RESUMO
Mutations in AIFM1, encoding for apoptosis-inducing factor (AIF), cause AUNX1, an X-linked neurologic disorder with late-onset auditory neuropathy (AN) and peripheral neuropathy. Despite significant research on AIF, there are limited animal models with the disrupted AIFM1 representing the corresponding phenotype of human AUNX1, characterized by late-onset hearing loss and impaired auditory pathways. Here, we generated an Aifm1 p.R450Q knock-in mouse model (KI) based on the human AIFM1 p.R451Q mutation. Hemizygote KI male mice exhibited progressive hearing loss from P30 onward, with greater severity at P60 and stabilization until P210. Additionally, muscle atrophy was observed at P210. These phenotypic changes were accompanied by a gradual reduction in the number of spiral ganglion neuron cells (SGNs) at P30 and ribbons at P60, which coincided with the translocation of AIF into the nucleus starting from P21 and P30, respectively. The SGNs of KI mice at P210 displayed loss of cytomembrane integrity, abnormal nuclear morphology, and dendritic and axonal demyelination. Furthermore, the inner hair cells and myelin sheath displayed abnormal mitochondrial morphology, while fibroblasts from KI mice showed impaired mitochondrial function. In conclusion, we successfully generated a mouse model recapitulating AUNX1. Our findings indicate that disruption of Aifm1 induced the nuclear translocation of AIF, resulting in the impairment in the auditory pathway.
Assuntos
Fator de Indução de Apoptose , Modelos Animais de Doenças , Perda Auditiva , Animais , Humanos , Masculino , Camundongos , Fator de Indução de Apoptose/genética , Fator de Indução de Apoptose/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/genética , Técnicas de Introdução de Genes , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Internas/patologia , Perda Auditiva/genética , Perda Auditiva/patologia , Perda Auditiva/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/patologia , Atrofia Muscular/metabolismo , Mutação , Transporte Proteico , Gânglio Espiral da Cóclea/metabolismo , Gânglio Espiral da Cóclea/patologiaRESUMO
In inflammatory neuropathies, oxidative stress results in neuronal and Schwann cell (SC) death promoting early neurodegeneration and clinical disability. Treatment with the short-chain fatty acid propionate showed a significant immunoregulatory and neuroprotective effect in multiple sclerosis patients. Similar effects have been described for patients with chronic inflammatory demyelinating polyneuropathy (CIDP). Therefore, Schwann cell's survival and dorsal root ganglia (DRG) outgrowth were evaluated in vitro after propionate treatment and application of H2O2 or S-nitroso-N-acetyl-D-L-penicillamine (SNAP) to evaluate neuroprotection. In addition, DRG resistance was evaluated by the application of oxidative stress by SNAP ex vivo after in vivo propionate treatment. Propionate treatment secondary to SNAP application on DRG served as a neuroregeneration model. Histone acetylation as well as expression of the free fatty acid receptor (FFAR) 2 and 3, histone deacetylases, neuroregeneration markers, and antioxidative mediators were investigated. ß-hydroxybutyrate was used as a second FFAR3 ligand, and pertussis toxin was used as an FFAR3 antagonist. FFAR3, but not FFAR2, expression was evident on SC and DRG. Propionate-mediated activation of FFAR3 and histone 3 hyperacetylation resulted in increased catalase expression and increased resistance to oxidative stress. In addition, propionate treatment resulted in enhanced neuroregeneration with concomitant growth-associated protein 43 expression. We were able to demonstrate an antioxidative and neuroregenerative effect of propionate on SC and DRG mediated by FFAR3-induced histone acetylases expression. Our results describe a pathway to achieve neuroprotection/neuroregeneration relevant for patients with immune-mediated neuropathies.
Assuntos
Histonas , Propionatos , Humanos , Propionatos/farmacologia , Histonas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Neuroproteção , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Gânglios Espinais/metabolismoRESUMO
Guillain-Barré syndrome (GBS) is a rare yet potentially life-threatening disorder of the peripheral nervous system (PNS), characterized by substantial clinical heterogeneity. Although classified as an autoimmune disease, the immune mechanisms underpinning distinct GBS subtypes remain largely elusive. Traditionally considered primarily antibody-mediated, the pathophysiology of GBS lacks clarity, posing challenges in the development of targeted and effective treatments. Nevertheless, recent investigations have substantially expanded our understanding of the disease, revealing an involvement of autoreactive T cell immunity in a major subtype of GBS patients and opening new biomedical perspectives. This review highlights these discoveries and offers a comprehensive overview of current knowledge about GBS, including ongoing challenges in disease management.
RESUMO
Charcot-Marie-Tooth (CMT) disease is a neuromuscular disorder affecting the peripheral nervous system. The diagnostic yield in demyelinating CMT (CMT1) is typically â¼80-95%, of which at least 60% is due to the PMP22 gene duplication. The remainder of CMT1 is more genetically heterogeneous. We used whole exome and whole genome sequencing data included in the GENESIS database to investigate novel causal genes and mutations in a cohort of â¼2,670 individuals with CMT neuropathy. A recurrent heterozygous missense variant p.Thr1424Met in the recently described CMT gene ITPR3, encoding IP3R3 (inositol 1,4,5-trisphosphate receptor 3) was identified. This previously reported p.Thr1424Met change was present in 33 affected individuals from nine unrelated families from multiple populations, representing an unusual recurrence rate at a mutational hotspot, strengthening the gene-disease relationship (GnomADv4 allele frequency 1.76e-6). Sanger sequencing confirmed the co-segregation of the CMT phenotype with the presence of the mutation in autosomal dominant and de novo inheritance patterns, including a four-generation family with multiple affected second-degree cousins. Probands from all families presented with slow nerve conduction velocities, matching the diagnostic category of CMT1. Remarkably, we observed a uniquely variable clinical phenotype for age at onset and phenotype severity in p.Thr1424Met carrying patients, even within families. Finally, we present data supportive of a dominant-negative effect of the p.Thr1424Met mutation with associated changes in protein expression in patient-derived cells.
RESUMO
Aquaporin-4 antibody-positive neuromyelitis optica spectrum disorder (AQP4-NMOSD) is an autoimmune disease characterized by suboptimal recovery from attacks and long-term disability. Experimental data suggest that AQP4 antibodies can disrupt neuroplasticity, a fundamental driver of brain recovery. A well-established method to assess brain LTP is through intermittent theta-burst stimulation (iTBS). This study aimed to explore neuroplasticity in AQP4-NMOSD patients by examining long-term potentiation (LTP) through iTBS. We conducted a proof-of-principle study including 8 patients with AQP4-NMOSD, 8 patients with multiple sclerosis (MS), and 8 healthy controls (HC) in which iTBS was administered to induce LTP-like effects. iTBS-induced LTP exhibited significant differences among the 3 groups (p: 0.006). Notably, AQP4-NMOSD patients demonstrated impaired plasticity compared to both HC (p = 0.01) and pwMS (p = 0.02). This pilot study provides the first in vivo evidence supporting impaired neuroplasticity in AQP4-NMOSD patients. Impaired cortical plasticity may hinder recovery following attacks suggesting a need for targeted rehabilitation strategies.
Assuntos
Aquaporina 4 , Neuromielite Óptica , Estimulação Magnética Transcraniana , Humanos , Estimulação Magnética Transcraniana/métodos , Aquaporina 4/metabolismo , Aquaporina 4/imunologia , Feminino , Neuromielite Óptica/fisiopatologia , Neuromielite Óptica/imunologia , Adulto , Masculino , Pessoa de Meia-Idade , Córtex Cerebral/fisiologia , Plasticidade Neuronal/fisiologia , Projetos Piloto , Potenciação de Longa Duração/fisiologia , Autoanticorpos/imunologiaRESUMO
BACKGROUND: Demyelinating diseases, including multiple sclerosis (MS) and spinal cord injury (SCI), lead to significant neurological deficits primarily due to the loss of oligodendrocytes (OLs). Bone Morphogenetic Protein 7 (BMP7) is expressed abundantly in the central nervous system and previous studies showed its protective effect in reducing OL loss. In this study, we aim to explore BMP7's potential as a biomarker and therapeutic target for demyelinating diseases by investigating its expression and effects on OLs and myelin sheath integrity. METHOD: We analyzed multiple Gene Expression Omnibus datasets for BMP7 expression profiles in demyelinating conditions such as MS and SCI. Experimentally, we employed a BMP7 knockdown model in rat spinal cords using adeno-associated virus8 vectors to specifically reduce BMP7 expression. Western blotting, immunofluorescence, and Nissl staining were used to assess the effect on OL and other types of cells. The structure of myelin sheath and locomotor function were evaluated using transmission electron microscopy and BBB scores, and statistical analysis included ROC curves and ANOVA to evaluate BMP7's diagnostic and therapeutic potential. RESULTS: BMP7 expression consistently decreased across various demyelinating models, and BMP7 knockdown led to increased OL apoptosis through the Smad1/5/9 pathway, with no apparent effect on other cell types. This reduction in OLs was associated with myelin degeneration, axonal damage, and impaired motor function. CONCLUSION: The study confirms BMP7's significant involvement in the pathophysiology of demyelinating diseases and supports its potential as a therapeutic target or biomarker. Future research should focus on therapeutic strategies to enhance BMP7 function and further investigate the mechanisms by which BMP7 supports myelin integrity.
RESUMO
Demyelinating diseases are often caused by a variety of triggers, including immune responses, viral infections, malnutrition, hypoxia, or genetic factors, all of which result in the loss of myelin in the nervous system. The accumulation of myelin debris at the lesion site leads to neuroinflammation and inhibits remyelination; therefore, it is crucial to promptly remove the myelin debris. Initially, Fc and complement receptors on cellular surfaces were the primary clearance receptors responsible for removing myelin debris. However, subsequent studies have unveiled the involvement of additional receptors, including Mac-2, TAM receptors, and the low-density lipoprotein receptor-related protein 1, in facilitating the removal process. In addition to microglia and macrophages, which serve as the primary effector cells in the disease phase, a variety of other cell types such as astrocytes, Schwann cells, and vascular endothelial cells have been demonstrated to engage in the phagocytosis of myelin debris. Furthermore, we have concluded that oligodendrocyte precursor cells, as myelination precursor cells, also exhibit this phagocytic capability. Moreover, our research group has innovatively identified the low-density lipoprotein receptor as a potential phagocytic receptor for myelin debris. In this article, we discuss the functional processes of various phagocytes in demyelinating diseases. We also highlight the alterations in signaling pathways triggered by phagocytosis, and provide a comprehensive overview of the various phagocytic receptors involved. Such insights are invaluable for pinpointing potential therapeutic strategies for the treatment of demyelinating diseases by targeting phagocytosis.
RESUMO
Demyelinating diseases such as multiple sclerosis (MS) cause myelin degradation and oligodendrocyte death, resulting in the release of toxic iron and iron-induced oxidative stress. Astrocytes have a large capacity for iron transport and storage, however the role of astrocytic iron homeostasis in demyelinating disorders is not completely understood. Here we investigate whether astrocytic iron metabolism modulates neuroinflammation, oligodendrocyte survival, and oxidative stress following demyelination. To this aim, we conditionally knock out ferritin in astrocytes and induce experimental autoimmune encephalomyelitis (EAE), an autoimmune-mediated model of demyelination. Ferritin ablation in astrocytes reduced the severity of disease in both the acute and chronic phases. The day of onset, peak disease severity, and cumulative clinical score were all significantly reduced in ferritin KO animals. This corresponded to better performance on the rotarod and increased mobility in ferritin KO mice. Furthermore, the spinal cord of ferritin KO mice display decreased numbers of reactive astrocytes, activated microglia, and infiltrating lymphocytes. Correspondingly, the size of demyelinated lesions, iron accumulation, and oxidative stress were attenuated in the CNS of ferritin KO subjects, particularly in white matter regions of the spinal cord. Thus, deleting ferritin in astrocytes reduced neuroinflammation, oxidative stress, and myelin deterioration in EAE animals. Collectively, these findings suggest that iron storage in astrocytes is a potential therapeutic target to lessen CNS inflammation and myelin loss in autoimmune demyelinating diseases.
Assuntos
Astrócitos , Encefalomielite Autoimune Experimental , Ferritinas , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo , Medula Espinal , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Estresse Oxidativo/fisiologia , Ferritinas/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia , Camundongos , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Feminino , Modelos Animais de DoençasRESUMO
In central nervous system (CNS), demyelination is a pathological process featured with a loss of myelin sheaths around axons, which is responsible for the diseases of multiple sclerosis, neuromyelitis optica, and so on. Transforming growth factor-beta1 (TGF-ß1) is a multifunctional cytokine participating in abundant physiological and pathological processes in CNS. However, the effects of TGF-ß1 on CNS demyelinating disease and its underlying mechanisms are controversial and not well understood. Herein, we evaluated the protective potential of TGF-ß1 in a rodent demyelinating model established by lysophosphatidylcholine (LPC) injection. It was identified that supplement of TGF-ß1 evidently rescued the cognitive deficit and motor dysfunction in LPC modeling mice assessed by novel object recognition and balance beam behavioral tests. Besides, quantified by luxol fast blue staining, immunofluorescence, and western blot, administration of TGF-ß1 was found to significantly ameliorate the demyelinating lesion and reactive astrogliosis by suppressing p38 MAPK pathway. Mechanistically, the results of in vitro experiments indicated that treatment of TGF-ß1 could directly promote the differentiation and migration of cultured oligodendrocytes. Our study revealed that modulating TGF-ß1 activity might serve as a promising and innovative therapeutic strategy in CNS demyelinating diseases.
Assuntos
Lesões Encefálicas , Substância Branca , Animais , Camundongos , Gliose/prevenção & controle , Inflamação , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Roedores , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Substância Branca/metabolismoRESUMO
Vitamin D deficiency is a risk factor for developing multiple sclerosis. The PrevANZ trial was conducted to determine if vitamin D3 supplementation can prevent recurrent disease activity in people with a first demyelinating event. As a sub-study of this trial, we investigated the effect of supplementation on peripheral immune cell gene expression. Participants were randomized to 1000, 5000 or 10,000 international units daily of vitamin D3 or placebo. Peripheral blood was collected at baseline and 12 weeks and sent for ribonucleic acid sequencing. Datasets from 55 participants were included. Gene expression was modulated by high dose supplementation. Antigen presentation and viral response pathways were upregulated. Oxidative phosphorylation and immune signaling pathways, including tumor necrosis factor-alpha and interleukin-17 signaling, were downregulated. Overall, vitamin D3 supplementation for 12 weeks modulated the peripheral immune cell transcriptome with induction of anti-inflammatory gene expression profiles. Our results support a dose-dependent effect of vitamin D3 supplementation on immune gene expression.
Assuntos
Colecalciferol , Deficiência de Vitamina D , Humanos , Colecalciferol/farmacologia , Suplementos Nutricionais , Método Duplo-Cego , Fatores de Risco , Transcriptoma , Deficiência de Vitamina D/tratamento farmacológico , Deficiência de Vitamina D/genéticaRESUMO
Demyelination and failure of remyelination in the central nervous system (CNS) characterize a number of neurological disorders. Spontaneous remyelination in demyelinating diseases is limited, as oligodendrocyte precursor cells (OPCs), which are often present in demyelinated lesions in abundance, mostly fail to differentiate into oligodendrocytes, the myelinating cells in the CNS. In addition to OPCs, the lesions are assembled numbers of activated resident microglia/infiltrated macrophages; however, the mechanisms and potential role of interactions between the microglia/macrophages and OPCs are poorly understood. Here, we generated a transcriptional profile of exosomes from activated microglia, and found that miR-615-5p was elevated. miR-615-5p bound to 3'UTR of myelin regulator factor (MYRF), a crucial myelination transcription factor expressed in oligodendrocyte lineage cells. Mechanistically, exosomes from activated microglia transferred miR-615-5p to OPCs, which directly bound to MYRF and inhibited OPC maturation. Furthermore, an effect of AAV expressing miR-615-5p sponge in microglia was tested in experimental autoimmune encephalomyelitis (EAE) and cuprizone (CPZ)-induced demyelination model, the classical mouse models of multiple sclerosis. miR-615-5p sponge effectively alleviated disease progression and promoted remyelination. This study identifies miR-615-5p/MYRF as a new target for the therapy of demyelinating diseases.
Assuntos
Encefalomielite Autoimune Experimental , Exossomos , MicroRNAs , Bainha de Mielina , Animais , Camundongos , Exossomos/metabolismo , Microglia/metabolismo , MicroRNAs/genéticaRESUMO
Chronic inflammatory demyelinating polyneuropathy (CIDP), a common and treatable autoimmune neuropathy, is frequently misdiagnosed. The aim of this study is to evaluate the relationship between immunological markers and clinical outcome measures in a mixed cohort of patients with typical CIDP and CIDP variants at different disease stages. Twenty-three typical, 16 multifocal and five distal CIDP patients were included. Twenty-five sex and age-matched healthy controls and 12 patients with Charcot-Marie-Tooth type 1A (CMT1A) disease served as controls. Peripheral B-cell populations were analyzed by flow cytometry. IL6, IL10, TNFA mRNA and mir-21, mir-146a, and mir-155-5p expression levels were evaluated by real-time polymerase chain reaction in peripheral blood mononuclear cells (PBMC) and/or skin biopsy specimens. Results were then assessed for a possible association with clinical disability scores and intraepidermal nerve fiber densities (IENFD) in the distal leg. We detected a significant reduction in naive B cells (Pâ ≤â 0.001), plasma cells (Pâ ≤â 0.001) and regulatory B cells (Pâ <â 0.05), and an elevation in switched memory B cells (Pâ ≤â 0.001) in CIDP compared to healthy controls. CMT1A and CIDP patients had comparable B-cell subset distribution. CIDP cases had significantly higher TNFA and IL10 gene expression levels in PBMC compared to healthy controls (Pâ <â 0.05 and Pâ ≤â 0.01, respectively). IENFDs in the distal leg showed a moderate negative correlation with switched memory B-cell ratios (râ =â -0.51, Pâ <â 0.05) and a moderate positive correlation with plasma cell ratios (râ =â 0.46, Pâ <â 0.05). INCAT sum scores showed a moderate positive correlation with IL6 gene expression levels in PBMC (râ =â 0.54, Pâ <â 0.05). Altered B-cell homeostasis and IL10 and TNFA gene expression levels imply chronic antigen exposure and overactivity in the humoral immune system, and seem to be a common pathological pathway in both typical CIDP and CIDP variants.
Assuntos
Subpopulações de Linfócitos B , Polirradiculoneuropatia Desmielinizante Inflamatória Crônica , Humanos , Polirradiculoneuropatia Desmielinizante Inflamatória Crônica/genética , Polirradiculoneuropatia Desmielinizante Inflamatória Crônica/diagnóstico , Leucócitos Mononucleares/metabolismo , Citocinas/genética , Subpopulações de Linfócitos B/metabolismo , Interleucina-10/genética , Interleucina-6/genéticaRESUMO
The overlapping of two or more types of neural autoantibodies in one patient has increasingly been documented in recent years. The coexistence of myelin oligodendrocyte glycoprotein (MOG) and N-methyl-d-aspartate receptor (NMDAR) antibodies is most common, which leads to a unique condition known as the MOG antibody and NMDAR antibody overlapping syndrome (MNOS). Here, we have reviewed the pathogenesis, clinical manifestations, paraclinical features, and treatment of MNOS. Forty-nine patients with MNOS were included in this study. They were young males with a median onset age of 23 years. No tumors were observed in the patients, and 24 of them reported prodromal symptoms. The most common clinical presentations were psychiatric symptoms (35/49) and seizures (25/49). Abnormalities on magnetic resonance imaging involved the brainstem (11/49), cerebellum (9/49), and parietal lobe (9/49). Most patients mostly responded to immunotherapy and had a good long-term prognosis. However, the overall recurrence rate of MNOS was higher than that of mono antibody-positive diseases. The existence of concurrent NMDAR antibodies should be suspected in patients with MOG antibody-associated disease having psychiatric symptoms, seizures, movement disorders, or autonomic dysfunction. Similarly, serum MOG antibody testing should be performed when patients with anti-NMDAR encephalitis present with atypical clinical manifestations, such as visual impairment and limb weakness, and neuroradiological findings, such as optic nerve, spinal cord, or infratentorial involvement or meningeal enhancement. Early detection of the syndrome and prompt treatment can be beneficial for these patients, and maintenance immunosuppressive therapy is recommended due to the high overall recurrence rate of the syndrome.
Assuntos
Encefalite Antirreceptor de N-Metil-D-Aspartato , Receptores de N-Metil-D-Aspartato , Humanos , Masculino , Adulto Jovem , Encefalite Antirreceptor de N-Metil-D-Aspartato/diagnóstico , Encefalite Antirreceptor de N-Metil-D-Aspartato/complicações , Autoanticorpos , Glicoproteína Mielina-Oligodendrócito , Convulsões/complicações , SíndromeRESUMO
Tumefactive demyelinating lesions (TDL) are a rare occurrence among inflammatory demyelinating diseases of the central nervous system, distinguished by tumor-like lesions exceeding 2 cm in diameter. While various etiologies have been associated with TDL, only a limited number of case reports document the coexistence of acute disseminated encephalomyelitis (ADEM) and TDL. Here, we present the case of a female diagnosed with dengue fever two weeks prior, who subsequently developed left hemiparesis and encephalopathy. Both her brain magnetic resonance imaging (MRI) and clinical course align with the characteristics of tumefactive ADEM.
Assuntos
Vírus da Dengue , Dengue , Encefalomielite Aguda Disseminada , Imageamento por Ressonância Magnética , Humanos , Encefalomielite Aguda Disseminada/diagnóstico por imagem , Encefalomielite Aguda Disseminada/virologia , Encefalomielite Aguda Disseminada/patologia , Feminino , Dengue/complicações , Dengue/virologia , Dengue/diagnóstico por imagem , Dengue/patologia , Vírus da Dengue/patogenicidade , Vírus da Dengue/genética , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Encéfalo/virologiaRESUMO
Demyelinating central nervous system (CNS) disorders are a diverse group of conditions characterised by damage to the myelin sheath. These include not only primary autoimmune disorders such as multiple sclerosis (MS) or neuromyelitis optica spectrum disorder (NMOSD), but secondary demyelinating conditions caused by infection and neoplasm, where immunosuppressive therapy may worsen the condition or delay definitive treatment. We describe a young man with an unusual presentation of CNS demyelinating disease associated with HIV infection and positive syphilis serology. MRI brain and spine showed a demyelinating tumefactive lesion accompanied by longitudinal extensive transverse myelitis, and we initially suspected NMOSD. However anti-aquaporin 4 antibodies were negative, going against a diagnosis of NMOSD and he then tested positive for HIV which led us to consider TB myelitis, neurosyphilis and HIV vacuolar myelopathy. He was commenced on highly active retroviral therapy and treated with steroids and immunosuppression. He did not respond to treatment as expected so a brain biopsy was required to narrow the differential. Brain biopsy initially raised the possibility of progressive multifocal leukoencephalopathy which is associated with infection with the John Cunningham (JC) virus. Ultimately JC Virus PCR on the biopsy was negative, the final report suggesting nonspecific active chronic inflammation. We detail his clinical course and the diagnostic challenges along the way.
Assuntos
Infecções por HIV , Imageamento por Ressonância Magnética , Humanos , Masculino , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Infecções por HIV/imunologia , Adulto , Encéfalo/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/virologia , Terapia Antirretroviral de Alta Atividade , Neurossífilis/tratamento farmacológico , Neurossífilis/complicações , Neurossífilis/virologia , Neurossífilis/diagnóstico , Neurossífilis/patologia , Neurossífilis/diagnóstico por imagem , Mielite Transversa/virologia , Mielite Transversa/tratamento farmacológico , Mielite Transversa/diagnóstico por imagem , Mielite Transversa/patologia , Doenças Desmielinizantes/virologia , Doenças Desmielinizantes/patologia , Doenças Desmielinizantes/diagnóstico por imagem , Doenças Desmielinizantes/tratamento farmacológico , Doenças Desmielinizantes/imunologiaRESUMO
BACKGROUND: It is unknown whether people with aquaporin-4 antibody positive (AQP4-IgG+) neuromyelitis optica spectrum disorder (NMOSD) experience a prodrome, although a few cases report AQP4 + serology up to 16 years before the first attack. OBJECTIVES: To evaluate whether individuals with AQP4-IgG + NMOSD have prodromal neurologic symptoms preceding the first attack. METHODS: We reviewed medical records of participants meeting the 2015 diagnostic criteria for AQP4-IgG + NMOSD from four demyelinating disease centres in the Canadian NMOSD cohort study CANOPTICS. We searched for neurologic symptoms occurring at least 30 days before the first attack. RESULTS: Of 116 participants with NMOSD, 17 (14.7%) had prodromal neurologic symptoms. The median age was 48 years (range 25-83) at first attack; 16 (94.1%) were female. Participants presented with numbness/tingling (n = 9), neuropathic pain (n = 5), visual disturbance (n = 4), tonic spasms (n = 2), Lhermitte sign (n = 2), severe headache (n = 2), incoordination (n = 2), weakness (n = 1), psychosis (n = 1) or seizure (n = 1). Of eight who underwent magnetic resonance imaging (MRI) brain, orbits and/or spinal cord, five had T2 lesions. Within 1.5-245 months (median 14) from the onset of prodromal neurologic symptoms, participants experienced their first NMOSD attack. CONCLUSIONS: One in seven people with NMOSD experienced neurologic symptoms before their first attack. Further investigation of a possible NMOSD prodrome is warranted.
Assuntos
Aquaporina 4 , Neuromielite Óptica , Sintomas Prodrômicos , Humanos , Feminino , Neuromielite Óptica/imunologia , Adulto , Pessoa de Meia-Idade , Idoso , Masculino , Idoso de 80 Anos ou mais , Aquaporina 4/imunologia , Autoanticorpos/sangue , Imunoglobulina G/sangueRESUMO
BACKGROUND: Conventional magnetic resonance imaging (MRI) does not account for all disability in multiple sclerosis. OBJECTIVE: The objective was to assess the ability of graph metrics from diffusion-based structural connectomes to explain motor function beyond conventional MRI in early demyelinating clinically isolated syndrome (CIS). METHODS: A total of 73 people with CIS underwent conventional MRI, diffusion-weighted imaging and clinical assessment within 3 months from onset. A total of 28 healthy controls underwent MRI. Structural connectomes were produced. Differences between patients and controls were explored; clinical associations were assessed in patients. Linear regression models were compared to establish relevance of graph metrics over conventional MRI. RESULTS: Local efficiency (p = 0.045), clustering (p = 0.034) and transitivity (p = 0.036) were reduced in patients. Higher assortativity was associated with higher Expanded Disability Status Scale (EDSS) (ß = 74.9, p = 0.026) scores. Faster timed 25-foot walk (T25FW) was associated with higher assortativity (ß = 5.39, p = 0.026), local efficiency (ß = 27.1, p = 0.041) and clustering (ß = 36.1, p = 0.032) and lower small-worldness (ß = -3.27, p = 0.015). Adding graph metrics to conventional MRI improved EDSS (p = 0.045, ΔR2 = 4) and T25FW (p < 0.001, ΔR2 = 13.6) prediction. CONCLUSION: Graph metrics are relevant early in demyelination. They show differences between patients and controls and have relationships with clinical outcomes. Segregation (local efficiency, clustering, transitivity) was particularly relevant. Combining graph metrics with conventional MRI better explained disability.
Assuntos
Conectoma , Doenças Desmielinizantes , Humanos , Masculino , Feminino , Adulto , Doenças Desmielinizantes/diagnóstico por imagem , Doenças Desmielinizantes/fisiopatologia , Pessoa de Meia-Idade , Imagem de Difusão por Ressonância Magnética , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/fisiopatologia , Avaliação da Deficiência , Imageamento por Ressonância Magnética , Adulto Jovem , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Encéfalo/patologiaRESUMO
We report the case of a patient suffering from biopsy-proven relapsing tumefactive demyelinating lesions (TDLs) of the central nervous system who had five relapses in 16 years. No signs/symptoms suggestive of alternative pathologies emerged during the follow-up. A limited benefit was observed with intravenous (IV) high-dose steroids, while both plasma exchange and IV immunoglobulin G (IgG) administration were ineffective. A long-lasting (9 years) but transient clinical stabilization was obtained with cyclophosphamide. Our case supports the view that recurrent TDL is a relapsing brain inflammation not belonging to multiple sclerosis (MS) or myelin oligodendrocyte glycoprotein (MOG)-/AQP4-associated disorders. TDL concept and clinical features should be revised.
RESUMO
BACKGROUND: Myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) can cause optic neuritis, transverse myelitis, or acute disseminated encephalomyelitis (ADEM). Immunotherapy is often used for relapsing disease, but there is variability in treatment decisions. OBJECTIVE: The objective was to determine the annualized relapse rates (ARRs) and incidence rate ratios (IRRs) compared to pre-treatment and relapse-freedom probabilities among patients receiving steroids, B-cell depletion (BCD), intravenous immunoglobulin (IVIG), and mycophenolate mofetil (MMF). METHODS: Retrospective cohort study of patients with relapsing MOGAD treated at Mass General Brigham. ARRs and IRRs compared to pre-treatment, and relapse-freedom probability and odds ratio for relapse-freedom compared to prednisone were calculated. RESULTS: A total of 88 patients met the inclusion criteria. The ARR on IVIG was 0.13 (95% confidence interval (CI) = 0.06-0.27) and the relapse-freedom probability after at least 6 months of therapy was 72%. The ARR on BCD was 0.51 (95% CI = 0.34-0.77), and the relapse-freedom probability was 33%. The ARR on MMF was 0.32 (95% CI = 0.19-0.53) and the relapse-freedom probability was 49%. In pediatric-onset disease, MMF had the lowest ARRs (0.15, 95% CI = 0.07-0.33). CONCLUSION: IVIG had the lowest ARRs and IRRs compared to pre-treatment and the highest relapse-freedom odds ratio compared to prednisone, while BCD had the lowest. In pediatric-onset MOGAD, MMF had the lowest ARRs.
Assuntos
Autoanticorpos , Imunoglobulinas Intravenosas , Humanos , Criança , Glicoproteína Mielina-Oligodendrócito , Estudos Retrospectivos , Prednisona , Recidiva Local de Neoplasia , Ácido Micofenólico , Imunoterapia , RecidivaRESUMO
BACKGROUND: Multiple sclerosis (MS) may occur before the age of 18. Differentiation between paediatric MS (PedMS) and other demyelinating syndromes (ODSs) is challenging. In adult with MS, the kappa free light chain (KFLC) index has proven to be a reliable marker of intrathecal Ig synthesis. OBJECTIVE: To assess the diagnostic value of the KFLC index in a cohort of patients with paediatric-onset, inflammatory disorders of the CNS. METHODS: We included 73 patients and divided them into four groups: PedMS (n = 16), ODS (n = 17), encephalitis and/or inflammatory epilepsy (EE, n = 15), and controls without inflammatory CNS diseases (n = 25). The KFLC index was calculated and compared with the results of the oligoclonal bands determination. RESULTS: The KFLC index was higher in the PedMS group (median (interquartile range (IQR)): 150.9 (41.02-310.6)) than in the ODS (3.37 (2.22-8.11)), the EE (5.53 (2.31-25.81)) and the control group (3.41 (2.27-5.08)), respectively. The best KFLC index cut-off for differentiating between patients with PedMS and controls was 6.83 (sensitivity: 100%; specificity: 92%). A KFLC index over 93.77 indicated that the patient is very likely to have PedMS (sensitivity: 68%; specificity: 100%). CONCLUSION: The KFLC index is a reliable tool for the diagnosis of MS in a paediatric population.