Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Cell Mol Med ; 28(14): e18465, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39022816

RESUMO

Lung cancer (LC) is one of the malignancies with the highest incidence and mortality in the world, approximately 85% of which is non-small cell lung cancer (NSCLC). Circular RNAs (circRNAs) exert multiple roles in NSCLC occurrence and development. The sequencing results in previous literature have illustrated that multiple circRNAs exhibit upregulation in NSCLC. We attempted to figure out which circRNA exerts an oncogenic role in NSLCL progression. RT-qPCR evaluated circDHTKD1 level in NSCLC tissue specimens and cells. Reverse transcription as well as RNase R digestion assay evaluated circDHTKD1 circular characterization in NSCLC cells. FISH determined circDHTKD1 subcellular distribution in NSCLC cells. Loss- and gain-of-function assays clarified circDHTKD1 role in NSCLC cell growth, tumour growth and glycolysis. Bioinformatics and RIP and RNA pull-down assessed association of circDHTKD1 with upstream molecule Eukaryotic initiation factor 4A-III (EIF4A3) or downstream molecule phosphofructokinase-1 liver type (PFKL) and insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2) in NSCLC cells. Rescue assays assessed regulatory function of PFKL in circDHTKD1-meidated NSCLC cellular phenotypes. CircDHTKD1 exhibited upregulation and stable circular nature in NSCLC cells. EIF4A3 upregulated circDHTKD1 in NSCLC cells. CircDHTKD1 exerted a promoting influence on NSCLC cell malignant phenotypes and tumour growth. CircDHTKD1 exerted a promoting influence on NSCLC glucose metabolism. CircDHTKD1 exerts a promoting influence on NSCLC glucose metabolism through PFKL upregulation. RIP and RNA pull-down showed that circDHTKD1 could bind to IGF2BP, PFKL could bind to IGF2BP2, and circDHTKD1 promoted the binding of PFKL to IGF2BP2. In addition, RT-qPCR showed that IGF2BP2 knockdown promoted PFKL mRNA degradation, suggesting that IGF2BP2 stabilized PFKL in NSCLC cells. CircDHTKD1 exhibits upregulation in NSCLC. We innovatively validate that EIF4A3-triggered circDHTKD1 upregulation facilitates NSCLC glycolysis through recruiting m6A reader IGF2BP2 to stabilize PFKL, which may provide a new direction for seeking targeted therapy plans of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Fator de Iniciação 4A em Eucariotos , Regulação Neoplásica da Expressão Gênica , Glicólise , Neoplasias Pulmonares , RNA Circular , Proteínas de Ligação a RNA , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , RNA Circular/genética , RNA Circular/metabolismo , Glicólise/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Fator de Iniciação 4A em Eucariotos/metabolismo , Fator de Iniciação 4A em Eucariotos/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Camundongos , Camundongos Nus , Masculino , Feminino , RNA Helicases DEAD-box
2.
Mol Cancer ; 23(1): 151, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085875

RESUMO

BACKGROUND: Colorectal cancer (CRC) is the second most common malignant tumor worldwide, and its incidence rate increases annually. Early diagnosis and treatment are crucial for improving the prognosis of patients with colorectal cancer. Circular RNAs are noncoding RNAs with a closed-loop structure that play a significant role in tumor development. However, the role of circular RNAs in CRC is poorly understood. METHODS: The circular RNA hsa_circ_0000467 was screened in CRC circRNA microarrays using a bioinformatics analysis, and the expression of hsa_circ_0000467 in CRC tissues was determined by in situ hybridization. The associations between the expression level of hsa_circ_0000467 and the clinical characteristics of CRC patients were evaluated. Then, the role of hsa_circ_0000467 in CRC growth and metastasis was assessed by CCK8 assay, EdU assay, plate colony formation assay, wound healing assay, and Transwell assay in vitro and in a mouse model of CRC in vivo. Proteomic analysis and western blotting were performed to investigate the effect of hsa_circ_0000467 on c-Myc signaling. Polysome profiling, RT‒qPCR and dual-luciferase reporter assays were performed to determine the effect of hsa_circ_0000467 on c-Myc translation. RNA pull-down, RNA immunoprecipitation (RIP) and immunofluorescence staining were performed to assess the effect of hsa_circ_0000467 on eIF4A3 distribution. RESULTS: In this study, we found that the circular RNA hsa_circ_0000467 is highly expressed in colorectal cancer and is significantly correlated with poor prognosis in CRC patients. In vitro and in vivo experiments revealed that hsa_circ_0000467 promotes the growth and metastasis of colorectal cancer cells. Mechanistically, hsa_circ_0000467 binds eIF4A3 to suppress its nuclear translocation. In addition, it can also act as a scaffold molecule that binds eIF4A3 and c-Myc mRNA to form complexes in the cytoplasm, thereby promoting the translation of c-Myc. In turn, c-Myc upregulates its downstream targets, including the cell cycle-related factors cyclin D2 and CDK4 and the tight junction-related factor ZEB1, and downregulates E-cadherin, which ultimately promotes the growth and metastasis of CRC. CONCLUSIONS: Our findings revealed that hsa_circRNA_0000467 plays a role in the progression of CRC by promoting eIF4A3-mediated c-Myc translation. This study provides a theoretical basis and molecular target for the diagnosis and treatment of CRC.


Assuntos
Proliferação de Células , Neoplasias Colorretais , Fator de Iniciação 4A em Eucariotos , Regulação Neoplásica da Expressão Gênica , Proteínas Proto-Oncogênicas c-myc , RNA Circular , RNA Circular/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Humanos , Fator de Iniciação 4A em Eucariotos/metabolismo , Fator de Iniciação 4A em Eucariotos/genética , Animais , Camundongos , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Progressão da Doença , Linhagem Celular Tumoral , Masculino , Prognóstico , Feminino , Biossíntese de Proteínas , Movimento Celular/genética , Biomarcadores Tumorais/genética , RNA Helicases DEAD-box
3.
Microvasc Res ; 151: 104612, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37839527

RESUMO

BACKGROUND AND OBJECTIVE: Literature has reported that circular RNAs (circRNAs) are crucially associated with diabetic retinopathy (DR). Furthermore, circEHMT1 has been identified to maintain endothelial cell barrier function. This study aimed to investigate the mechanisms that regulate aberrant circEHMT1 expression and its role in the pathogenesis of DR. METHODS: In this study, retinal microvascular endothelial cells were exposed to a high glucose (HG) environment, and subsequently, tube formation and intercellular junction proteins were evaluated. Furthermore, the biological functions of circEHMT1 and its potential regulatory factor, eIF4A3, in microvascular endothelial cells under HG conditions were also assessed. In addition, the regulatory role of eIF4A3 on circEHMT1 expression was confirmed. Moreover, to elucidate the in vivo functions of eIF4A3 and circEHMT1, streptozotocin (STZ) was used to establish a DR model in rats. RESULTS: It was revealed that HG condition decreased circEHMT1 and eIF4A3 expressions and reduced ZO-1, Claudin-5, and Occludin levels in retinal microvascular endothelial cells. Furthermore, it was observed that eIF4A3 could regulate the expression of circEHMT1. Overexpression of eIF4A3 or circEHMT1 under HG conditions improved endothelial cell injury and decreased tube-formation ability. Additionally, in the DR rat model, eIF4A3 overexpression restored circEHMT1 levels and ameliorated retinal vasculature changes. CONCLUSION: Altogether, eIF4A3 regulates circEHMT1 expression, thereby affecting microvascular endothelial cell injury and tube formation. Further understanding the regulatory effect of eIF4A3 on circEHMT1 may provide novel therapeutic targets for DR.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Animais , Ratos , Retinopatia Diabética/metabolismo , Células Endoteliais/metabolismo , Glucose/metabolismo , Retina/metabolismo , Vasos Retinianos/patologia
4.
BMC Cancer ; 24(1): 239, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383334

RESUMO

PURPOSE: The purpose of this study was to explore the expression and potential mechanism of hsa_circ_0005397 in hepatocellular carcinoma progression. METHODS: Quantitative reverse transcription-polymerase chain reaction(qRT-PCR) was used to measure the expression level of hsa_circ_0005397 and EIF4A3 from paired HCC tissues and cell lines. Western Blot (WB) and immunohistochemistry (IHC) were used to verify the protein level of EIF4A3. The specificity of primers was confirmed by agarose gel electrophoresis. Receiver Operating Characteristic (ROC) Curve was drawn to analyze diagnostic value. Actinomycin D and nuclear and cytoplasmic extraction assays were utilized to evaluate the characteristics of hsa_circ_0005397. Cell Counting kit-8 (CCK-8) and colony formation assays were performed to detect cell proliferation. Flow cytometry analysis was used to detect the cell cycle. Transwell assay was performed to determine migration and invasion ability. RNA-binding proteins (RBPs) of hsa_circ_0005397 in HCC were explored using bioinformatics websites. The relationship between hsa_circ_0005397 and Eukaryotic Translation Initiation Factor 4A3 (EIF4A3) was verified by RNA Binding Protein Immunoprecipitation (RIP) assays, correlation and rescue experiments. RESULTS: In this study, hsa_circ_0005397 was found to be significantly upregulated in HCC, and the good diagnostic sensitivity and specificity shown a potential diagnostic capability. Upregulated expression of hsa_circ_0005397 was significantly related to tumor size and stage. Hsa_circ_0005397 was circular structure which more stable than liner mRNA, and mostly distributed in the cytoplasm. Upregulation of hsa_circ_0005397 generally resulted in stronger proliferative ability, clonality, and metastatic potency of HCC cells; its downregulation yielded the opposite results. EIF4A3 is an RNA-binding protein of hsa_circ_0005397, which overexpressed in paired HCC tissues and cell lines. In addition, expression of hsa_circ_0005397 decreased equally when EIF4A3 was depleted. RIP assays and correlation assay estimated that EIF4A3 could interacted with hsa_circ_0005397. Knockdown of EIF4A3 could reverse hsa_circ_0005397 function in HCC progression. CONCLUSIONS: Hsa_circ_0005397 promotes progression of hepatocellular carcinoma through EIF4A3. These research findings may provide novel clinical value for hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , RNA Circular/genética , RNA Circular/metabolismo , Regulação para Baixo , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Fator de Iniciação 4A em Eucariotos/genética , Fator de Iniciação 4A em Eucariotos/metabolismo , RNA Helicases DEAD-box/genética
5.
Metab Brain Dis ; 39(5): 895-907, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38771413

RESUMO

Meningioma is a prevalent intracranial malignancy known for its aggressive growth. Circular RNAs (circRNAs) play a crucial role in the development of various cancers. However, their involvement in meningioma remains understudied. This study aimed to investigate the function and underlying mechanism of hsa_circ_0004872 in meningioma. The molecular expression of hsa_circ_0004872, PD-L1 and EIF4A3 was identified by RT-qPCR and/or western blot assays. Cell viability, migration, and invasion were assessed through CCK-8 and Transwell assays, respectively. Cytotoxicity was determined using an LDH assay, and cell apoptosis was monitored by flow cytometry. The RNA and protein interactions were assessed through RNA-protein immunoprecipitation (RIP) and RNA pull down analyses. Our findings revealed that hsa_circ_0004872 expression was significantly downregulated in both meningioma tissue samples and cells. Overexpression of hsa_circ_0004872 inhibited the proliferation, metastasis, and immune escape of meningioma cells, as well as enhanced the cytotoxicity of CD8+ T cells by suppressing PD-L1. Furthermore, hsa_circ_0004872 directly interacted with EIF4A3, leading to the degradation of PD-L1 mRNA. Finally, inhibiting EIF4A3 improved the proliferation, metastasis, and immune escape of meningioma cells, as well as the cytotoxicity of CD8+ T cells. Our study demonstrated that hsa_circ_0004872 mitigated the proliferation, metastasis,and immune escape of meningioma cells by targeting the EIF4A3/PD-L1 axis. These findings suggested that hsa_circ_0004872 and EIF4A3 might serve as promising biological markers and therapeutic targets for meningioma treatment.


Assuntos
Antígeno B7-H1 , Proliferação de Células , Fator de Iniciação 4A em Eucariotos , Neoplasias Meníngeas , Meningioma , RNA Circular , Meningioma/patologia , Meningioma/imunologia , Meningioma/genética , Meningioma/metabolismo , Humanos , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , RNA Circular/genética , Neoplasias Meníngeas/patologia , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/imunologia , Neoplasias Meníngeas/metabolismo , Fator de Iniciação 4A em Eucariotos/genética , Fator de Iniciação 4A em Eucariotos/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Movimento Celular , Evasão Tumoral , Apoptose , RNA Helicases DEAD-box
6.
Environ Toxicol ; 39(5): 3026-3039, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38317508

RESUMO

Long noncoding RNAs have been reported to be involved in the development of breast cancer. LINC01572 was previously reported to promote the development of various tumors. However, the potential biological function of LINC01572 in breast cancer remains largely unknown. R language was used to perform bioinformatic analysis of The Cancer Genome Atlas data. The expression level of RNAs was examined by RT-qPCR. The effect of knocking down or overexpression LINC01572 in triple-negative breast cancer (TNBC) cell lines was evaluated by detecting cell proliferation, migrant action. RNA immunoprecipitation assay and RNA pull-down assay were performed to explore the regulatory relationship between LINC01572, EIF4A3, and ß-catenin. Bioinformatics analysis identifies LINC01572 as an oncogene of breast cancer. LINC01572 is over-expressed in TNBC tissues and cell lines, correlated with poor clinical prognosis in BC patients. Cell function studies confirmed that LINC01572 facilitated the proliferation and migration of TNBC cells in both vivo and vitro. Mechanistically, ß-catenin mRNA and EIF4A3 combine spatially to form a complex, LINC01572 helps transport this complex from the nucleus to the cytoplasm, thereby facilitating the translation of ß-catenin. Our findings confirm that LINC01572 acts as a tumor promoter and may act as a biomarker in TNBC. In addition, novel molecular regulatory relationships involving LINC01572/EIF4A3/ß-catenin are critical to the development of TNBC, which led to a new understanding of the mechanisms of TNBC progression and shows a new target for precision treatment for TNBC.


Assuntos
MicroRNAs , Neoplasias de Mama Triplo Negativas , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Neoplasias de Mama Triplo Negativas/genética , RNA Mensageiro/genética , Linhagem Celular Tumoral , RNA , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Fator de Iniciação 4A em Eucariotos/genética , Fator de Iniciação 4A em Eucariotos/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo
7.
Mol Neurobiol ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951469

RESUMO

Gliomas are common brain tumors. Despite extensive research, the 5-year survival rate of glioma remains low. Many studies have reported that circular RNAs (circRNAs) play a role in promoting the malignant progression of glioma; however, the role of circ_0059914 in this process remains unclear. In this study, we aimed to investigate the function and underlying mechanism of circ_0059914 in glioma. Western blotting and qRT-PCR were used to determine the levels of circ_0059914, miR-1249, VEGFA, N-cadherin, vimentin, Snail, and EIF4A3. EDU and colony formation assays were conducted to evaluate cell proliferation. Transwell assays were used to explore cell migration and invasion and tube formation assays were used to analyze angiogenesis. RNA immunoprecipitation (RIP) and dual-luciferase reporter assays were used to explore the relationship between EIF4A3, circ_0059914, miR-1249, and VEGFA. A xenograft tumor assay was performed to determine the role of circ_0059914 in vivo. Circ_0059914 expression was upregulated in gliomas. Knockdown of gliomal circ_0059914 expression reduced the proliferation, migration, invasion, epithelial-mesenchymal transition (EMT), angiogenesis, and growth of glioma cells in vivo. Circ_0059914 sponged miR-1249, and miR-1249 inhibition reversed the circ_0059914 knockdown-mediated effects in glioma cells. VEGFA was found to be a target gene of miR1249; overexpression of VEGFA reversed the effect of miR-1249 up-regulation in glioma. Finally, EIF4A3 increased the expression of circ_0059914. EIF4A3-induced circ_0059914 expression plays a role in promoting glioma via the miR-1249/VEGFA axis.

8.
Cell Div ; 19(1): 19, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862985

RESUMO

BACKGROUND: Circular RNA (circRNA) and extracellular vesicles (EVs) in tumors are crucial for the malignant phenotype of tumor cells. Nevertheless, the mechanisms and clinical effects of EV-delivered hsa_circ_0090081 in gastric cancer (GC) are unclear. This study aimed to reveal the effect of eukaryotic translation initiation factor 4A3 (EIF4A3)-mediated hsa_circ_0090081 expression and EV-delivered hsa_circ_0090081 on GC progression. METHODS: qRT-PCR was conducted to clarify hsa_circ_0090081 and EIF4A3 levels in GC tissues. Transmission electronic microscopy (TEM), nanoparticle tracking analysis (NTA), and Western blotting identified the EVs isolated from GC cells by ultracentrifugation. The roles of hsa_circ_0090081, EIF4A3, and EV-delivered hsa_circ_0090081 in GC cells were analyzed using Transwell, EdU, and CCK-8 assays. The regulatory role between EIF4A3 and hsa_circ_0090081 was investigated using RIP, qRT-PCR, and Pearson's analysis. RESULTS: Our study showed that hsa_circ_0090081 and EIF4A3 were highly expressed in GC, and hsa_circ_0090081 was associated with poor prognosis. Data revealed that hsa_circ_0090081 inhibition restrained GC cell proliferation, invasion, and migration. Additionally, EIF4A3 could bind to the pre-mRNA of PHEX (linear form of hsa_circ_0090081) to enhance hsa_circ_0090081 expression in GC cells. Moreover, EIF4A3 overexpression nullified the malignant phenotypic suppression caused by hsa_circ_0090081 silencing in GC cells. Furthermore, EVs secreted by GC cells delivered hsa_circ_0090081 to facilitate the malignant progression of targeted GC cells. CONCLUSION: This study showed that hsa_circ_0090081 was enhanced by EIF4A3 to play a promotive role in GC development. The results may help understand the mechanism of EIF4A3 and EV-delivered hsa_circ_0090081 and offer a valuable GC therapeutic target.

9.
J Cancer ; 15(9): 2518-2537, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577609

RESUMO

Background: The nuclear cap-binding complex (CBC)-dependent translation (CT) is an important initial translation pathway for 5'-cap-dependent translation in normal mammal cells. Eukaryotic translation initiation factor 4A-III (eIF4A3), as an RNA helicase, is recruited to CT complex and enhances CT efficiency through participating in unwinding of secondary structure in the 5' UTR. However, the detailed mechanism for eIF4A3 implicated in unwinding of secondary structure in the 5' UTR in normal mammal cells is still unclear. Specially, we need to investigate whether the kind of mechanism in normal mammal cells extrapolates to cancer cells, e.g. ESCC, and further interrogate whether and how the mechanism triggers malignant phenotype of ESCC, which are important for identifying a potential therapeutic target for patients with ESCC. Methods: Bioinformatics analysis, RNA immunoprecipitation and RNA pulldown assays were performed to detect the interaction of circular RNA circ-231 with eIF4A3. In vitro and in vivo assays were performed to detect biological roles of circ-231 in ESCC. RNA immunoprecipitation, RNA pulldown, mass spectrometry analysis and co-immunoprecipitation assays were used to measure the interaction of circ-231, eIF4A3 and STAU1 in HEK293T and ESCC. In vitro EGFP reporter and 5' UTR of mRNA pulldown assays were performed to probe for the binding of circ-231, eIF4A3 and STAU1 to secondary structure of 5' UTR. Results: RNA immunoprecipitation assays showed that circ-231 interacted with eIF4A3 in HEK293T and ESCC. Further study confirmed that circ-231 orchestrated with eIF4A3 to control protein expression of TPI1 and PRDX6, but not for mRNA transcripts. The in-depth mechanism study uncovered that both circ-231 and eIF4A3 were involved in unwinding of secondary structure in 5' UTR of TPI1 and PRDX6. More importantly, circ-231 promoted the interaction between eIF4A3 and STAU1. Intriguingly, both circ-231 and eIF4A3 were dependent on STAU1 binding to secondary structure in 5' UTR. Biological function assays revealed that circ-231 promoted the migration and proliferation of ESCC via TPI1 and PRDX6. In ESCC, the up-regulated expression of circ-231 was observed and patients with ESCC characterized by higher expression of circ-231 have concurrent lymph node metastasis, compared with control. Conclusions: Our data unravels the detailed mechanism by which STAU1 binds to secondary structure in 5' UTR of mRNAs and recruits eIF4A3 through interacting with circ-231 and thereby eIF4A3 is implicated in unwinding of secondary structure, which is common to HEK293T and ESCC. However, importantly, our data reveals that circ-231 promotes migration and proliferation of ESCC and the up-regulated circ-231 greatly correlates with tumor lymph node metastasis, insinuating that circ-231 could be a therapeutic target and an indicator of risk of lymph node metastasis for patients with ESCC.

10.
Transl Oncol ; 46: 101996, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38795560

RESUMO

Recent studies indicate that circular RNAs (circRNAs) are crucial in the progression of colorectal cancer (CRC). Eukaryotic translation initiation factor 4A3 (EIF4A3) has been identified as a promoter of circRNA production. The biological roles and mechanisms of EIF4A3-derived circRNA (circEIF4A3) in CRC cell autophagy remain poorly understood. This study explores the effects of circEIF4A3 on CRC cell growth and autophagy, aiming to elucidate the underlying molecular mechanisms. We discovered that EIF4A3 and circEIF4A3 synergistically enhance CRC cell growth. CircEIF4A3 sequesters miR-3126-5p, consequently upregulating EIF4A3. Further, circEIF4A3 increases EIF4A3 expression, which promotes autophagy by stabilizing ATG5 mRNA and enhances ATG7 protein stability through the stabilization of USP14 mRNA, a deubiquitinating enzyme. Upregulation of ATG5 and ATG7 counteracts the growth-inhibitory effects of EIF4A3 knockdown on CRC cells. Moreover, our findings demonstrate that EIF4A3 induces the formation of circEIF4A3 in CRC cells. In conclusion, a positive feedback loop between circEIF4A3 and EIF4A3 supports CRC cell growth by facilitating autophagy.

11.
J Biomol Struct Dyn ; : 1-21, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38345073

RESUMO

Glioblastoma Multiforme (GBM), an aggressive brain tumor (grade-IV astrocytoma), poses treatment challenges. Poor prognosis results from the rapid growth, highlighting the role of EIF4A3 in regulating non-coding RNAs. EIF4A3 promotes the expression of several non-coding RNAs, viz, Circ matrix metallopeptidase 9 (MMP9), a prominent oncogene, by interacting with the upstream region of the circMMP9 mRNA transcript and acts on cell proliferation, migration, and invasion of GBM. However, research shows that EIF4A3 knockdown inhibits glioblastoma progression and increases apoptosis. In this study, we explored the efficiency of the phytochemicals from plants like Withania somnifera and Castanea sativa with potential anti-glioblastoma effects as obtained from the Indian Medicinal Plants, Phytochemistry and Therapeutics (IMPPAT) database. Consequently, we have performed a virtual screening of the compounds against the protein EIF4A3. We further investigated the efficiency of the shortlisted compounds based on docking scores evaluated using GOLD, AutoDock4.2, LeDock, and binding free energy analyses using Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA). Among the phytochemicals studied so far, several Withania-specific compounds from Withania somnifera and a single dietary compound, viz., Thiamine from Castanea sativa, have exhibited comparatively good blood-brain barrier permeability, significant binding affinity towards the EIF4A3, and good ADMET properties. Furthermore, we have verified the interaction stability of the lead molecules with EIF4A3 using MD simulations. Thus, the present study offers an opportunity to develop drug candidates targeting glioblastoma caused by EIF4A3 over-expression, integrating phytotherapy into precision oncology to create tailored and precise natural treatment strategies for cancer.Communicated by Ramaswamy H. Sarma.

12.
Gene ; 893: 147917, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37866664

RESUMO

Imatinib is the current gold standard for patients with chronic myeloid leukemia (CML). However, the primary and acquired drug resistance seriously limits the efficacy. To identify novel therapeutic target in Imatinib-resistant CML is of crucial clinical significance. CircRNAs have been demonstrated the essential regulatory roles in the progression and drug resistance of cancers. In this study, we identified a novel circRNA (circ_SIRT1), derived from the SIRT1, which is up-regulated in CML. The high expression of circ_SIRT1 is correlated with drug resistance in CML. Knockdown of circ_SIRT1 regulated K562/R cells viability, invasion and apoptosis. Besides, the inhibition of circ_SIRT1 attenuated autophagy level and reduced IC50 to Imatinib of K562/R cells. Mechanistically, circ_SIRT1 directly binds to the transcription factor Eukaryotic Translation Initiation Factor 4A3(EIF4A3) and regulated EIF4A3-mediated transcription of Autophagy Related 12 (ATG12), thereby affecting Imatinib resistance and autophagy level. Overexpression of ATG12 reversed the regulative effects induced by knockdown of circ_SIRT1. Taken together, our findings revealed circ_SIRT1 acted as a potential tumor regulator in CML and unveiled the underlying mechanism on regulating Imatinib resistance. circ_SIRT1 may serve as a novel therapeutic target and provide crucial clinical implications for Imatinib-resistant CML treatment.


Assuntos
Antineoplásicos , Leucemia Mielogênica Crônica BCR-ABL Positiva , Humanos , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Antineoplásicos/farmacologia , Sirtuína 1/genética , Sirtuína 1/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Células K562 , Apoptose , Proteína 12 Relacionada à Autofagia , Fator de Iniciação 4A em Eucariotos/farmacologia , RNA Helicases DEAD-box
13.
DNA Cell Biol ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39133108

RESUMO

Circular RNAs (circRNAs) and eukaryotic translation initiation factor 4A3 (EIF4A3) have been reported to participate in the pathogenesis of nasopharyngeal carcinoma (NPC), but their mechanism has not been fully understood. This research aimed to confirm the role and regulatory mechanism of hsa_circ_0049396 interacting with EIF4A3 in NPC tumorigenesis. Quantitative real time polymerase chain reaction (qRT-PCR) was executed to detect the levels of hsa_circ_0049396 and EIF4A3. Cell function experiments and nude mice xenograft assay were used to confirm the role of hsa_circ_0049396 in NPC. The regulatory effect of EIA4A3 on hsa_circ_0049396 was determined by circInteractome prediction, RNA binding protein immunoprecipitation (RIP) assay, and qRT-PCR. In addition, the Hippo-YAP pathway-related proteins and EIF4A3 protein were detected by western blotting. hsa_circ_0049396 was proved to be downregulated in NPC samples, and its low expression indicated the poor prognosis of NPC. After upregulating hsa_circ_0049396 in NPC cells, the proliferation, migration, invasion, and tumor growth in vivo were suppressed by inhibiting the Hippo-YAP pathway. Moreover, EIF4A3 bound to the flanking regions of the hsa_circ_0049396 to enhance hsa_circ_0049396 expression in NPC cells. hsa_circ_0049396 mediated by EIF4A3 in NPC can attenuate NPC tumorigenesis by inhibiting the Hippo-YAP pathway. This finding may provide a potential early diagnostic biomarker or drug target to improve the precision medicine approaches of NPC.

14.
DNA Cell Biol ; 43(5): 232-244, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513058

RESUMO

Numerous studies have shown that circular RNAs are associated with the occurrence and development of various cancers, but the biological functions and mechanisms of hsa_circ_0006847 (circASPHD1) in gastric cancer (GC) remain unclear. The expression of hsa_circ_0006847 in GC cell lines, tissue, and plasma from GC patients was assayed by quantitative real-time reverse transcription-polymerase chain reaction. Hsa_circ_0006847 expression in cells was downregulated or upregulated by transfected small interfering RNA (siRNA) or overexpression plasmid. The role of hsa_circ_0006847 in GC was investigated with Cell Counting Kit-8, EdU, Transwell, flow cytometry assays, and in a subcutaneous xenograft tumor model. In addition, the interaction of eukaryotic translation initiation factor 4A3 (EIF4A3) and hsa_circ_0006847 was determined with western blot, biotin-labeled RNA pull-down, and RNA immunoprecipitation assays. Co-immunoprecipitation and mass spectrometry were used to validate the combination of EIF4A3 and synaptopodin-2 (SYNPO2). The expression of hsa_circ_0006847 was decreased in GC tissues and cells and indicated poor survival and prognosis. Overexpression of hsa_circ_0006847 inhibited cell proliferation, migration, and invasion. Flow cytometry showed that upregulation of hsa_circ_0006847 resulted in promotion of apoptosis of GC cells and inhibited their progression through the G0/G1 phase. Downregulation of hsa_circ_0006847 expression had the opposite effects. Overexpression of hsa_circ_0006847 in subcutaneous tumor xenografts inhibited tumor growth. Mechanically, hsa_circ_0006847 promoted the binding of EIF4A3 to SYNPO2 by recruiting EIF4A3, which inhibited the growth of GC. The tumor suppressor activity of hsa_circ_0006847, inhibition of the occurrence and development of GC, was mediated by promotion of EIF4A3 and the binding of EIF4A3 to SYNPO2. The results support the study of hsa_circ_0006847 as a novel therapeutic target for the treatment of GC.


Assuntos
Proliferação de Células , Fator de Iniciação 4A em Eucariotos , Camundongos Nus , RNA Circular , Neoplasias Gástricas , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Humanos , Fator de Iniciação 4A em Eucariotos/metabolismo , Fator de Iniciação 4A em Eucariotos/genética , RNA Circular/genética , RNA Circular/metabolismo , Animais , Proliferação de Células/genética , Linhagem Celular Tumoral , Camundongos , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Feminino , Masculino , Apoptose/genética , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , RNA Helicases DEAD-box
15.
Leuk Res ; 141: 107451, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38663164

RESUMO

BACKGROUND: Circular RNAs (circRNAs) are associated with development and progression of multiple myeloma (MM). However, the role and mechanism of circ_0005615 in MM have not been elucidated. METHODS: Circ_0005615 was determined by GEO database. quantitative RT-PCR was performed to confirm the expression of circ_0005615 in peripheral blood of MM patients and MM cells. The roles of circ_0005615 in MM were analyzed using CCK8, transwell invasion, cell apoptosis and tumor xenograft experiments. Bioinformatics tools, RIP and RNA pull down assays were conducted to explore the downstream of circ_0005615. Furthermore, the mechanism was investigated by quantitative RT-PCR, western blot, dot blot and meRIP-PCR assays. RESULTS: Circ_0005615 was upregulated in MM. Overexpression of circ_0005615 promoted cell viability and invasion, and suppressed apoptosis in vitro, which were opposite when circ_0005615 was knockdowned. Mechanistically, EIF4A3, a RNA-binding protein (RBP), could directly bind to circ_0005615 and ALKBH5, where ALKBH5 could directly combine with MAP3K4, forming a circ_0005615- EIF4A3-ALKBH5-MAP3K4 module. Furthermore, circ_0005615 overexpression increased m6A methylation of MAP3K4 by inhibiting ALKBH5, leading to decreased MAP3K4. Further functional experiments indicated that ALKBH5 overexpression weakened the promoting roles of circ_0005615 overexpression in MAP3K4 m6A methylation and tumor progression in MM. The above functions and mechanism were also verified in vivo. CONCLUSIONS: Elevated circ_0005615 decreased MAP3K4 mediated by ALKBH5 through interacting with EIF4A3, thereby accelerating MM progression. Circ_0005615 might be a promising biomarker and target of MM.


Assuntos
Homólogo AlkB 5 da RNA Desmetilase , Progressão da Doença , Mieloma Múltiplo , RNA Circular , Humanos , RNA Circular/genética , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Mieloma Múltiplo/metabolismo , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Homólogo AlkB 5 da RNA Desmetilase/genética , Camundongos , Animais , Apoptose , Regulação Neoplásica da Expressão Gênica , Fator de Iniciação 3 em Eucariotos/metabolismo , Fator de Iniciação 3 em Eucariotos/genética , Camundongos Nus , Proliferação de Células , Ensaios Antitumorais Modelo de Xenoenxerto , Adenosina/metabolismo , Adenosina/análogos & derivados , Linhagem Celular Tumoral , Feminino , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Fator de Iniciação 4A em Eucariotos , RNA Helicases DEAD-box
16.
Arch Dermatol Res ; 316(8): 561, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39177716

RESUMO

Circular RNAs (circRNAs) are demonstrated to be involved in psoriasis progression. CircRNAs can act as RNA-binding protein (RBP) sponges. Here, we investigated the action of circAKR1B10 in psoriasis, and explored the potential proteins interacted with circAKR1B10. Levels of genes and proteins were assayed by qRT-PCR and western blotting analyses. Keratinocytes in functional groups were treated with interleukin (IL)-22. Functional analysis were conducted using MTT, 5-ethynyl-2'-deoxyuridine (EdU), and transwell assays, respectively. Interaction analysis among circAKR1B10, Eukaryotic initiation factor 4 A-III (EIF4A3) and Aurora Kinase A (AURKA) was conducted using bioinformatics analysis, RNA pull-down assay, and RNA immunoprecipitation (RIP) assay. CircAKR1B10 was highly expressed in psoriasis patients and IL-22-induced keratinocytes. Functionally, knockdown of circAKR1B10 abolished IL-22-induced proliferation, migration and invasion in keratinocytes. AURKA expression was also higher in psoriasis patients and IL-22-induced keratinocytes, and was negatively correlated with circAKR1B10 expression. Moreover, AURKA silencing reduced the proliferative, migratory and invasive abilities of IL-22-induced keratinocytes. Mechanistically, circAKR1B10 interacted with EIF4A3 protein to stabilize and regulate AURKA expression. CircAKR1B10 contributes to IL-22-induced proliferation, migration and invasion in keratinocytes via up-regulating AURKA expression through interacting with EIF4A3 protein.


Assuntos
Aurora Quinase A , Movimento Celular , Proliferação de Células , Fator de Iniciação 4A em Eucariotos , Interleucina 22 , Interleucinas , Queratinócitos , Psoríase , RNA Circular , Humanos , Aurora Quinase A/metabolismo , Aurora Quinase A/genética , RNA Circular/genética , RNA Circular/metabolismo , Queratinócitos/metabolismo , Proliferação de Células/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Psoríase/patologia , Psoríase/metabolismo , Psoríase/genética , Fator de Iniciação 4A em Eucariotos/metabolismo , Fator de Iniciação 4A em Eucariotos/genética , Interleucinas/metabolismo , Interleucinas/genética , RNA Helicases DEAD-box
17.
Am J Hypertens ; 37(7): 465-476, 2024 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-38536049

RESUMO

BACKGROUND: Atherosclerosis (AS) stands as the primary contributor to cardiovascular disease, a pervasive global health concern. Extensive research has underscored the pivotal role of circular RNAs (circRNAs) in cardiovascular disease development. However, the specific functions of numerous circRNAs in AS remain poorly understood. METHODS: Quantitative real-time PCR analysis revealed a significant upregulation of circ_0104652 in oxidized low-density lipoprotein (ox-LDL)-induced vascular smooth muscle cells (VSMCs). Loss-of-function experiments were subsequently employed to assess the impact of circ_0104652 on ox-LDL-induced VSMCs. RESULTS: Silencing circ_0104652 was found to impede the proliferation and migration while promoting the apoptosis of ox-LDL-stimulated VSMCs. Mechanistic assays unveiled that circ_0104652 stabilized ADAM metallopeptidase with thrombospondin type 1 motif 7 (ADAMTS7) and high mobility group box 1 (HMGB1) by recruiting eukaryotic translation initiation factor 4A3 (EIF4A3) protein. Rescue assays further confirmed that circ_0104652 exerted its influence on ox-LDL-induced VSMC proliferation through modulation of ADAMTS7 and HMGB1. CONCLUSIONS: This study elucidates the role of the circ_0104652/EIF4A3/ADAMTS7/HMGB1 axis in ox-LDL-stimulated VSMCs, providing valuable insights into the intricate mechanisms involved.


Assuntos
Proteína ADAMTS7 , Aterosclerose , Movimento Celular , Proliferação de Células , Proteína HMGB1 , Lipoproteínas LDL , Músculo Liso Vascular , Miócitos de Músculo Liso , RNA Circular , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Lipoproteínas LDL/farmacologia , Lipoproteínas LDL/metabolismo , Proliferação de Células/efeitos dos fármacos , RNA Circular/metabolismo , RNA Circular/genética , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Movimento Celular/efeitos dos fármacos , Humanos , Proteína HMGB1/metabolismo , Proteína HMGB1/genética , Proteína ADAMTS7/metabolismo , Proteína ADAMTS7/genética , Aterosclerose/patologia , Aterosclerose/metabolismo , Aterosclerose/genética , Células Cultivadas , Transdução de Sinais , Apoptose/efeitos dos fármacos
18.
J Ethnopharmacol ; 329: 118077, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38556141

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Huangqin Qingre Chubi Capsule (HQC) is a Chinese medicinal compound used for the treatment of damp-heat pattern rheumatism, guided by the traditional Chinese medicine syndrome differentiation practice. HQC has been used in the clinical treatment of rheumatic diseases for more than 20 years with remarkable efficacy. HQC has been experimentally shown to exert anti-arthritic effects via the Wnt signaling pathway. AIM OF THE STUDY: This study used clinical data mining, network analysis, and in vitro and in vivo tests to investigate the anti-arthritic and possible anti-inflammatory mechanism of HQC. Specifically, emphasis was placed on the function of the hsa_circ_0091,685/EIF4A3/IL-17 axis in the anti-inflammatory process. MATERIALS AND METHODS: A random walk model was used to evaluate the effects of HQC on clinical immune inflammatory marker function in patients with RA. Network analysis was used to predict the potential target genes and pathways of HQC. Hematoxylin & eosin, safranin O-fast green and toluidine blue staining, immunohistochemistry, and transmission electron microscopy were performed to evaluate the anti-arthritic effects of HQC in rat models. Cell Counting Kit-8 assay, quantitative real-time polymerase chain reaction, western blotting, enzyme-linked immunosorbent assay, and RNA pull-down were used to study the anti-proliferation and anti-inflammatory mechanisms of HQC. RESULTS: Patients with RA who underwent HQC treatment showed a significant reduction in inflammatory response levels, according to retrospective clinical study. Network analysis revealed that HQC potentially targeted genes and pathways related to inflammation, especially IL-6, IL-17, TNF-α, IL-23, and IL-17 signaling pathway. Animal experiments showed that HQC inhibits inflammation through the IL-17 signaling pathway in rat models. Cellular experiments showed that HQC-containing serum inhibited the inflammatory response in patients with RA-FLS or RA by blocking hsa_circ_0091,685 and EIF4A3 expression. CONCLUSION: In RA patients, HQC reduces the inflammatory response. The antiproliferative and anti-inflammatory qualities of HQC are responsible for its therapeutic impact. The suppression of the hsa_circ_0091,685/EIF4A3/IL-17 axis was linked to these favorable outcomes.


Assuntos
Anti-Inflamatórios , Artrite Reumatoide , Mineração de Dados , Medicamentos de Ervas Chinesas , Animais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Humanos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Masculino , Ratos , Ratos Sprague-Dawley , Feminino , Interleucina-17/metabolismo , Pessoa de Meia-Idade , Sinoviócitos/efeitos dos fármacos , Sinoviócitos/metabolismo
19.
J Exp Clin Cancer Res ; 43(1): 200, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39030638

RESUMO

BACKGROUND: The progression of non-small cell lung cancer (NSCLC) is significantly influenced by circular RNAs (circRNAs), especially in tumor hypoxia microenvironment. However, the precise functions and underlying mechanisms of dysregulated circRNAs in NSCLC remain largely unexplored. METHODS: Differentially expressed circRNAs in NSCLC tissues were identified through high-throughput RNA sequencing. The characteristics of circ_0007386 were rigorously confirmed via Sanger sequencing, RNase R treatment and actinomycin D treatment. The effects of circ_0007386 on proliferation and apoptosis were investigated using CCK8, cloning formation assays, TUNEL staining, and flow cytometry assays in vitro. In vivo, xenograft tumor models were used to evaluate its impact on proliferation. Mechanistically, the regulatory relationships of circ_0007386, miR-383-5p and CIRBP were examined through dual luciferase reporter assays and rescue experiments. Additionally, we detected the binding of EIF4A3 to CRIM1 pre-mRNA by RNA immunoprecipitation and the interaction between YAP1 and EIF4A3 under hypoxic conditions by co-immunoprecipitation. RESULTS: Our investigation revealed a novel circRNA, designated as circ_0007386, that was upregulated in NSCLC tissues and cell lines. Circ_0007386 modulated proliferation and apoptosis in NSCLC both in vitro and in vivo. Functionally, circ_0007386 acted as a sponge for miR-383-5p, targeting CIRBP, which influenced NSCLC cell proliferation and apoptosis via the PI3K/AKT signaling pathway. Furthermore, under hypoxic conditions, the interaction between YAP1 and EIF4A3 was enhanced, leading to the displacement of EIF4A4 from binding to CRIM1 pre-mRNA. This facilitated the back-splicing of CRIM1 pre-mRNA, increasing the formation of circ_0007386. The circ_0007386/miR-383-5p/CIRBP axis was significantly associated with the clinical features and prognosis of NSCLC patients. CONCLUSIONS: Circ_0007386, regulated by YAP1-EIF4A3 interaction under hypoxia conditions, plays an oncogenic role in NSCLC progression via the miR-383-5p/CIRBP axis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Progressão da Doença , Fator de Iniciação 4A em Eucariotos , Neoplasias Pulmonares , RNA Circular , Proteínas de Sinalização YAP , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , RNA Circular/genética , RNA Circular/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Animais , Proteínas de Sinalização YAP/metabolismo , Camundongos , Fator de Iniciação 4A em Eucariotos/metabolismo , Fator de Iniciação 4A em Eucariotos/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Feminino , Linhagem Celular Tumoral , Proliferação de Células , Precursores de RNA/metabolismo , Precursores de RNA/genética , Masculino , Splicing de RNA , Apoptose , MicroRNAs/genética , MicroRNAs/metabolismo , Camundongos Nus , Regulação Neoplásica da Expressão Gênica , RNA Helicases DEAD-box
20.
Am J Cancer Res ; 13(12): 5868-5886, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38187044

RESUMO

In recent years, the role of circular RNAs (circRNAs) in glioma has become increasingly important. However, there are still many newly discovered circRNAs with unknown functions that require further study. In this study, circRNA sequencing, qPCR, MTS, EdU, Transwell, and other assays were conducted to detect the expression and malignant effects of a novel circRNA molecule, circGRIK2, in glioma. qPCR, western blotting, RIP, and luciferase reporter gene experiments were used to investigate the downstream molecular mechanisms of circGRIK2. Our study found that circGRIK2 was highly expressed in glioma and promoted glioma cell viability, proliferation, invasion, and migration. Mechanistically, circGRIK2 acted as a competitive sponge for miR-1303, upregulating the expression of HOXA10 to exert its oncogenic effects. Additionally, the RNA-binding protein EIF4A3 could bind to and stabilize circGRIK2, leading to its high expression in glioblastoma. The discovery of circGRIK2 in this study not only contributes to a better understanding of the biological mechanisms of circGRIK2 in glioma but also provides a new target for molecular targeted therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA