Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 74(3): 466-480.e4, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-30930055

RESUMO

The mTOR pathway integrates both extracellular and intracellular signals and serves as a central regulator of cell metabolism, growth, survival, and stress responses. Neurotropic viruses, such as herpes simplex virus-1 (HSV-1), also rely on cellular AKT-mTORC1 signaling to achieve viral latency. Here, we define a novel genotoxic response whereby spatially separated signals initiated by extracellular neurotrophic factors and nuclear DNA damage are integrated by the AKT-mTORC1 pathway. We demonstrate that endogenous DNA double-strand breaks (DSBs) mediated by Topoisomerase 2ß-DNA cleavage complex (TOP2ßcc) intermediates are required to achieve AKT-mTORC1 signaling and maintain HSV-1 latency in neurons. Suppression of host DNA-repair pathways that remove TOP2ßcc trigger HSV-1 reactivation. Moreover, perturbation of AKT phosphorylation dynamics by downregulating the PHLPP1 phosphatase led to AKT mis-localization and disruption of DSB-induced HSV-1 reactivation. Thus, the cellular genome integrity and environmental inputs are consolidated and co-opted by a latent virus to balance lifelong infection with transmission.


Assuntos
DNA Topoisomerases Tipo II/genética , Herpesvirus Humano 1/genética , Proteínas Nucleares/genética , Proteínas Proto-Oncogênicas c-akt/genética , Latência Viral/genética , Animais , Quebras de DNA de Cadeia Dupla , Dano ao DNA/genética , Reparo do DNA por Junção de Extremidades/genética , Reparo do DNA/genética , Enzimas Reparadoras do DNA/genética , Proteínas de Ligação a DNA/genética , Herpesvirus Humano 1/patogenicidade , Humanos , Proteína Homóloga a MRE11/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Neurônios/metabolismo , Neurônios/virologia , Fosforilação , Ratos , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética
2.
Expert Opin Emerg Drugs ; 29(2): 113-126, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38603466

RESUMO

INTRODUCTION: Herpes simplex keratitis stands as a prominent factor contributing to infectious blindness among developed nations. On a global scale, over 60% of the population tests positive for herpes simplex virus type-1 (HSV-1). Despite these statistics, there is currently no vaccine available for the virus. Moreover, the conventional nucleoside drugs prescribed to patients are proving ineffective in addressing issues related to drug resistance, recurrence, latency, and the escalating risk of vision loss. Hence, it is imperative to continually explore all potential avenues to restrict the virus. This review article centers on the present treatment methods for HSV-1 keratitis (HSK), highlighting the ongoing clinical trials. It delves into the emerging drugs, their mode-of-action and future therapeutics. AREAS COVERED: The review focuses on the significance of a variety of small molecules targeting HSV-1 lifecycle at multiple steps. Peer-reviewed articles and abstracts were searched in MEDLINE, PubMed, Embase, and clinical trial websites. EXPERT OPINION: The exploration of small molecules that target specific pathways within the herpes lifecycle holds the potential for substantial impact on the antiviral pharmaceutical market. Simultaneously, the pursuit of disease-specific biomarkers has the capacity to usher in a transformative era in diagnostics within the field.


Assuntos
Antivirais , Desenvolvimento de Medicamentos , Herpesvirus Humano 1 , Ceratite Herpética , Humanos , Ceratite Herpética/tratamento farmacológico , Ceratite Herpética/virologia , Antivirais/farmacologia , Antivirais/uso terapêutico , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 1/isolamento & purificação , Animais , Farmacorresistência Viral , Desenho de Fármacos
3.
J Med Virol ; 95(10): e29183, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-37861466

RESUMO

Life-long persistent herpesviruses carry "trans-inducers" to overcome the unusual codon usage of their glycoproteins for efficient expression. Strikingly, this "trans-inducibility" can be achieved by simply changing the codon-usage of acute virus glycoproteins to that of persistent herpesvirus glycoproteins with herpesviral trans-inducer. Here, we apply the "persistent viral codon-usage-trans-inducer" principle to SARS-CoV-2 Spike mRNA vaccine platform, in which the codon-usage of Spike is changed to that of Herpes Simplex Virus-1 (HSV-1) glycoprotein B (gB) with its "trans-inducer" ICP27. The HSVgB-ICP27-codon-optimized Spike mRNA vaccine induced markedly high antigen expression and stability, total IgG, neutralizing antibody, and T cell response, ultimately enhancing protection against lethal SARS-CoV-2 challenge. Moreover, the HSVgB- codon-optimized Delta (B.1.617.2) strain Spike mRNA vaccine provided significant enhancements in antigen expression and long-term protection against SARS-CoV-2 challenge. Thus, we report a novel persistent viral codon-usage-trans-inducer mRNA vaccine platform for enhanced antigen expression and long-term protection against lethal viral infection.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Códon , Glicoproteína da Espícula de Coronavírus , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , Códon/genética , Códon/imunologia , COVID-19/genética , COVID-19/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/genética , Vacinas contra COVID-19/imunologia , Glicoproteínas , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas Virais
4.
Diabetologia ; 65(8): 1328-1338, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35538159

RESUMO

AIMS/HYPOTHESIS: The prevalence of type 2 diabetes is increasing worldwide, and previous studies have suggested that it is higher in individuals who are seropositive for herpesviruses. This study examines the prospective association of herpesviruses with (pre)diabetes to evaluate their potential role in diabetes aetiology. METHODS: Two follow-up examinations of the German population-based KORA cohort (F4 and FF4) were used to identify participants with normal glucose tolerance at baseline, thus being at risk for (pre)diabetes (n = 1257). All participants had repeated OGTTs and antibody measurements for herpes simplex virus (HSV) 1 and 2, varicella-zoster virus, Epstein-Barr virus, cytomegalovirus (CMV) and human herpesvirus 6 and 7. Regression models were used to evaluate the association between serostatus with (pre)diabetes incidence after a 7 year follow-up and HbA1c. RESULTS: HSV2 and CMV were associated with (pre)diabetes incidence after adjustment for sex, age, BMI, education, smoking, physical activity, parental diabetes, hypertension, lipid levels, insulin resistance and fasting glucose. Seropositivity of both viruses was also cross-sectionally associated with higher HbA1c at baseline, with the association of HSV2 being independent of confounders, including the prevalence of (pre)diabetes itself. While seropositivity for multiple herpesviruses was associated with a higher incidence of (pre)diabetes, this association was not independent of confounders. CONCLUSIONS/INTERPRETATION: The associations of HSV2 and CMV serostatus with (pre)diabetes incidence indicate that these herpesviruses may contribute to the development of impaired glucose metabolism. Our results highlight the link between viral infection and (pre)diabetes, and the need for more research evaluating viral prevention strategies.


Assuntos
Infecções por Citomegalovirus , Diabetes Mellitus Tipo 2 , Infecções por Vírus Epstein-Barr , Infecções por Herpesviridae , Herpesviridae , Citomegalovirus , Infecções por Citomegalovirus/epidemiologia , Diabetes Mellitus Tipo 2/epidemiologia , Glucose , Infecções por Herpesviridae/epidemiologia , Herpesvirus Humano 4 , Humanos , Incidência , Simplexvirus
5.
Med J Armed Forces India ; 78(2): 157-163, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35463538

RESUMO

Background: Mechanical debridement of periodontal pockets remains the mainstay of therapy in all forms of periodontitis. There is 47% greater reduction in plaque amount when sodium hypochlorite (NaOCl) is used as an adjunct when compared with water rinsing. The aim of this study was to evaluate the effects of 0.05% NaOCl and 0.12% chlorhexidine gluconate twice daily rinse on periodontal parameters and gingival crevicular fluid (GCF) HSV1 and CMV levels in chronic periodontitis. Methods: Patients assigned to group A were prescribed 0.05% NaOCl mouthwash for twice daily rinse. Patients in group B were prescribed 0.12% chlorhexidine gluconate mouthwash to be used twice daily. Evaluation of periodontal parameters was done at baseline and after six months following therapy. GCF HSV1 and CMV levels were evaluated using a polymerase chain reaction. Results: A statistically significant difference was noted in the improvement in periodontal parameters between both groups, when evaluated six months following therapy with greater reduction in group A vis-a-vis group B. Conclusion: NaOCl when prescribed as a twice daily mouthwash can be recommended as a part of the home care regime in patients with chronic periodontitis. It is more cost-effective, easily available and can be beneficial to the troops in difficult terrains and extremes of climates, where oral healthcare facilities are not easily accessible.

6.
J Virol ; 94(16)2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32493817

RESUMO

Herpes simplex virus 1 (HSV-1) can induce damage in brain regions that include the hippocampus and associated limbic structures. These neurogenic niches are important because they are associated with memory formation and are highly enriched with neural progenitor cells (NPCs). The susceptibility and fate of HSV-1-infected NPCs are largely unexplored. We differentiated human induced pluripotent stem cells (hiPSCs) into NPCs to generate two-dimensional (2D) and three-dimensional (3D) culture models to examine the interaction of HSV-1 with NPCs. Here, we show that (i) NPCs can be efficiently infected by HSV-1, but infection does not result in cell death of most NPCs, even at high multiplicities of infection (MOIs); (ii) limited HSV-1 replication and gene expression can be detected in the infected NPCs; (iii) a viral silencing mechanism is established in NPCs exposed to the antivirals (E)-5-(2-bromovinyl)-2'-deoxyuridine (5BVdU) and alpha interferon (IFN-α) and when the antivirals are removed, spontaneous reactivation can occur at low frequency; (iv) HSV-1 impairs the ability of NPCs to migrate in a dose-dependent fashion in the presence of 5BVdU plus IFN-α; and (v) 3D cultures of NPCs are less susceptible to HSV-1 infection than 2D cultures. These results suggest that NPC pools could be sites of HSV-1 reactivation in the central nervous system (CNS). Finally, our results highlight the potential value of hiPSC-derived 3D cultures to model HSV-1-NPC interaction.IMPORTANCE This study employed human induced pluripotent stem cells (hiPSCs) to model the interaction of HSV-1 with NPCs, which reside in the neurogenic niches of the CNS and play a fundamental role in adult neurogenesis. Herein, we provide evidence that in NPCs infected at an MOI as low as 0.001, HSV-1 can establish a latent state, suggesting that (i) a variant of classical HSV-1 latency can be established during earlier stages of neuronal differentiation and (ii) neurogenic niches in the brain may constitute additional sites of viral reactivation. Lytic HSV-1 infections impaired NPC migration, which represents a critical step in neurogenesis. A difference in susceptibility to HSV-1 infection between two-dimensional (2D) and three-dimensional (3D) NPC cultures was observed, highlighting the potential value of 3D cultures for modeling host-pathogen interactions. Together, our results are relevant in light of observations relating HSV-1 infection to postencephalitic cognitive dysfunction.


Assuntos
Herpesvirus Humano 1/metabolismo , Células-Tronco Neurais/virologia , Replicação Viral/fisiologia , Animais , Sistema Nervoso Central/virologia , Chlorocebus aethiops , Herpes Simples/virologia , Herpesvirus Humano 1/patogenicidade , Herpesvirus Humano 1/fisiologia , Interações Hospedeiro-Patógeno , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese , Células Vero , Latência Viral/fisiologia
7.
Exp Cell Res ; 390(1): 111931, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32126238

RESUMO

After the construction of genomic libraries with yeast artificial chromosomes in the late 1980's for gene isolation and expression studies in cells, human artificial chromosomes were then a natural development in the 1990's, based on the same principles of formation requiring centromeric sequences for generating functional artificial chromosomes. Over the past twenty years, they became a useful research tool for understanding human chromosome structure and organization, and important vectors for expression of large genes and gene loci and the regulatory regions for full expression. Now they are being modified and developed for gene therapy both ex vivo and in vivo. The advantages of using HAC vectors are that they remain autonomous and behave as a normal chromosome. They are attractive for therapy studies without the harmful consequences of integration of exogenous DNA into host chromosomes. HAC vectors are also the only autonomous stable vectors that accommodate large sequences (>100 kb) compared to other vectors. The challenges of manipulating these vectors for efficient delivery of genes into human cells is still ongoing, but we have made advances in transfer of gene expressing HAC vectors using the helper free (HF) amplicon vector technology for generating de novo HAC in human cells. Efficient multigene delivery was successfully achieved following simultaneous infection with two HF amplicons in a single treatment and the input DNA recombined to form a de novo HAC. Potentially several amplicons containing gene expressing HAC vectors could be transduced simultaneously which would increase the gene loading capacity of the vectors for delivery and studying full expression in human cells.


Assuntos
Cromossomos Artificiais/genética , Terapia Genética/métodos , Técnicas de Transferência de Genes , Humanos
8.
Exp Cell Res ; 388(2): 111840, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31930965

RESUMO

Gene expression studies and gene therapy require efficient gene delivery into cells. Different technologies by viral and non-viral mechanisms have been used for gene delivery into cells. Small gene vectors transfer across the cell membrane with a relatively high efficiency, but not large genes or entire loci spanning several kilobases, which do not remain intact following introduction. Previously, we developed an efficient delivery system based on herpes virus simplex type 1 (HSV-1) amplicons to transfer large fragments of DNA incorporated in human artificial chromosome (HAC) vectors into the nucleus of human cells. The HSV-1 amplicon lacks the signals for cleavage and replication of its own genome, yet each amplicon has the capacity to incorporate up to 150 kb of exogenous DNA. In this study, we investigated whether the capacity of gene delivery could be increased by simultaneously introducing multiple HSV-1 modified amplicons carrying a gene expressing HAC vector into cells with the aim of generating a single artificial chromosome containing the desired genes. Following co-transduction of two HSV-1 HAC amplicons, artificial chromosomes were successfully generated containing the introduced genes, which were appropriately expressed in different human cell types.


Assuntos
Cromossomos Artificiais Humanos/genética , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Herpesvirus Humano 1/genética , Terapia Genética , Humanos
9.
J Virol ; 93(9)2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30787148

RESUMO

Herpes simplex virus 1 (HSV-1) establishes latency in both peripheral nerve ganglia and the central nervous system (CNS). The outcomes of acute and latent infections in these different anatomic sites appear to be distinct. It is becoming clear that many of the existing culture models using animal primary neurons to investigate HSV-1 infection of the CNS are limited and not ideal, and most do not recapitulate features of CNS neurons. Human induced pluripotent stem cells (hiPSCs) and neurons derived from them are documented as tools to study aspects of neuropathogenesis, but few have focused on modeling infections of the CNS. Here, we characterize functional two-dimensional (2D) CNS-like neuron cultures and three-dimensional (3D) brain organoids made from hiPSCs to model HSV-1-human-CNS interactions. Our results show that (i) hiPSC-derived CNS neurons are permissive for HSV-1 infection; (ii) a quiescent state exhibiting key landmarks of HSV-1 latency described in animal models can be established in hiPSC-derived CNS neurons; (iii) the complex laminar structure of the organoids can be efficiently infected with HSV, with virus being transported from the periphery to the central layers of the organoid; and (iv) the organoids support reactivation of HSV-1, albeit less efficiently than 2D cultures. Collectively, our results indicate that hiPSC-derived neuronal platforms, especially 3D organoids, offer an extraordinary opportunity for modeling the interaction of HSV-1 with the complex cellular and architectural structure of the human CNS.IMPORTANCE This study employed human induced pluripotent stem cells (hiPSCs) to model acute and latent HSV-1 infections in two-dimensional (2D) and three-dimensional (3D) CNS neuronal cultures. We successfully established acute HSV-1 infections and infections showing features of latency. HSV-1 infection of the 3D organoids was able to spread from the outer surface of the organoid and was transported to the interior lamina, providing a model to study HSV-1 trafficking through complex neuronal tissue structures. HSV-1 could be reactivated in both culture systems; though, in contrast to 2D cultures, it appeared to be more difficult to reactivate HSV-1 in 3D cultures, potentially paralleling the low efficiency of HSV-1 reactivation in the CNS of animal models. The reactivation events were accompanied by dramatic neuronal morphological changes and cell-cell fusion. Together, our results provide substantive evidence of the suitability of hiPSC-based neuronal platforms to model HSV-1-CNS interactions in a human context.


Assuntos
Sistema Nervoso Central/metabolismo , Herpes Simples/metabolismo , Herpesvirus Humano 1/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios/metabolismo , Animais , Sistema Nervoso Central/patologia , Sistema Nervoso Central/virologia , Chlorocebus aethiops , Herpes Simples/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Células-Tronco Pluripotentes Induzidas/virologia , Neurônios/patologia , Neurônios/virologia , Células Vero
10.
Eur Arch Psychiatry Clin Neurosci ; 270(7): 829-839, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32219505

RESUMO

Common infectious agents, such as Toxoplasma gondii (T. gondii) and several human herpes viruses, have been linked to increased risk of self-harm. The aim of this study was to investigate the associations between self-harm and seropositivity to T. gondii, Epstein-Barr virus (EBV), Herpes Simplex virus Type 1 (HSV-1), and Cytomegalovirus (CMV). IgM and IgG antibodies to these infections were measured in the Health 2000 project nationally representative of the whole Finnish adult population, and 6250 participants, age 30 and over, were followed for 15 years via registers. In addition, lifetime suicidal ideation and suicide attempts based on medical records and interview were assessed within a subsample of 694 participants screened to a substudy for possible psychotic symptoms or as controls. Among the 6250 participants, 14 individuals died of suicide and an additional 4 individuals had a diagnosis of intentional self-harm during follow-up. Serological evidence of lifetime or acute infections was not found to be associated with these suicidal outcomes. However, in the subsample, those seropositive for CMV had fewer suicide attempts compared to those seronegative, adjusting for gender, age, educational level, childhood family size, regional residence, CRP, and screen status (OR for multiple attempts = 0.40, 95% confidence interval 0.20‒0.83, p = 0.014). To conclude, common infections were not associated with risk of death by suicide or with self-harm diagnoses at a 15-year follow-up in the general population sample. Our finding of an increased number of suicide attempts among persons seronegative for CMV calls for further research.


Assuntos
Infecções por Herpesviridae/epidemiologia , Transtornos Mentais/epidemiologia , Sistema de Registros , Ideação Suicida , Tentativa de Suicídio/estatística & dados numéricos , Toxoplasmose/epidemiologia , Adulto , Idoso , Anticorpos Antivirais/sangue , Estudos Transversais , Feminino , Finlândia/epidemiologia , Humanos , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Risco , Toxoplasma/imunologia
11.
J Infect Dis ; 213(2): 233-42, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26142434

RESUMO

BACKGROUND: Cytomegalovirus (CMV) and Epstein-Barr virus (EBV) induce effector memory T-cell expansions, which are variable and potentially depend on the age at primary exposure and coinfections. We evaluated the T-cell compartment and herpesvirus infections in 6-year-old children. METHODS: T-cell subsets and immunoglobulin G seropositivity for CMV, EBV, herpes-simplex virus 1, and varicella-zoster virus were studied in 1079 6-year-old children. A random subgroup of 225 children was evaluated for CMV and EBV seropositivity before 2 years of age and for vaccination responses against measles and tetanus. RESULTS: CMV and EBV infections were associated with significant expansions of CD27(-) and CD27(+) effector memory T cells, respectively. These expansions were enhanced in CMV-EBV-coinfected children and were independent of varicella-zoster virus or herpes-simplex virus 1 coinfection. Naive and central memory T-cell numbers were not affected, nor were anti-tetanus and anti-measles immunoglobulin G levels. Children infected before 2 years of age showed smaller effector memory T-cell expansions than those infected between 2 and 6 years of age. CONCLUSIONS: CMV- and EBV-related T-cell expansions do not impair naive T-cell numbers or maintenance of protective responses against nonrelated pathogens. Duration of infection was not directly related to larger expansions of effector memory T cells in children, suggesting that other mechanisms affect these expansions at later age.


Assuntos
Citomegalovirus/fisiologia , Herpesvirus Humano 4/fisiologia , Vacina contra Sarampo/imunologia , Subpopulações de Linfócitos T/fisiologia , Antitoxina Tetânica/imunologia , Diferenciação Celular , Criança , Pré-Escolar , Herpesvirus Humano 1/imunologia , Herpesvirus Humano 3/imunologia , Humanos , Sarampo/prevenção & controle , Tétano/prevenção & controle , Vacinação
12.
Virologie (Montrouge) ; 18(3): 170-179, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33065850

RESUMO

After a primary infection, many viruses establish a latent infection and stay invisible for the host immune system until reactivation. To understand how a virus seemingly « under control ¼ could reactivate and induce pathology, it is essential to understand the different cellular mechanisms implicated in the antiviral defense. Promyelocytic leukemia (PML) nuclear bodies (PML-NB) are nuclear relays of the antiviral response implicated in the nucleus-associated intrinsic antiviral defense. Many viruses interfere with the activity of the PML-NB, however not much is known about the capacity of these domains to interact with the nucleus incoming viral genomes. This review describes how a recent study of my team has enabled to decipher, in a physiological context, the role of the PML-NB in the detection, structuration and transcriptional control of the herpes simplex virus 1 (HSV-1). It opens new perspectives to understand how the antiviral response associated with nuclear domains could control many other viruses.

13.
Antiviral Res ; 228: 105936, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38908520

RESUMO

Herpes simplex virus-1 (HSV-1) infection can cause various diseases and the current therapeutics have limited efficacy. Small interfering RNA (siRNA) therapeutics are a promising approach against infectious diseases by targeting the viral mRNAs directly. Recently, we employed a novel tRNA scaffold to produce recombinant siRNA agents with few natural posttranscriptional modifications. In this study, we aimed to develop a specific prodrug against HSV-1 infection based on siRNA therapeutics by bioengineering technology. We screened and found that UL8 of the HSV-1 genome was an ideal antiviral target based on RNAi. Next, we used a novel bio-engineering approach to manufacture recombinant UL8-siRNA (r/si-UL8) in Escherichia coli with high purity and activity. The r/si-UL8 was selectively processed to mature si-UL8 and significantly reduced the number of infectious virions in human cells. r/si-UL8 delivered by flexible nano-liposomes significantly decreased the viral load in the skin and improved the survival rate in the preventive mouse zosteriform model. Furthermore, r/si-UL8 also effectively inhibited HSV-1 infection in a 3D human epidermal skin model. Taken together, our results highlight that the novel siRNA bioengineering technology is a unique addition to the conventional approach for siRNA therapeutics and r/si-UL8 may be a promising prodrug for curing HSV-1 infection.


Assuntos
Bioengenharia , Herpes Simples , Herpesvirus Humano 1 , Lipossomos , RNA Interferente Pequeno , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 1/genética , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Animais , Camundongos , Herpes Simples/tratamento farmacológico , Herpes Simples/prevenção & controle , Humanos , Bioengenharia/métodos , Antivirais/farmacologia , Antivirais/administração & dosagem , Proteínas Virais/genética , Carga Viral/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Feminino , Interferência de RNA
14.
Virol Sin ; 38(1): 108-118, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36436797

RESUMO

Herpes simplex virus-1 (HSV-1) is a widespread neurotropic virus that can reach the brain and cause a rare but acute herpes simplex encephalitis (HSE) with a high mortality rate. Most patients present with changes in neurological and behavioral status, and survivors suffer long-term neurological sequelae. To date, the pathogenesis leading to brain damage is still not well understood. HSV-1 induced encephalitis in the central nervous system (CNS) in animals are usually very diffuse and progressing rapidly, and mostly fatal, making the analysis difficult. Here, we established a mouse model of HSE via intracerebral inoculation of modified version of neural-attenuated strains of HSV-1 (deletion of ICP34.5 and inserting a strong promoter into the latency-associated transcript region), in which the LMR-αΔpA strain initiated moderate productive infection, leading to strong host immune and inflammatory response characterized by persistent microglia activation. This viral replication activity and prolonged inflammatory response activated signaling pathways in neuronal damage, amyloidosis, Alzheimer's disease, and neurodegeneration, eventually leading to neuronal loss and behavioral changes characterized by hypokinesia. Our study reveals detailed pathogenic processes and persistent inflammatory responses in the CNS and provides a controlled, mild and non-lethal HSE model for studying long-term neuronal injury and increased risk of neurodegenerative diseases due to HSV-1 infection.


Assuntos
Encefalite por Herpes Simples , Herpes Simples , Herpesvirus Humano 1 , Camundongos , Animais , Herpesvirus Humano 1/fisiologia , Encefalite por Herpes Simples/complicações , Encefalite por Herpes Simples/patologia , Encéfalo/patologia , Inflamação
15.
Front Cell Infect Microbiol ; 12: 814307, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35350437

RESUMO

Histone modifications control the lytic gene expression of herpes simplex virus 1 (HSV-1). The heterochromatin mark, trimethylation of histone H3 on lysine (K) 9 (H3K9me3), is detected on HSV-1 genomes at early phases of infection to repress viral gene transcription. However, the components and mechanisms involved in the process are mostly unknown. Integrin-linked kinase (ILK) is activated by PI3K to phosphorylate Akt and promote several RNA virus infections. Akt has been shown to enhance HSV-1 infection, suggesting a pro-viral role of ILK in HSV-1 infection that has not been addressed before. Here, we reveal that ILK enhances HSV-1 replication in an Akt-independent manner. ILK reduces the accumulation of H3K9me3 on viral promoters and replication compartments. Notably, ILK reduces H3K9me3 in a manner independent of ICP0. Instead, we show an increased binding of H3K9 methyltransferase SUV39H1 and corepressor TRIM28 on viral promoters in ILK knockdown cells. Knocking down SUV39H1 or TRIM28 increases HSV-1 lytic gene transcription in ILK knockdown cells. These results show that ILK antagonizes SVU39H1- and TRIM28-mediated repression on lytic gene transcription. We further demonstrate that ILK knockdown reduces TRIM28 phosphorylation on serine 473 and 824 in HSV-1-infected cells, suggesting that ILK facilitates TRIM28 phosphorylation to abrogate its inhibition on lytic gene transcription. OSU-T315, an ILK inhibitor, suppresses HSV-1 replication in cells and mice. In conclusion, we demonstrate that ILK decreases H3K9me3 on HSV-1 DNA by reducing SUV39H1 and TRIM28 binding. Moreover, our results suggest that targeting ILK could be a broad-spectrum antiviral strategy for DNA and RNA virus infections, especially for DNA viruses controlled by histone modifications.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Animais , Herpes Simples/metabolismo , Herpesvirus Humano 1/genética , Histonas/metabolismo , Camundongos , Proteínas Serina-Treonina Quinases/genética
16.
Viruses ; 14(3)2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35337041

RESUMO

Pathogenesis of viral infections of the central nervous system (CNS) is poorly understood, and this is partly due to the limitations of currently used preclinical models. Brain organoid models can overcome some of these limitations, as they are generated from human derived stem cells, differentiated in three dimensions (3D), and can mimic human neurodevelopmental characteristics. Therefore, brain organoids have been increasingly used as brain models in research on various viruses, such as Zika virus, severe acute respiratory syndrome coronavirus 2, human cytomegalovirus, and herpes simplex virus. Brain organoids allow for the study of viral tropism, the effect of infection on organoid function, size, and cytoarchitecture, as well as innate immune response; therefore, they provide valuable insight into the pathogenesis of neurotropic viral infections and testing of antivirals in a physiological model. In this review, we summarize the results of studies on viral CNS infection in brain organoids, and we demonstrate the broad application and benefits of using a human 3D model in virology research. At the same time, we describe the limitations of the studies in brain organoids, such as the heterogeneity in organoid generation protocols and age at infection, which result in differences in results between studies, as well as the lack of microglia and a blood brain barrier.


Assuntos
COVID-19 , Viroses do Sistema Nervoso Central , Infecção por Zika virus , Zika virus , Barreira Hematoencefálica , Encéfalo/patologia , Humanos , Organoides , Infecção por Zika virus/patologia
17.
Front Cell Dev Biol ; 9: 642625, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33996800

RESUMO

Activation of the epidermal growth factor receptor (EGFR) is crucial for development, tissue homeostasis, and immunity. Dysregulation of EGFR signaling is associated with numerous diseases. EGFR ubiquitination and endosomal trafficking are key events that regulate the termination of EGFR signaling, but their underlying mechanisms remain obscure. Here, we reveal that ZNRF1, an E3 ubiquitin ligase, controls ligand-induced EGFR signaling via mediating receptor ubiquitination. Deletion of ZNRF1 inhibits endosome-to-lysosome sorting of EGFR, resulting in delayed receptor degradation and prolonged downstream signaling. We further demonstrate that ZNRF1 and Casitas B-lineage lymphoma (CBL), another E3 ubiquitin ligase responsible for EGFR ubiquitination, mediate ubiquitination at distinct lysine residues on EGFR. Furthermore, loss of ZNRF1 results in increased susceptibility to herpes simplex virus 1 (HSV-1) infection due to enhanced EGFR-dependent viral entry. Our findings identify ZNRF1 as a novel regulator of EGFR signaling, which together with CBL controls ligand-induced EGFR ubiquitination and lysosomal trafficking.

18.
Virol Sin ; 34(3): 315-323, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30915606

RESUMO

Honokiol is a pleiotropic natural compound isolated from Magnolia and has multiple biological and clinically relevant effects, including anticancer and antimicrobial function. However, the antiviral activity of honokiol has not yet been well studied. Here we showed that honokiol had no effect on herpes simplex virus-1 (HSV-1) entry, but inhibited HSV-1 viral DNA replication, gene expression and the production of new progeny viruses. The combination of honokiol and clinical drug acyclovir augmented inhibition of HSV-1 infection. Our results illustrate that honokiol could be a potential new candidate for clinical consideration in the treatment of HSV-1 infection alone or combination with other therapeutics.


Assuntos
Antivirais/farmacologia , Compostos de Bifenilo/farmacologia , Herpesvirus Humano 1/efeitos dos fármacos , Lignanas/farmacologia , Replicação Viral/efeitos dos fármacos , Aciclovir/farmacologia , Animais , Chlorocebus aethiops , Replicação do DNA , Genoma Viral , Herpesvirus Humano 1/fisiologia , Magnolia/química , Camundongos , Camundongos Endogâmicos C57BL , Compostos Fitoquímicos/farmacologia , Células Vero
19.
Virol Sin ; 34(6): 673-687, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31506828

RESUMO

Herpes simplex virus 1 (HSV-1), a member of α herpesviruses, shows a high infectivity rate of 30%-60% in populations of various ages. Some herpes simplex (HSV) vaccine candidates evaluated during the past 20 years have not shown protective efficacy against viral infection. An improved understanding of the immune profile of infected individuals and the associated mechanism is needed. HSV uses an immune evasion strategy during viral replication, and various virus-encoded proteins, such as ICP47 and Vhs, participate in this process through limiting the ability of CD8+ cytotoxic T lymphocytes to recognize target cells. Other proteins, e.g., Us3 and Us5, also play a role in viral immune evasion via interfering with cellular apoptosis. In this work, to study the mechanism by which HSV-1 strain attenuation interferes with the viral immune evasion strategy, we constructed a mutant strain, M5, with deletions in the Us3 and Us5 genes. M5 was shown to induce higher neutralizing antibody titers and a stronger cellular immune response than our previously reported M3 strain, and to prevent virus infection more effectively than the M3 strain in an in vivo mouse challenge test.


Assuntos
Apoptose , Vacinas contra o Vírus do Herpes Simples/imunologia , Herpes Simples/prevenção & controle , Herpesvirus Humano 1/imunologia , Vacinas Atenuadas/imunologia , Animais , Linhagem Celular Tumoral , Chlorocebus aethiops , Feminino , Herpes Simples/patologia , Herpes Simples/virologia , Vacinas contra o Vírus do Herpes Simples/genética , Herpesvirus Humano 1/genética , Humanos , Imunidade , Células Jurkat , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Fenótipo , Proteínas Serina-Treonina Quinases/genética , Células Vero , Proteínas do Envelope Viral/genética , Proteínas Virais/genética , Replicação Viral
20.
Virol Sin ; 34(4): 386-396, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31020575

RESUMO

To date, 29 distinct microRNAs (miRNAs) have been reported to be expressed during herpes simplex virus infections. Sequence analysis of mature herpes simplex virus-1 (HSV-1) miRNAs revealed five sets of miRNAs that are complementary to each other: miR-H6-5p/H1-3p, miR-H6-3p/H1-5p, H2-5p/H14-3p, miR-H2-3p/H14-5p, and miR-H7/H27. However, the roles of individual miRNAs and consequences of this complementarity remain unclear. Here, we focus on two of these complementary miRNAs, miR-H6-5p and miR-H1-3p, using loss-of-function experiments in vitro and in a mouse model of infection using an miRNA sponge approach, including tandem multiplex artificial miRNA-binding sequences that do not match perfectly to the target miRNA inserted downstream of a green fluorescent protein reporter gene. Infection with recombinant virus expressing the miR-H6-5p sponge reduced viral protein levels and virus yield. Decreased accumulation of viral proteins was also observed at early stages of infection in the presence of both an miR-H6-5p inhibitor and plasmid-expressed miR-H1-3p. Moreover, establishment of latency and reactivation did not differ between the recombinant virus expressing the miR-H6-5p sponge and wild-type HSV-1. Taken together, these data suggest that miR-H6-5p has an as-yet-unidentified role in the early stages of viral infection, and its complement miR-H1-3p suppresses this role in later stages of infection. This report extends understanding of the roles of miRNAs in infection by herpes simplex viruses, supporting a model of infection in which the production of virus and its virulent effects are tightly controlled to maximize persistence in the host and population.


Assuntos
Regulação Viral da Expressão Gênica , Herpesvirus Humano 1/genética , MicroRNAs/genética , Proteínas Virais/genética , Replicação Viral , Animais , Linhagem Celular , Herpesvirus Humano 1/fisiologia , Mutação com Perda de Função , Camundongos , RNA Viral/genética , Latência Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA