.


Assuntos
Forminas , Mitose , Podócitos , Transcriptoma , Humanos , Mitose/genética , Podócitos/metabolismo , Podócitos/patologia , Transcriptoma/genética , Forminas/genética , Forminas/metabolismo , Morte Celular/genética , Glomerulosclerose Segmentar e Focal/genética , Glomerulosclerose Segmentar e Focal/metabolismo , Glomerulosclerose Segmentar e Focal/patologia , Nefropatias/genética , Nefropatias/patologia , Nefropatias/metabolismo , Mutação , Núcleo Celular/metabolismo , Núcleo Celular/genética , Linhagem Celular
12.
J Cell Mol Med ; 28(9): e18293, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38722298

RESUMO

Charcot-Marie-Tooth type 2A (CMT2A) is an inherited sensorimotor neuropathy associated with mutations within the Mitofusin 2 (MFN2) gene. These mutations impair normal mitochondrial functioning via different mechanisms, disturbing the equilibrium between mitochondrial fusion and fission, of mitophagy and mitochondrial axonal transport. Although CMT2A disease causes a significant disability, no resolutive treatment for CMT2A patients to date. In this context, reliable experimental models are essential to precisely dissect the molecular mechanisms of disease and to devise effective therapeutic strategies. The most commonly used models are either in vitro or in vivo, and among the latter murine models are by far the most versatile and popular. Here, we critically revised the most relevant literature focused on the experimental models, providing an update on the mammalian models of CMT2A developed to date. We highlighted the different phenotypic, histopathological and molecular characteristics, and their use in translational studies for bringing potential therapies from the bench to the bedside. In addition, we discussed limitations of these models and perspectives for future improvement.


Assuntos
Doença de Charcot-Marie-Tooth , Modelos Animais de Doenças , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/patologia , Doença de Charcot-Marie-Tooth/terapia , Doença de Charcot-Marie-Tooth/metabolismo , Animais , Humanos , Mutação , Mitocôndrias/metabolismo , Mitocôndrias/genética , Mitocôndrias/patologia , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Camundongos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Dinâmica Mitocondrial/genética
13.
J Biol Chem ; 299(2): 102839, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36581210

RESUMO

Data from gnomAD indicate that a missense mutation encoding the T118M variation in human peripheral myelin protein 22 (PMP22) is found in roughly one of every 75 genomes of western European lineage (1:120 in the overall human population). It is unusual among PMP22 variants that cause Charcot-Marie-Tooth (CMT) disease in that it is not 100% penetrant. Here, we conducted cellular and biophysical studies to determine why T118M PMP22 predisposes humans to CMT, but with only incomplete penetrance. We found that T118M PMP22 is prone to mistraffic but differs even from the WT protein in that increased expression levels do not result in a reduction in trafficking efficiency. Moreover, the T118M mutant exhibits a reduced tendency to form large intracellular aggregates relative to other disease mutants and even WT PMP22. NMR spectroscopy revealed that the structure and dynamics of T118M PMP22 resembled those of WT. These results show that the main consequence of T118M PMP22 in WT/T118M heterozygous individuals is a reduction in surface-trafficked PMP22, unaccompanied by formation of toxic intracellular aggregates. This explains the incomplete disease penetrance and the mild neuropathy observed for WT/T118M CMT cases. We also analyzed BioVU, a biobank linked to deidentified electronic medical records, and found a statistically robust association of the T118M mutation with the occurrence of long and/or repeated episodes of carpal tunnel syndrome. Collectively, our results illuminate the cellular effects of the T118M PMP22 variation leading to CMT disease and indicate a second disorder for which it is a risk factor.


Assuntos
Doença de Charcot-Marie-Tooth , Proteínas da Mielina , Humanos , Doença de Charcot-Marie-Tooth/genética , Mutação de Sentido Incorreto , Proteínas da Mielina/genética , Predisposição Genética para Doença
14.
J Neurochem ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39072727

RESUMO

Charcot-Marie-Tooth disease type 1E (CMT1E) is an inherited autosomal dominant peripheral neuropathy caused by mutations in the peripheral myelin protein 22 (PMP22) gene. The identical leucine-to-proline (L16P) amino acid substitution in PMP22 is carried by the Trembler J (TrJ) mouse and is found in CMT1E patients presenting with early-onset disease. Peripheral nerves of patients diagnosed with CMT1E display a complex and varied histopathology, including Schwann cell hyperproliferation, abnormally thin myelin, axonal degeneration, and subaxonal morphological changes. Here, we have taken an unbiased data-independent analysis (DIA) mass spectrometry (MS) approach to quantify proteins from nerves of 3-week-old, age and genetic strain-matched wild-type (Wt) and heterozygous TrJ mice. Nerve proteins were dissolved in lysis buffer and digested into peptide fragments, and protein groups were quantified by liquid chromatography-mass spectrometry (LC-MS). A linear model determined statistically significant differences between the study groups, and proteins with an adjusted p-value of less than 0.05 were deemed significant. This untargeted proteomics approach identified 3759 quality-controlled protein groups, of which 884 demonstrated differential expression between the two genotypes. Gene ontology (GO) terms related to myelin and myelin maintenance confirm published data while revealing a previously undetected prominent decrease in peripheral myelin protein 2. The dataset corroborates the described pathophysiology of TrJ nerves, including elevated activity in the proteasome-lysosomal pathways, alterations in protein trafficking, and an increase in three macrophage-associated proteins. Previously unrecognized perturbations in RNA processing pathways and GO terms were also discovered. Proteomic abnormalities that overlap with other human neurological disorders besides CMT include Lafora Disease and Amyotrophic Lateral Sclerosis. Overall, this study confirms and extends current knowledge on the cellular pathophysiology in TrJ neuropathic nerves and provides novel insights for future examinations. Recognition of shared pathomechanisms across discrete neurological disorders offers opportunities for innovative disease-modifying therapeutics that could be effective for distinct neuropathies.

15.
Neurobiol Dis ; 195: 106501, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38583640

RESUMO

Charcot-Marie-Tooth disease (CMT) is a genetic peripheral neuropathy caused by mutations in many functionally diverse genes. The aminoacyl-tRNA synthetase (ARS) enzymes, which transfer amino acids to partner tRNAs for protein synthesis, represent the largest protein family genetically linked to CMT aetiology, suggesting pathomechanistic commonalities. Dominant intermediate CMT type C (DI-CMTC) is caused by YARS1 mutations driving a toxic gain-of-function in the encoded tyrosyl-tRNA synthetase (TyrRS), which is mediated by exposure of consensus neomorphic surfaces through conformational changes of the mutant protein. In this study, we first showed that human DI-CMTC-causing TyrRSE196K mis-interacts with the extracellular domain of the BDNF receptor TrkB, an aberrant association we have previously characterised for several mutant glycyl-tRNA synthetases linked to CMT type 2D (CMT2D). We then performed temporal neuromuscular assessments of YarsE196K mice modelling DI-CMT. We determined that YarsE196K homozygotes display a selective, age-dependent impairment in in vivo axonal transport of neurotrophin-containing signalling endosomes, phenocopying CMT2D mice. This impairment is replicated by injection of recombinant TyrRSE196K, but not TyrRSWT, into muscles of wild-type mice. Augmenting BDNF in DI-CMTC muscles, through injection of recombinant protein or muscle-specific gene therapy, resulted in complete axonal transport correction. Therefore, this work identifies a non-cell autonomous pathomechanism common to ARS-related neuropathies, and highlights the potential of boosting BDNF levels in muscles as a therapeutic strategy.


Assuntos
Transporte Axonal , Fator Neurotrófico Derivado do Encéfalo , Doença de Charcot-Marie-Tooth , Modelos Animais de Doenças , Animais , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Camundongos , Tirosina-tRNA Ligase/genética , Tirosina-tRNA Ligase/metabolismo , Humanos , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Receptor trkB/metabolismo , Receptor trkB/genética , Mutação
16.
Genet Med ; 26(6): 101117, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38459834

RESUMO

PURPOSE: We describe 3 families with Charcot-Marie-Tooth neuropathy (CMT), harboring a homozygous NDUFS6 NM_004553.6:c.309+5G>A variant previously linked to fatal Leigh syndrome. We aimed to characterize clinically and molecularly the newly identified patients and understand the mechanism underlying their milder phenotype. METHODS: The patients underwent extensive clinical examinations. Exome sequencing was done in 4 affected individuals. The functional effect of the c.309+5G>A variant was investigated in patient-derived EBV-transformed lymphoblasts at the complementary DNA, protein, and mitochondrial level. Alternative splicing was evaluated using complementary DNA long-read sequencing. RESULTS: All patients presented with early-onset, slowly progressive axonal CMT, and nystagmus; some exhibited additional central nervous system symptoms. The c.309+5G>A substitution caused the expression of aberrantly spliced transcripts and negligible levels of the canonical transcript. Immunoblotting showed reduced levels of mutant isoforms. No detectable defects in mitochondrial complex stability or bioenergetics were found. CONCLUSION: We expand the clinical spectrum of NDUFS6-related mitochondrial disorders to include axonal CMT, emphasizing the clinical and pathophysiologic overlap between these 2 clinical entities. This work demonstrates the critical role that alternative splicing may play in modulating the severity of a genetic disorder, emphasizing the need for careful consideration when interpreting splice variants and their implications on disease prognosis.


Assuntos
Processamento Alternativo , Doença de Charcot-Marie-Tooth , Doenças Mitocondriais , Humanos , Processamento Alternativo/genética , Masculino , Feminino , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/patologia , Doenças Mitocondriais/genética , Doenças Mitocondriais/patologia , Criança , NADH Desidrogenase/genética , Linhagem , Mutação/genética , Fenótipo , Sequenciamento do Exoma , Doença de Leigh/genética , Doença de Leigh/patologia , Mitocôndrias/genética , Mitocôndrias/patologia , Complexo I de Transporte de Elétrons/genética , Adulto , Pré-Escolar , Adolescente
17.
Biochem Soc Trans ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38979632

RESUMO

Underexpression, overexpression, and point mutations in peripheral myelin protein 22 (PMP22) cause most cases of Charcot-Marie-Tooth disease (CMTD). While its exact functions remain unclear, PMP22 is clearly essential for formation and maintenance of healthy myelin in the peripheral nervous system. This review explores emerging evidence for roles of PMP22 in cholesterol homeostasis. First, we highlight dysregulation of lipid metabolism in PMP22-based forms of CMTD and recently-discovered interactions between PMP22 and cholesterol biosynthesis machinery. We then examine data that demonstrates PMP22 and cholesterol co-traffic in cells and co-localize in lipid rafts, including how disease-causing PMP22 mutations result in aberrations in cholesterol localization. Finally, we examine roles for interactions between PMP22 and ABCA1 in cholesterol efflux. Together, this emerging body of evidence suggests that PMP22 plays a role in facilitating enhanced cholesterol synthesis and trafficking necessary for production and maintenance of healthy myelin.

18.
J Neurol Neurosurg Psychiatry ; 95(5): 434-441, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37918904

RESUMO

BACKGROUND: Shoe inserts, orthopaedic shoes, ankle-foot orthoses (AFOs) are important devices in Charcot-Marie-Tooth disease (CMT) management, but data about use, benefits and tolerance are scanty. METHODS: We administered to Italian CMT Registry patients an online ad hoc questionnaire investigating use, complications and perceived benefit/tolerability/emotional distress of shoe inserts, orthopaedic shoes, AFOs and other orthoses/aids. Patients were also asked to fill in the Quebec User Evaluation of Satisfaction with assistive Technology questionnaire, rating satisfaction with currently used AFO and related services. RESULTS: We analysed answers from 266 CMT patients. Seventy per cent of subjects were prescribed lower limb orthoses, but 19% did not used them. Overall, 39% of subjects wore shoe inserts, 18% orthopaedic shoes and 23% AFOs. Frequency of abandonment was high: 24% for shoe inserts, 28% for orthopaedic shoes and 31% for AFOs. Complications were reported by 59% of patients and were more frequently related to AFOs (69%). AFO users experienced greater emotional distress and reduced tolerability as compared with shoe inserts (p<0.001) and orthopaedic shoes (p=0.003 and p=0.045, respectively). Disease severity, degree of foot weakness, customisation and timing for customisation were determinant factors in AFOs' tolerability. Quality of professional and follow-up services were perceived issues. CONCLUSIONS: The majority of CMT patients is prescribed shoe inserts, orthopaedic shoes and/or AFOs. Although perceived benefits and tolerability are rather good, there is a high rate of complications, potentially inappropriate prescriptions and considerable emotional distress, which reduce the use of AFOs. A rational, patient-oriented and multidisciplinary approach to orthoses prescription must be encouraged.


Assuntos
Doença de Charcot-Marie-Tooth , Humanos , Doença de Charcot-Marie-Tooth/terapia , Aparelhos Ortopédicos , Extremidade Inferior , Sapatos , Gravidade do Paciente
19.
Artigo em Inglês | MEDLINE | ID: mdl-38744462

RESUMO

Inherited peripheral neuropathies (IPNs) encompass a clinically and genetically heterogeneous group of disorders causing length-dependent degeneration of peripheral autonomic, motor and/or sensory nerves. Despite gold-standard diagnostic testing for pathogenic variants in over 100 known associated genes, many patients with IPN remain genetically unsolved. Providing patients with a diagnosis is critical for reducing their 'diagnostic odyssey', improving clinical care, and for informed genetic counselling. The last decade of massively parallel sequencing technologies has seen a rapid increase in the number of newly described IPN-associated gene variants contributing to IPN pathogenesis. However, the scarcity of additional families and functional data supporting variants in potential novel genes is prolonging patient diagnostic uncertainty and contributing to the missing heritability of IPNs. We review the last decade of IPN disease gene discovery to highlight novel genes, structural variation and short tandem repeat expansions contributing to IPN pathogenesis. From the lessons learnt, we provide our vision for IPN research as we anticipate the future, providing examples of emerging technologies, resources and tools that we propose that will expedite the genetic diagnosis of unsolved IPN families.

20.
Artigo em Inglês | MEDLINE | ID: mdl-38839277

RESUMO

BACKGROUND: We aimed to investigate the clinical features of a large cohort of patients with myelin protein zero (MPZ)-related neuropathy, focusing on the five main mutation clusters across Italy. METHODS: We retrospectively gathered a minimal data set of clinical information in a series of patients with these frequent mutations recruited among Italian Charcot-Marie-Tooth (CMT) registry centres, including disease onset/severity (CMTES-CMT Examination Score), motor/sensory symptoms and use of orthotics/aids. RESULTS: We collected data from 186 patients: 60 had the p.Ser78Leu variant ('classical' CMT1B; from Eastern Sicily), 42 the p.Pro70Ser (CMT2I; mainly from Lombardy), 38 the p.Thr124Met (CMT2J; from Veneto), 25 the p.Ser44Phe (CMT2I; from Sardinia) and 21 the p.Asp104ThrfsX13 (mild CMT1B; from Apulia) mutation. Disease severity (CMTES) was higher (p<0.001) in late-onset axonal forms (p.Thr124Met=9.2±6.6; p.Ser44Phe=7.8±5.7; p.Pro70Ser=7.6±4.8) compared with p.Ser78Leu (6.1±3.5) patients. Disease progression (ΔCMTES/year) was faster in the p.Pro70Ser cohort (0.8±1.0), followed by p.Ser44Phe (0.7±0.4), p.Thr124Met (0.4±0.5) and p.Ser78Leu (0.2±0.4) patients. Disease severity (CMTES=1.2±1.5), progression (ΔCMTES/year=0.1±0.4) and motor involvement were almost negligible in p.Asp104ThrfsX13 patients, who, however, frequently (78%, p<0.001) complained of neuropathic pain. In the other four clusters, walking difficulties were reported by 69-85% of patients, while orthotic and walking aids use ranged between 40-62% and 16-28%, respectively. CONCLUSIONS: This is the largest MPZ (and late-onset CMT2) cohort ever collected, reporting clinical features and disease progression of 186 patients from five different clusters across Italy. Our findings corroborate the importance of differentiating between 'classical' childhood-onset demyelinating, late-onset axonal and mild MPZ-related neuropathy, characterised by different pathomechanisms, in view of different therapeutic targets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA