Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38842509

RESUMO

Peptide- and protein-based therapeutics are becoming a promising treatment regimen for myriad diseases. Toxicity of proteins is the primary hurdle for protein-based therapies. Thus, there is an urgent need for accurate in silico methods for determining toxic proteins to filter the pool of potential candidates. At the same time, it is imperative to precisely identify non-toxic proteins to expand the possibilities for protein-based biologics. To address this challenge, we proposed an ensemble framework, called VISH-Pred, comprising models built by fine-tuning ESM2 transformer models on a large, experimentally validated, curated dataset of protein and peptide toxicities. The primary steps in the VISH-Pred framework are to efficiently estimate protein toxicities taking just the protein sequence as input, employing an under sampling technique to handle the humongous class-imbalance in the data and learning representations from fine-tuned ESM2 protein language models which are then fed to machine learning techniques such as Lightgbm and XGBoost. The VISH-Pred framework is able to correctly identify both peptides/proteins with potential toxicity and non-toxic proteins, achieving a Matthews correlation coefficient of 0.737, 0.716 and 0.322 and F1-score of 0.759, 0.696 and 0.713 on three non-redundant blind tests, respectively, outperforming other methods by over $10\%$ on these quality metrics. Moreover, VISH-Pred achieved the best accuracy and area under receiver operating curve scores on these independent test sets, highlighting the robustness and generalization capability of the framework. By making VISH-Pred available as an easy-to-use web server, we expect it to serve as a valuable asset for future endeavors aimed at discerning the toxicity of peptides and enabling efficient protein-based therapeutics.


Assuntos
Proteínas , Proteínas/metabolismo , Proteínas/química , Aprendizado de Máquina , Bases de Dados de Proteínas , Biologia Computacional/métodos , Humanos , Peptídeos/toxicidade , Peptídeos/química , Simulação por Computador , Algoritmos , Software
2.
BMC Bioinformatics ; 25(1): 115, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493120

RESUMO

BACKGROUND: Protein language models, inspired by the success of large language models in deciphering human language, have emerged as powerful tools for unraveling the intricate code of life inscribed within protein sequences. They have gained significant attention for their promising applications across various areas, including the sequence-based prediction of secondary and tertiary protein structure, the discovery of new functional protein sequences/folds, and the assessment of mutational impact on protein fitness. However, their utility in learning to predict protein residue properties based on scant datasets, such as protein-protein interaction (PPI)-hotspots whose mutations significantly impair PPIs, remained unclear. Here, we explore the feasibility of using protein language-learned representations as features for machine learning to predict PPI-hotspots using a dataset containing 414 experimentally confirmed PPI-hotspots and 504 PPI-nonhot spots. RESULTS: Our findings showcase the capacity of unsupervised learning with protein language models in capturing critical functional attributes of protein residues derived from the evolutionary information encoded within amino acid sequences. We show that methods relying on protein language models can compete with methods employing sequence and structure-based features to predict PPI-hotspots from the free protein structure. We observed an optimal number of features for model precision, suggesting a balance between information and overfitting. CONCLUSIONS: This study underscores the potential of transformer-based protein language models to extract critical knowledge from sparse datasets, exemplified here by the challenging realm of predicting PPI-hotspots. These models offer a cost-effective and time-efficient alternative to traditional experimental methods for predicting certain residue properties. However, the challenge of explaining why specific features are important for determining certain residue properties remains.


Assuntos
Aprendizado de Máquina , Proteínas , Humanos , Proteínas/química , Sequência de Aminoácidos
3.
Int J Mol Sci ; 25(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38674091

RESUMO

Identification of druggable proteins can greatly reduce the cost of discovering new potential drugs. Traditional experimental approaches to exploring these proteins are often costly, slow, and labor-intensive, making them impractical for large-scale research. In response, recent decades have seen a rise in computational methods. These alternatives support drug discovery by creating advanced predictive models. In this study, we proposed a fast and precise classifier for the identification of druggable proteins using a protein language model (PLM) with fine-tuned evolutionary scale modeling 2 (ESM-2) embeddings, achieving 95.11% accuracy on the benchmark dataset. Furthermore, we made a careful comparison to examine the predictive abilities of ESM-2 embeddings and position-specific scoring matrix (PSSM) features by using the same classifiers. The results suggest that ESM-2 embeddings outperformed PSSM features in terms of accuracy and efficiency. Recognizing the potential of language models, we also developed an end-to-end model based on the generative pre-trained transformers 2 (GPT-2) with modifications. To our knowledge, this is the first time a large language model (LLM) GPT-2 has been deployed for the recognition of druggable proteins. Additionally, a more up-to-date dataset, known as Pharos, was adopted to further validate the performance of the proposed model.


Assuntos
Proteínas , Proteínas/metabolismo , Biologia Computacional/métodos , Descoberta de Drogas/métodos , Matrizes de Pontuação de Posição Específica , Bases de Dados de Proteínas , Humanos , Algoritmos
4.
Comput Biol Med ; 180: 109013, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39137670

RESUMO

Antidiabetic peptides (ADPs), peptides with potential antidiabetic activity, hold significant importance in the treatment and control of diabetes. Despite their therapeutic potential, the discovery and prediction of ADPs remain challenging due to limited data, the complex nature of peptide functions, and the expensive and time-consuming nature of traditional wet lab experiments. This study aims to address these challenges by exploring methods for the discovery and prediction of ADPs using advanced deep learning techniques. Specifically, we developed two models: a single-channel CNN and a three-channel neural network (CNN + RNN + Bi-LSTM). ADPs were primarily gathered from the BioDADPep database, alongside thousands of non-ADPs sourced from anticancer, antibacterial, and antiviral peptide datasets. Subsequently, data preprocessing was performed with the evolutionary scale model (ESM-2), followed by model training and evaluation through 10-fold cross-validation. Furthermore, this work collected a series of newly published ADPs as an independent test set through literature review, and found that the CNN model achieved the highest accuracy (90.48 %) in predicting the independent test set, surpassing existing ADP prediction tools. Finally, the application of the model was considered. SeqGAN was used to generate new candidate ADPs, followed by screening with the constructed CNN model. Selected peptides were then evaluated using physicochemical property prediction and structural forecasts for pharmaceutical potential. In summary, this study not only established robust ADP prediction models but also employed these models to screen a batch of potential ADPs, addressing a critical need in the field of peptide-based antidiabetic research.


Assuntos
Aprendizado Profundo , Hipoglicemiantes , Peptídeos , Hipoglicemiantes/química , Hipoglicemiantes/uso terapêutico , Peptídeos/química , Peptídeos/uso terapêutico , Humanos , Descoberta de Drogas/métodos , Redes Neurais de Computação
5.
Int J Biol Macromol ; 277(Pt 3): 134317, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39094861

RESUMO

Plant vacuoles, play a crucial role in maintaining cellular stability, adapting to environmental changes, and responding to external pressures. The accurate identification of vacuolar proteins (PVPs) is crucial for understanding the biosynthetic mechanisms of intracellular vacuoles and the adaptive mechanisms of plants. In order to more accurately identify vacuole proteins, this study developed a new predictive model PEL-PVP based on ESM-2. Through this study, the feasibility and effectiveness of using advanced pre-training models and fine-tuning techniques for bioinformatics tasks were demonstrated, providing new methods and ideas for plant vacuolar protein research. In addition, previous datasets for vacuolar proteins were balanced, but imbalance is more closely related to the actual situation. Therefore, this study constructed an imbalanced dataset UB-PVP from the UniProt database,helping the model better adapt to the complexity and uncertainty in real environments, thereby improving the model's generalization ability and practicality. The experimental results show that compared with existing recognition techniques, achieving significant improvements in multiple indicators, with 6.08 %, 13.51 %, 11.9 %, and 5 % improvements in ACC, SP, MCC, and AUC, respectively. The accuracy reaches 94.59 %, significantly higher than the previous best model GraphIdn. This provides an efficient and precise tool for the study of plant vacuole proteins.


Assuntos
Proteínas de Plantas , Vacúolos , Vacúolos/metabolismo , Biologia Computacional/métodos , Bases de Dados de Proteínas
6.
Curr Med Chem ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38494930

RESUMO

BACKGROUND: The novel coronavirus pneumonia (COVID-19) outbreak in late 2019 killed millions worldwide. Coronaviruses cause diseases such as severe acute respiratory syndrome (SARS-Cov) and SARS-COV-2. Many peptides in the host defense system have antiviral activity. How to establish a set of efficient models to identify anti-coronavirus peptides is a meaningful study. METHODS: Given this, a new prediction model EACVP is proposed. This model uses the evolutionary scale language model (ESM-2 LM) to characterize peptide sequence information. The ESM model is a natural language processing model trained by machine learning technology. It is trained on a highly diverse and dense dataset (UR50/D 2021_04) and uses the pre-trained language model to obtain peptide sequence features with 320 dimensions. Compared with traditional feature extraction methods, the information represented by ESM-2 LM is more comprehensive and stable. Then, the features are input into the convolutional neural network (CNN), and the convolutional block attention module (CBAM) lightweight attention module is used to perform attention operations on CNN in space dimension and channel dimension. To verify the rationality of the model structure, we performed ablation experiments on the benchmark and independent test datasets. We compared the EACVP with existing methods on the independent test dataset. RESULTS: Experimental results show that ACC, F1-score, and MCC are 3.95%, 35.65% and 0.0725 higher than the most advanced methods, respectively. At the same time, we tested EACVP on ENNAVIA-C and ENNAVIA-D data sets, and the results showed that EACVP has good migration and is a powerful tool for predicting anti-coronavirus peptides. CONCLUSION: The results prove that this model EACVP could fully characterize the peptide information and achieve high prediction accuracy. It can be generalized to different data sets. The data and code of the article have been uploaded to https://github.- com/JYY625/EACVP.git.

7.
Protein Sci ; 33(4): e4928, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38501511

RESUMO

Molecular features play an important role in different bio-chem-informatics tasks, such as the Quantitative Structure-Activity Relationships (QSAR) modeling. Several pre-trained models have been recently created to be used in downstream tasks, either by fine-tuning a specific model or by extracting features to feed traditional classifiers. In this regard, a new family of Evolutionary Scale Modeling models (termed as ESM-2 models) was recently introduced, demonstrating outstanding results in protein structure prediction benchmarks. Herein, we studied the usefulness of the different-dimensional embeddings derived from the ESM-2 models to classify antimicrobial peptides (AMPs). To this end, we built a KNIME workflow to use the same modeling methodology across experiments in order to guarantee fair analyses. As a result, the 640- and 1280-dimensional embeddings derived from the 30- and 33-layer ESM-2 models, respectively, are the most valuable  since statistically better performances were achieved by the QSAR models built from them. We also fused features of the different ESM-2 models, and it was concluded that the fusion contributes to getting better QSAR models than using features of a single ESM-2 model. Frequency studies revealed that only a portion of the ESM-2 embeddings is valuable for modeling tasks since between 43% and 66% of the features were never used. Comparisons regarding state-of-the-art deep learning (DL) models confirm that when performing methodologically principled studies in the prediction of AMPs, non-DL based QSAR models yield comparable-to-superior performances to DL-based QSAR models. The developed KNIME workflow is available-freely at https://github.com/cicese-biocom/classification-QSAR-bioKom. This workflow can be valuable to avoid unfair comparisons regarding new computational methods, as well as to propose new non-DL based QSAR models.


Assuntos
Peptídeos Antimicrobianos , Fluxo de Trabalho
8.
Biology (Basel) ; 11(12)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36552203

RESUMO

Terrestrial net primary production (NPP) is a key carbon flux that changes with rising atmospheric CO2 and CO2-induced climate change. Earth system models are commonly used to investigate these NPP changes because of their fundamentally trustworthy ability to simulate physical climate systems and terrestrial biogeochemical processes. However, many uncertainties remain in projecting NPP responses, due to their complex processes and divergent model characteristics. This study estimated NPP responses to elevated CO2 and CO2-induced climate change using the Chinese Academy of Sciences Earth System Model version 2 (CAS-ESM2), as well as 22 CMIP6 models. Based on CMIP6 pre-industrial and abruptly quadrupled CO2 experiments, the analysis focused on a comparison of the CAS-ESM2 with the multi-model ensemble (MME), and on a detection of underlying causes of their differences. We found that all of the models showed an overall enhancement in NPP, and that CAS-ESM2 projected a slightly weaker NPP enhancement than MME. This weaker NPP enhancement was the net result of much weaker NPP enhancement over the tropics, and a little stronger NPP enhancement over northern high latitudes. We further report that these differences in NPP responses between the CAS-ESM2 and MME resulted from their different behaviors in simulating NPP trends with modeling time, and are attributed to their different projections of CO2-induced climatic anomalies and different climate sensitivities. These results are favorable for understanding and further improving the performance of the CAS-ESM2 in projecting the terrestrial carbon cycle, and point towards a need for greater understanding and improvements for both physical climatic processes and the terrestrial carbon cycle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA