Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 716
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Mol Cell ; 84(17): 3237-3253.e6, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39178861

RESUMO

Homology search is a central step of DNA double-strand break (DSB) repair by homologous recombination (HR). How it operates in cells remains elusive. We developed a Hi-C-based methodology to map single-stranded DNA (ssDNA) contacts genome-wide in S. cerevisiae, which revealed two main homology search phases. Initial search conducted by short Rad51-ssDNA nucleoprotein filaments (NPFs) is confined in cis by cohesin-mediated chromatin loop folding. Progressive growth of stiff NPFs enables exploration of distant genomic sites. Long-range resection drives this transition from local to genome-wide search by increasing the probability of assembling extensive NPFs. DSB end-tethering promotes coordinated search by opposite NPFs. Finally, an autonomous genetic element on chromosome III engages the NPF, which stimulates homology search in its vicinity. This work reveals the mechanism of the progressive expansion of homology search that is orchestrated by chromatin organizers, long-range resection, end-tethering, and specialized genetic elements and that exploits the stiff NPF structure conferred by Rad51 oligomerization.


Assuntos
Quebras de DNA de Cadeia Dupla , DNA Fúngico , DNA de Cadeia Simples , Rad51 Recombinase , Reparo de DNA por Recombinação , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , DNA de Cadeia Simples/metabolismo , DNA de Cadeia Simples/genética , Rad51 Recombinase/metabolismo , Rad51 Recombinase/genética , DNA Fúngico/genética , DNA Fúngico/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/genética , Cromatina/metabolismo , Cromatina/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Coesinas
2.
Mol Cell ; 84(4): 659-674.e7, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38266640

RESUMO

Inactivating mutations in the BRCA1 and BRCA2 genes impair DNA double-strand break (DSB) repair by homologous recombination (HR), leading to chromosomal instability and cancer. Importantly, BRCA1/2 deficiency also causes therapeutically targetable vulnerabilities. Here, we identify the dependency on the end resection factor EXO1 as a key vulnerability of BRCA1-deficient cells. EXO1 deficiency generates poly(ADP-ribose)-decorated DNA lesions during S phase that associate with unresolved DSBs and genomic instability in BRCA1-deficient but not in wild-type or BRCA2-deficient cells. Our data indicate that BRCA1/EXO1 double-deficient cells accumulate DSBs due to impaired repair by single-strand annealing (SSA) on top of their HR defect. In contrast, BRCA2-deficient cells retain SSA activity in the absence of EXO1 and hence tolerate EXO1 loss. Consistent with a dependency on EXO1-mediated SSA, we find that BRCA1-mutated tumors show elevated EXO1 expression and increased SSA-associated genomic scars compared with BRCA1-proficient tumors. Overall, our findings uncover EXO1 as a promising therapeutic target for BRCA1-deficient tumors.


Assuntos
Proteína BRCA1 , Neoplasias , Humanos , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Dano ao DNA , Reparo do DNA , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Recombinação Homóloga
3.
Mol Cell ; 83(16): 2941-2958.e7, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37595556

RESUMO

Crossovers (COs), the exchange of homolog arms, are required for accurate chromosome segregation during meiosis. Studies in yeast have described the single-end invasion (SEI) intermediate: a stabilized 3' end annealed with the homolog as the first detectible CO precursor. SEIs are thought to differentiate into double Holliday junctions (dHJs) that are resolved by MutLgamma (MLH1/MLH3) into COs. Currently, we lack knowledge of early steps of mammalian CO recombination or how intermediates are differentiated in any organism. Using comprehensive analysis of recombination in thirteen different genetic conditions with varying levels of compromised CO resolution, we infer CO precursors include asymmetric SEI-like intermediates and dHJs in mouse. In contrast to yeast, MLH3 is structurally required to differentiate CO precursors into dHJs. We verify conservation of aspects of meiotic recombination and show unique features in mouse, providing mechanistic insight into CO formation.


Assuntos
Meiose , Saccharomyces cerevisiae , Animais , Camundongos , Saccharomyces cerevisiae/genética , Meiose/genética , Segregação de Cromossomos/genética , DNA Cruciforme/genética , Mamíferos
4.
Genes Dev ; 37(3-4): 74-79, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36702483

RESUMO

Pol2 is the leading-strand DNA polymerase in budding yeast. Here we describe an antagonism between its conserved POPS (Pol2 family-specific catalytic core peripheral subdomain) and exonuclease domain and the importance of this antagonism in genome replication. We show that multiple defects caused by POPS mutations, including impaired growth and DNA synthesis, genome instability, and reliance on other genome maintenance factors, were rescued by exonuclease inactivation. Single-molecule data revealed that the rescue stemmed from allowing sister replication forks to progress at equal rates. Our data suggest that balanced activity of Pol2's POPS and exonuclease domains is vital for genome replication and stability.


Assuntos
Replicação do DNA , Exonucleases , Humanos , Exonucleases/genética , Exonucleases/metabolismo , Replicação do DNA/genética , Mutação , Instabilidade Genômica/genética , DNA Polimerase II/genética , DNA Polimerase II/metabolismo
5.
Genes Dev ; 37(3-4): 72-73, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36813532

RESUMO

DNA replication is complex and highly regulated, and DNA replication errors can lead to human diseases such as cancer. DNA polymerase ε (polε) is a key player in DNA replication and contains a large subunit called POLE, which possesses both a DNA polymerase domain and a 3'-5' exonuclease domain (EXO). Mutations at the EXO domain and other missense mutations on POLE with unknown significance have been detected in a variety of human cancers. Based on cancer genome databases, Meng and colleagues (pp. 74-79) previously identified several missense mutations in POPS (pol2 family-specific catalytic core peripheral subdomain), and mutations at the conserved residues of yeast Pol2 (pol2-REL) showed reduced DNA synthesis and growth. In this issue of Genes & Development, Meng and colleagues (pp. 74-79) found unexpectedly that mutations at the EXO domain rescue the growth defects of pol2-REL. They further discovered that EXO-mediated polymerase backtracking impedes forward movement of the enzyme when POPS is defective, revealing a novel interplay between the EXO domain and POPS of Pol2 for efficient DNA synthesis. Additional molecular insight into this interplay will likely inform the impact of cancer-associated mutations found in both the EXO domain and POPS on tumorigenesis and uncover future novel therapeutic strategies.


Assuntos
DNA Polimerase II , Replicação do DNA , Neoplasias , Saccharomyces cerevisiae , Humanos , DNA/genética , DNA Polimerase II/genética , DNA Polimerase II/metabolismo , Replicação do DNA/genética , Exonucleases/metabolismo , Mutação , Neoplasias/genética , Saccharomyces cerevisiae/metabolismo
6.
Mol Cell ; 82(19): 3553-3565.e5, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36070766

RESUMO

RAD51 and the breast cancer suppressor BRCA2 have critical functions in DNA double-strand (dsDNA) break repair by homologous recombination and the protection of newly replicated DNA from nucleolytic degradation. The recombination function of RAD51 requires its binding to single-stranded DNA (ssDNA), whereas binding to dsDNA is inhibitory. Using reconstituted MRE11-, EXO1-, and DNA2-dependent nuclease reactions, we show that the protective function of RAD51 unexpectedly depends on its binding to dsDNA. The BRC4 repeat of BRCA2 abrogates RAD51 binding to dsDNA and accordingly impairs the function of RAD51 in protection. The BRCA2 C-terminal RAD51-binding segment (TR2) acts in a dominant manner to overcome the effect of BRC4. Mechanistically, TR2 stabilizes RAD51 binding to dsDNA, even in the presence of BRC4, promoting DNA protection. Our data suggest that RAD51's dsDNA-binding capacity may have evolved together with its function in replication fork protection and provide a mechanistic basis for the DNA-protection function of BRCA2.


Assuntos
DNA de Cadeia Simples , Rad51 Recombinase , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , DNA/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Replicação do DNA , DNA de Cadeia Simples/genética , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo
7.
Annu Rev Genet ; 55: 285-307, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34813349

RESUMO

DNA double-strand breaks (DSBs) are cytotoxic lesions that threaten genome integrity and cell viability. Typically, cells repair DSBs by either nonhomologous end joining (NHEJ) or homologous recombination (HR). The relative use of these two pathways depends on many factors, including cell cycle stage and the nature of the DNA ends. A critical determinant of repair pathway selection is the initiation of 5'→3' nucleolytic degradation of DNA ends, a process referred to as DNA end resection. End resection is essential to create single-stranded DNA overhangs, which serve as the substrate for the Rad51 recombinase to initiate HR and are refractory to NHEJ repair. Here, we review recent insights into the mechanisms of end resection, how it is regulated, and the pathological consequences of its dysregulation.


Assuntos
Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA , DNA , Reparo do DNA por Junção de Extremidades/genética , Reparo do DNA/genética , Proteínas de Ligação a DNA/metabolismo , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Recombinação Homóloga/genética
8.
Mol Cell ; 81(21): 4440-4456.e7, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34597596

RESUMO

Protection of stalled replication forks is critical to genomic stability. Using genetic and proteomic analyses, we discovered the Protexin complex containing the ssDNA binding protein SCAI and the DNA polymerase REV3. Protexin is required specifically for protecting forks stalled by nucleotide depletion, fork barriers, fragile sites, and DNA inter-strand crosslinks (ICLs), where it promotes homologous recombination and repair. Protexin loss leads to ssDNA accumulation and profound genomic instability in response to ICLs. Protexin interacts with RNA POL2, and both oppose EXO1's resection of DNA on forks remodeled by the FANCM translocase activity. This pathway acts independently of BRCA/RAD51-mediated fork stabilization, and cells with BRCA2 mutations were dependent on SCAI for survival. These data suggest that Protexin and its associated factors establish a new fork protection pathway that counteracts fork resection in part through a REV3 polymerase-dependent resynthesis mechanism of excised DNA, particularly at ICL stalled forks.


Assuntos
Proteína BRCA2/metabolismo , DNA Helicases/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/química , DNA Polimerase Dirigida por DNA/química , Exodesoxirribonucleases/metabolismo , Fatores de Transcrição/química , Animais , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Reparo do DNA , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , Células HeLa , Humanos , Ácido Mevalônico , Camundongos , Complexos Multiproteicos , Mutação , Ligação Proteica , Conformação Proteica , RNA Guia de Cinetoplastídeos/metabolismo , RNA Interferente Pequeno/metabolismo , Recombinação Genética
9.
Mol Cell ; 81(13): 2778-2792.e4, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33932350

RESUMO

DNA polymerase ε (Polε) carries out high-fidelity leading strand synthesis owing to its exonuclease activity. Polε polymerase and exonuclease activities are balanced, because of partitioning of nascent DNA strands between catalytic sites, so that net resection occurs when synthesis is impaired. In vivo, DNA synthesis stalling activates replication checkpoint kinases, which act to preserve the functional integrity of replication forks. We show that stalled Polε drives nascent strand resection causing fork functional collapse, averted via checkpoint-dependent phosphorylation. Polε catalytic subunit Pol2 is phosphorylated on serine 430, influencing partitioning between polymerase and exonuclease active sites. A phosphormimetic S430D change reduces exonucleolysis in vitro and counteracts fork collapse. Conversely, non-phosphorylatable pol2-S430A expression causes resection-driven stressed fork defects. Our findings reveal that checkpoint kinases switch Polε to an exonuclease-safe mode preventing nascent strand resection and stabilizing stalled replication forks. Elective partitioning suppression has implications for the diverse Polε roles in genome integrity maintenance.


Assuntos
DNA Polimerase II/química , Exonucleases/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Substituição de Aminoácidos , Domínio Catalítico , DNA Polimerase II/genética , DNA Polimerase II/metabolismo , DNA Fúngico/biossíntese , DNA Fúngico/química , DNA Fúngico/genética , Exonucleases/genética , Exonucleases/metabolismo , Mutação de Sentido Incorreto , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
EMBO J ; 43(6): 1015-1042, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38360994

RESUMO

Targeting poly(ADP-ribose) glycohydrolase (PARG) is currently explored as a therapeutic approach to treat various cancer types, but we have a poor understanding of the specific genetic vulnerabilities that would make cancer cells susceptible to such a tailored therapy. Moreover, the identification of such vulnerabilities is of interest for targeting BRCA2;p53-deficient tumors that have acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPi) through loss of PARG expression. Here, by performing whole-genome CRISPR/Cas9 drop-out screens, we identify various genes involved in DNA repair to be essential for the survival of PARG;BRCA2;p53-deficient cells. In particular, our findings reveal EXO1 and FEN1 as major synthetic lethal interactors of PARG loss. We provide evidence for compromised replication fork progression, DNA single-strand break repair, and Okazaki fragment processing in PARG;BRCA2;p53-deficient cells, alterations that exacerbate the effects of EXO1/FEN1 inhibition and become lethal in this context. Since this sensitivity is dependent on BRCA2 defects, we propose to target EXO1/FEN1 in PARPi-resistant tumors that have lost PARG activity. Moreover, EXO1/FEN1 targeting may be a useful strategy for enhancing the effect of PARG inhibitors in homologous recombination-deficient tumors.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Reparo do DNA , Dano ao DNA , Neoplasias/tratamento farmacológico , Neoplasias/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Endonucleases Flap/genética , Endonucleases Flap/metabolismo , Endonucleases Flap/uso terapêutico , Exodesoxirribonucleases/genética , Enzimas Reparadoras do DNA/genética
11.
Mol Cell ; 80(2): 327-344.e8, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32966758

RESUMO

Stabilization of stalled replication forks is a prominent mechanism of PARP (Poly(ADP-ribose) Polymerase) inhibitor (PARPi) resistance in BRCA-deficient tumors. Epigenetic mechanisms of replication fork stability are emerging but remain poorly understood. Here, we report the histone acetyltransferase PCAF (p300/CBP-associated) as a fork-associated protein that promotes fork degradation in BRCA-deficient cells by acetylating H4K8 at stalled replication forks, which recruits MRE11 and EXO1. A H4K8ac binding domain within MRE11/EXO1 is required for their recruitment to stalled forks. Low PCAF levels, which we identify in a subset of BRCA2-deficient tumors, stabilize stalled forks, resulting in PARPi resistance in BRCA-deficient cells. Furthermore, PCAF activity is tightly regulated by ATR (ataxia telangiectasia and Rad3-related), which phosphorylates PCAF on serine 264 (S264) to limit its association and activity at stalled forks. Our results reveal PCAF and histone acetylation as critical regulators of fork stability and PARPi responses in BRCA-deficient cells, which provides key insights into targeting BRCA-deficient tumors and identifying epigenetic modulators of chemotherapeutic responses.


Assuntos
Proteína BRCA1/deficiência , Proteína BRCA2/deficiência , Enzimas Reparadoras do DNA/metabolismo , Replicação do DNA , Exodesoxirribonucleases/metabolismo , Histonas/metabolismo , Proteína Homóloga a MRE11/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo , Acetilação/efeitos dos fármacos , Sequência de Aminoácidos , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteína BRCA1/metabolismo , Proteína BRCA2/metabolismo , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Replicação do DNA/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Lisina/metabolismo , Modelos Biológicos , Mutação/genética , Fosforilação/efeitos dos fármacos , Fosfosserina/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Ligação Proteica/efeitos dos fármacos , Fatores de Transcrição de p300-CBP/química , Fatores de Transcrição de p300-CBP/genética
12.
Genes Dev ; 34(11-12): 806-818, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32354835

RESUMO

Exonucleolytic resection, critical to repair double-strand breaks (DSBs) by recombination, is not well understood, particularly in mammalian meiosis. Here, we define structures of resected DSBs in mouse spermatocytes genome-wide at nucleotide resolution. Resection tracts averaged 1100 nt, but with substantial fine-scale heterogeneity at individual hot spots. Surprisingly, EXO1 is not the major 5' → 3' exonuclease, but the DSB-responsive kinase ATM proved a key regulator of both initiation and extension of resection. In wild type, apparent intermolecular recombination intermediates clustered near to but offset from DSB positions, consistent with joint molecules with incompletely invaded 3' ends. Finally, we provide evidence for PRDM9-dependent chromatin remodeling leading to increased accessibility at recombination sites. Our findings give insight into the mechanisms of DSB processing and repair in meiotic chromatin.


Assuntos
Reparo do DNA/fisiologia , Meiose , Animais , Cromatina/química , Cromatina/metabolismo , DNA/química , Quebras de DNA de Cadeia Dupla , Histona-Lisina N-Metiltransferase/metabolismo , Camundongos , Estrutura Molecular , Recombinação Genética
13.
Genes Dev ; 34(11-12): 731-732, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32482713

RESUMO

The exchange of genetic information between parental chromosomes in meiosis is an integral process for the creation of gametes. To generate a crossover, hundreds of DNA double-strand breaks (DSBs) are introduced in the genome of each meiotic cell by the SPO11 protein. The nucleolytic resection of DSB-adjacent DNA is a key step in meiotic DSB repair, but this process has remained understudied. In this issue of Genes & Development, Yamada and colleagues (pp. 806-818) capture some of the first details of resection and DSB repair intermediates in mouse meiosis using a method that maps blunt-ended DNA after ssDNA digestion. This yields some of the first genome-wide insights into DSB resection and repair in a mammalian genome and offers a tantalizing glimpse of how to quantitatively dissect this difficult to study, yet integral, nuclear process.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA/fisiologia , Meiose , Animais , Cromatina/química , Cromatina/metabolismo , DNA/química , Meiose/genética , Estrutura Molecular , Recombinação Genética
14.
Mol Cell ; 75(1): 145-153.e5, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31153714

RESUMO

Genetic recombination in all kingdoms of life initiates when helicases and nucleases process (resect) the free DNA ends to expose single-stranded DNA (ssDNA) overhangs. Resection regulation in bacteria is programmed by a DNA sequence, but a general mechanism limiting resection in eukaryotes has remained elusive. Using single-molecule imaging of reconstituted human DNA repair factors, we identify phosphorylated RPA (pRPA) as a negative resection regulator. Bloom's syndrome (BLM) helicase together with exonuclease 1 (EXO1) and DNA2 nucleases catalyze kilobase-length DNA resection on nucleosome-coated DNA. The resulting ssDNA is rapidly bound by RPA, which further stimulates DNA resection. RPA is phosphorylated during resection as part of the DNA damage response (DDR). Remarkably, pRPA inhibits DNA resection in cellular assays and in vitro via inhibition of BLM helicase. pRPA suppresses BLM initiation at DNA ends and promotes the intrinsic helicase strand-switching activity. These findings establish that pRPA provides a feedback loop between DNA resection and the DDR.


Assuntos
DNA de Cadeia Simples/genética , Retroalimentação Fisiológica , RecQ Helicases/genética , Proteínas Recombinantes de Fusão/genética , Proteína de Replicação A/genética , Sítios de Ligação , DNA Helicases/genética , DNA Helicases/metabolismo , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , DNA de Cadeia Simples/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Regulação da Expressão Gênica , Recombinação Homóloga , Humanos , Microscopia de Fluorescência , Nucleossomos/química , Nucleossomos/metabolismo , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Fosforilação , Ligação Proteica , RecQ Helicases/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteína de Replicação A/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Imagem Individual de Molécula
15.
Mol Cell ; 75(3): 620-630.e9, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31279659

RESUMO

mRNA modifications play important roles in regulating gene expression. One of the most abundant mRNA modifications is N6,2-O-dimethyladenosine (m6Am). Here, we demonstrate that m6Am is an evolutionarily conserved mRNA modification mediated by the Phosphorylated CTD Interacting Factor 1 (PCIF1), which catalyzes m6A methylation on 2-O-methylated adenine located at the 5' ends of mRNAs. Furthermore, PCIF1 catalyzes only 5' m6Am methylation of capped mRNAs but not internal m6A methylation in vitro and in vivo. To study the biological role of m6Am, we developed a robust methodology (m6Am-Exo-Seq) to map its transcriptome-wide distribution, which revealed no global crosstalk between m6Am and m6A under assayed conditions, suggesting that m6Am is functionally distinct from m6A. Importantly, we find that m6Am does not alter mRNA transcription or stability but negatively impacts cap-dependent translation of methylated mRNAs. Together, we identify the only human mRNA m6Am methyltransferase and demonstrate a mechanism of gene expression regulation through PCIF1-mediated m6Am mRNA methylation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Nucleares/genética , Processamento Pós-Transcricional do RNA/genética , RNA Mensageiro/genética , Transcrição Gênica , Adenosina/genética , Regulação da Expressão Gênica/genética , Humanos , Metilação , Metiltransferases/genética , Fosforilação , Transcriptoma/genética
16.
Mol Cell ; 74(6): 1123-1137.e6, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31053472

RESUMO

Abnormal processing of stressed replication forks by nucleases can cause fork collapse, genomic instability, and cell death. Despite its importance, it is poorly understood how the cell properly controls nucleases to prevent detrimental fork processing. Here, we report a signaling pathway that controls the activity of exonuclease Exo1 to prevent aberrant fork resection during replication stress. Our results indicate that replication stress elevates intracellular Ca2+ concentration ([Ca2+]i), leading to activation of CaMKK2 and the downstream kinase 5' AMP-activated protein kinase (AMPK). Following activation, AMPK directly phosphorylates Exo1 at serine 746 to promote 14-3-3 binding and inhibit Exo1 recruitment to stressed replication forks, thereby avoiding unscheduled fork resection. Disruption of this signaling pathway results in excessive ssDNA, chromosomal instability, and hypersensitivity to replication stress inducers. These findings reveal a link between [Ca2+]i and the replication stress response as well as a function of the Ca2+-CaMKK2-AMPK signaling axis in safeguarding fork structure to maintain genome stability.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética , Cálcio/metabolismo , Enzimas Reparadoras do DNA/genética , Reparo do DNA , Replicação do DNA , Exodesoxirribonucleases/genética , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Sinalização do Cálcio/genética , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem/genética , Quinase 1 do Ponto de Checagem/metabolismo , Cromatina/química , Cromatina/metabolismo , Dano ao DNA , Enzimas Reparadoras do DNA/metabolismo , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Exodesoxirribonucleases/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Células HEK293 , Células HeLa , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Camundongos , Osteoblastos/citologia , Osteoblastos/metabolismo , Fosforilação , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
17.
Mol Cell ; 75(4): 859-874.e4, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31351878

RESUMO

Homologous recombination (HR) is essential for high-fidelity DNA repair during mitotic proliferation and meiosis. Yet, context-specific modifications must tailor the recombination machinery to avoid (mitosis) or enforce (meiosis) the formation of reciprocal exchanges-crossovers-between recombining chromosomes. To obtain molecular insight into how crossover control is achieved, we affinity purified 7 DNA-processing enzymes that channel HR intermediates into crossovers or noncrossovers from vegetative cells or cells undergoing meiosis. Using mass spectrometry, we provide a global characterization of their composition and reveal mitosis- and meiosis-specific modules in the interaction networks. Functional analyses of meiosis-specific interactors of MutLγ-Exo1 identified Rtk1, Caf120, and Chd1 as regulators of crossing-over. Chd1, which transiently associates with Exo1 at the prophase-to-metaphase I transition, enables the formation of MutLγ-dependent crossovers through its conserved ability to bind and displace nucleosomes. Thus, rewiring of the HR network, coupled to chromatin remodeling, promotes context-specific control of the recombination outcome.


Assuntos
Troca Genética/fisiologia , Meiose/fisiologia , Mitose/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Espectrometria de Massas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
18.
Proc Natl Acad Sci U S A ; 121(13): e2313652121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38498709

RESUMO

Huntington's disease (HD) is an inherited neurodegenerative disorder caused by an expanded CAG repeat in the huntingtin (HTT) gene. The repeat-expanded HTT encodes a mutated HTT (mHTT), which is known to induce DNA double-strand breaks (DSBs), activation of the cGAS-STING pathway, and apoptosis in HD. However, the mechanism by which mHTT triggers these events is unknown. Here, we show that HTT interacts with both exonuclease 1 (Exo1) and MutLα (MLH1-PMS2), a negative regulator of Exo1. While the HTT-Exo1 interaction suppresses the Exo1-catalyzed DNA end resection during DSB repair, the HTT-MutLα interaction functions to stabilize MLH1. However, mHTT displays a significantly reduced interaction with Exo1 or MutLα, thereby losing the ability to regulate Exo1. Thus, cells expressing mHTT exhibit rapid MLH1 degradation and hyperactive DNA excision, which causes severe DNA damage and cytosolic DNA accumulation. This activates the cGAS-STING pathway to mediate apoptosis. Therefore, we have identified unique functions for both HTT and mHTT in modulating DNA repair and the cGAS-STING pathway-mediated apoptosis by interacting with MLH1. Our work elucidates the mechanism by which mHTT causes HD.


Assuntos
Doença de Huntington , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Proteínas Mutantes/genética , Doença de Huntington/genética , Doença de Huntington/metabolismo , Nucleotidiltransferases/genética , DNA , Apoptose/genética , Proteína 1 Homóloga a MutL/genética
19.
Mol Cell ; 70(1): 34-47.e4, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29551515

RESUMO

UV-induced photoproducts are responsible for the pathological effects of sunlight. Mutations in nucleotide excision repair (NER) cause severe pathologies characterized by sunlight sensitivity, coupled to elevated predisposition to cancer and/or neurological dysfunctions. We have previously shown that in UV-irradiated non-cycling cells, only a particular subset of lesions activates the DNA damage response (DDR), and this requires NER and EXO1 activities. To define the molecular mechanism acting at these lesions, we demonstrate that Y family TLS polymerases are recruited at NER- and EXO1-positive lesion sites in non-S phase cells. The coordinated action of EXO1 and Y family TLS polymerases promotes checkpoint activation, leads to lesion repair, and is crucial to prevent cytotoxic double-strand break (DSB) formation.


Assuntos
Pontos de Checagem do Ciclo Celular/efeitos da radiação , Quebras de DNA de Cadeia Dupla , Enzimas Reparadoras do DNA/metabolismo , Reparo do DNA/efeitos da radiação , DNA Polimerase Dirigida por DNA/metabolismo , Exodesoxirribonucleases/metabolismo , Raios Ultravioleta/efeitos adversos , Morte Celular/efeitos da radiação , Linhagem Celular , Enzimas Reparadoras do DNA/genética , DNA Polimerase Dirigida por DNA/genética , Exodesoxirribonucleases/genética , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Transporte Proteico , DNA Polimerase iota
20.
J Biol Chem ; 300(3): 105708, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311177

RESUMO

A DNA double-strand break (DSB) is one of the most dangerous types of DNA damage that is repaired largely by homologous recombination or nonhomologous end-joining (NHEJ). The interplay of repair factors at the break directs which pathway is used, and a subset of these factors also function in more mutagenic alternative (alt) repair pathways. Resection is a key event in repair pathway choice and extensive resection, which is a hallmark of homologous recombination, and it is mediated by two nucleases, Exo1 and Dna2. We observed differences in resection and repair outcomes in cells harboring nuclease-dead dna2-1 compared with dna2Δ pif1-m2 that could be attributed to the level of Exo1 recovered at DSBs. Cells harboring dna2-1 showed reduced Exo1 localization, increased NHEJ, and a greater resection defect compared with cells where DNA2 was deleted. Both the resection defect and the increased rate of NHEJ in dna2-1 mutants were reversed upon deletion of KU70 or ectopic expression of Exo1. By contrast, when DNA2 was deleted, Exo1 and Ku70 recovery levels did not change; however, Nej1 increased as did the frequency of alt-end joining/microhomology-mediated end-joining repair. Our findings demonstrate that decreased Exo1 at DSBs contributed to the resection defect in cells expressing inactive Dna2 and highlight the complexity of understanding how functionally redundant factors are regulated in vivo to promote genome stability.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , DNA Helicases , Proteínas de Ligação a DNA , Exodesoxirribonucleases , Proteínas de Saccharomyces cerevisiae , DNA Helicases/genética , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA