RESUMO
SARS-CoV-2-induced hypercytokinemia and inflammation are critically associated with COVID-19 severity. Baricitinib, a clinically approved JAK1/JAK2 inhibitor, is currently being investigated in COVID-19 clinical trials. Here, we investigated the immunologic and virologic efficacy of baricitinib in a rhesus macaque model of SARS-CoV-2 infection. Viral shedding measured from nasal and throat swabs, bronchoalveolar lavages, and tissues was not reduced with baricitinib. Type I interferon (IFN) antiviral responses and SARS-CoV-2-specific T cell responses remained similar between the two groups. Animals treated with baricitinib showed reduced inflammation, decreased lung infiltration of inflammatory cells, reduced NETosis activity, and more limited lung pathology. Importantly, baricitinib-treated animals had a rapid and remarkably potent suppression of lung macrophage production of cytokines and chemokines responsible for inflammation and neutrophil recruitment. These data support a beneficial role for, and elucidate the immunological mechanisms underlying, the use of baricitinib as a frontline treatment for inflammation induced by SARS-CoV-2 infection.
Assuntos
Anti-Inflamatórios/administração & dosagem , Azetidinas/administração & dosagem , Tratamento Farmacológico da COVID-19 , COVID-19/imunologia , Macaca mulatta , Infiltração de Neutrófilos/efeitos dos fármacos , Purinas/administração & dosagem , Pirazóis/administração & dosagem , Sulfonamidas/administração & dosagem , Animais , COVID-19/fisiopatologia , Morte Celular/efeitos dos fármacos , Degranulação Celular/efeitos dos fármacos , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/imunologia , Janus Quinases/antagonistas & inibidores , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Ativação Linfocitária/efeitos dos fármacos , Macrófagos Alveolares/imunologia , SARS-CoV-2/fisiologia , Índice de Gravidade de Doença , Linfócitos T/imunologia , Replicação Viral/efeitos dos fármacosRESUMO
Fetal neurodevelopment in utero is profoundly shaped by both systemic maternal immunity and local processes at the maternal-fetal interface. Immune pathways are a critical participant in the normal physiology of pregnancy and perturbations of maternal immunity due to infections during this period have been increasingly linked to a diverse array of poor neurological outcomes, including diseases that manifest much later in postnatal life. While experimental models of maternal immune activation (MIA) have provided groundbreaking characterizations of the maternal pathways underlying pathogenesis, less commonly examined are the immune factors that serve pathogen-independent developmental functions in the embryo and fetus. In this review, we explore what is known about the in vivo role of immune factors in fetal neurodevelopment during normal pregnancy and provide an overview of how MIA perturbs the proper orchestration of this sequence of events. Finally, we discuss how the dysregulation of immune factors may contribute to the manifestation of a variety of neurological disorders.
Assuntos
Feto/embriologia , Feto/imunologia , Fatores Imunológicos/metabolismo , Sistema Nervoso/embriologia , Sistema Nervoso/imunologia , Animais , Citocinas/metabolismo , Feminino , Humanos , Troca Materno-Fetal/imunologia , Modelos Biológicos , GravidezRESUMO
Children with autism spectrum disorders often display dysregulated immune responses and related gastrointestinal symptoms. However, the underlying mechanisms leading to the development of both phenotypes have not been elucidated. Here, we show that mouse offspring exhibiting autism-like phenotypes due to prenatal exposure to maternal inflammation were more susceptible to developing intestinal inflammation following challenges later in life. In contrast to its prenatal role in neurodevelopmental phenotypes, interleukin-17A (IL-17A) generated immune-primed phenotypes in offspring through changes in the maternal gut microbiota that led to postnatal alterations in the chromatin landscape of naive CD4+ T cells. The transfer of stool samples from pregnant mice with enhanced IL-17A responses into germ-free dams produced immune-primed phenotypes in offspring. Our study provides mechanistic insights into why children exposed to heightened inflammation in the womb might have an increased risk of developing inflammatory diseases in addition to neurodevelopmental disorders.
Assuntos
Transtorno do Espectro Autista/imunologia , Linfócitos T CD4-Positivos/imunologia , Cromatina/metabolismo , Microbioma Gastrointestinal/imunologia , Inflamação/imunologia , Interleucina-17/metabolismo , Intestinos/imunologia , Transtornos do Neurodesenvolvimento/imunologia , Efeitos Tardios da Exposição Pré-Natal/imunologia , Animais , Transtorno do Espectro Autista/microbiologia , Criança , Modelos Animais de Doenças , Transplante de Microbiota Fecal , Feminino , Humanos , Imunização , Inflamação/microbiologia , Camundongos , Transtornos do Neurodesenvolvimento/microbiologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/microbiologiaRESUMO
Early prenatal inflammatory conditions are thought to be a risk factor for different neurodevelopmental disorders. Maternal interleukin-6 (IL-6) elevation during pregnancy causes abnormal behavior in offspring, but whether these defects result from altered synaptic developmental trajectories remains unclear. Here we showed that transient IL-6 elevation via injection into pregnant mice or developing embryos enhanced glutamatergic synapses and led to overall brain hyperconnectivity in offspring into adulthood. IL-6 activated synaptogenesis gene programs in glutamatergic neurons and required the transcription factor STAT3 and expression of the RGS4 gene. The STAT3-RGS4 pathway was also activated in neonatal brains during poly(I:C)-induced maternal immune activation, which mimics viral infection during pregnancy. These findings indicate that IL-6 elevation at early developmental stages is sufficient to exert a long-lasting effect on glutamatergic synaptogenesis and brain connectivity, providing a mechanistic framework for the association between prenatal inflammatory events and brain neurodevelopmental disorders.
Assuntos
Hipocampo/metabolismo , Interleucina-6/biossíntese , Exposição Materna , Neurônios/metabolismo , Efeitos Tardios da Exposição Pré-Natal , Sinapses/metabolismo , Animais , Citocinas/biossíntese , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Hipocampo/fisiopatologia , Mediadores da Inflamação/metabolismo , Camundongos , Gravidez , Transdução de Sinais , Transmissão SinápticaRESUMO
In the last two decades, the term synaptopathy has been largely used to underline the concept that impairments of synaptic structure and function are the major determinant of brain disorders, including neurodevelopmental disorders. This notion emerged from the progress made in understanding the genetic architecture of neurodevelopmental disorders, which highlighted the convergence of genetic risk factors onto molecular pathways specifically localized at the synapse. However, the multifactorial origin of these disorders also indicated the key contribution of environmental factors. It is well recognized that inflammation is a risk factor for neurodevelopmental disorders, and several immune molecules critically contribute to synaptic dysfunction. In the present review, we highlight this concept, which we define by the term "immune-synaptopathy," and we discuss recent evidence suggesting a bi-directional link between the genetic architecture of individuals and maternal activation of the immune system in modulating brain developmental trajectories in health and disease.
Assuntos
Transtornos do Neurodesenvolvimento , Humanos , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo , Sinapses/metabolismo , FamíliaRESUMO
In utero infection and maternal inflammation can adversely impact fetal brain development. Maternal systemic illness, even in the absence of direct fetal brain infection, is associated with an increased risk of neuropsychiatric disorders in affected offspring. The cell types mediating the fetal brain response to maternal inflammation are largely unknown, hindering the development of novel treatment strategies. Here, we show that microglia, the resident phagocytes of the brain, highly express receptors for relevant pathogens and cytokines throughout embryonic development. Using a rodent maternal immune activation (MIA) model in which polyinosinic:polycytidylic acid is injected into pregnant mice, we demonstrate long-lasting transcriptional changes in fetal microglia that persist into postnatal life. We find that MIA induces widespread gene expression changes in neuronal and non-neuronal cells; importantly, these responses are abolished by selective genetic deletion of microglia, indicating that microglia are required for the transcriptional response of other cortical cell types to MIA. These findings demonstrate that microglia play a crucial durable role in the fetal response to maternal inflammation, and should be explored as potential therapeutic cell targets.
Assuntos
Encéfalo , Inflamação , Microglia , Poli I-C , Animais , Microglia/metabolismo , Microglia/imunologia , Feminino , Gravidez , Camundongos , Encéfalo/patologia , Encéfalo/imunologia , Encéfalo/metabolismo , Inflamação/patologia , Inflamação/genética , Poli I-C/farmacologia , Feto , Camundongos Endogâmicos C57BL , Regulação da Expressão Gênica no Desenvolvimento , Neurônios/metabolismoRESUMO
Inflammation during prenatal development can be detrimental to neurodevelopmental processes, increasing the risk of neuropsychiatric disorders. Prenatal exposure to maternal viral infection during pregnancy is a leading environmental risk factor for manifestation of these disorders. Preclinical animal models of maternal immune activation (MIA), established to investigate this link, have revealed common immune and microbial signaling pathways that link mother and fetus and set the tone for prenatal neurodevelopment. In particular, maternal intestinal T helper 17 cells, educated by endogenous microbes, appear to be key drivers of effector IL-17A signals capable of reaching the fetal brain and causing neuropathologies. Fetal microglial cells are particularly sensitive to maternally derived inflammatory and microbial signals, and they shift their functional phenotype in response to MIA. Resulting cortical malformations and miswired interneuron circuits cause aberrant offspring behaviors that recapitulate core symptoms of human neurodevelopmental disorders. Still, the popular use of "sterile" immunostimulants to initiate MIA has limited translation to the clinic, as these stimulants fail to capture biologically relevant innate and adaptive inflammatory sequelae induced by live pathogen infection. Thus, there is a need for more translatable MIA models, with a focus on relevant pathogens like seasonal influenza viruses.
Assuntos
Efeitos Tardios da Exposição Pré-Natal , Vírus , Adjuvantes Imunológicos , Animais , Comportamento Animal/fisiologia , Modelos Animais de Doenças , Feminino , Humanos , Interleucina-17 , Microglia , GravidezRESUMO
The embryonic cerebrospinal fluid (eCSF) plays an essential role in the development of the central nervous system (CNS), influencing processes from neurogenesis to lifelong cognitive functions. An important process affecting eCSF composition is inflammation. Inflammation during development can be studied using the maternal immune activation (MIA) mouse model, which displays altered cytokine eCSF composition and mimics neurodevelopmental disorders including autism spectrum disorder (ASD). The limited nature of eCSF as a biosample restricts its research and has hindered our understanding of the eCSF's role in brain pathologies. Specifically, investigation of the small molecule composition of the eCSF is lacking, leaving this aspect of eCSF composition under-studied. We report here the eCSF metabolome as a resource for investigating developmental neuropathologies from a metabolic perspective. Our reference metabolome includes comprehensive MS1 and MS2 datasets and evaluates two mouse strains (CD-1 and C57Bl/6) and two developmental time points (E12.5 and E14.5). We illustrate the reference metabolome's utility by using untargeted metabolomics to identify eCSF-specific compositional changes following MIA. We uncover MIA-relevant metabolic pathways as differentially abundant in eCSF and validate changes in glucocorticoid and kynurenine pathways through targeted metabolomics. Our resource can guide future studies into the causes of MIA neuropathology and the impact of eCSF composition on brain development.
RESUMO
Nucleotide-binding leucine-rich repeat (NLR) proteins are crucial intracellular immune receptors in plants, responsible for detecting invading pathogens and initiating defense responses. While previous studies on the evolution and function of NLR genes were mainly limited to land plants, the evolutionary trajectory and immune-activating character of NLR genes in algae remain less explored. In this study, genome-wide NLR gene analysis was conducted on 44 chlorophyte species across seven classes and seven charophyte species across five classes. A few but variable number of NLR genes, ranging from one to 20, were identified in five chlorophytes and three charophytes, whereas no NLR gene was identified from the remaining algal genomes. Compared with land plants, algal genomes possess fewer or usually no NLR genes, implying that the expansion of NLR genes in land plants can be attributed to their adaptation to the more complex terrestrial pathogen environments. Through phylogenetic analysis, domain composition analysis, and conserved motifs profiling of the NBS domain, we detected shared and lineage-specific features between NLR genes in algae and land plants, supporting the common origin and continuous evolution of green plant NLR genes. Immune-activation assays revealed that both TNL and RNL proteins from green algae can elicit hypersensitive responses in Nicotiana benthamiana, indicating the molecular basis for immune activation has emerged in the early evolutionary stage of different types of NLR proteins. In summary, the results from this study suggest that NLR proteins may have taken a role as intracellular immune receptors in the common ancestor of green plants.
Assuntos
Clorófitas , Evolução Molecular , Proteínas NLR , Filogenia , Proteínas de Plantas , Proteínas NLR/genética , Proteínas NLR/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Clorófitas/genética , Clorófitas/imunologia , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Imunidade Vegetal/genética , Carofíceas/genética , Carofíceas/imunologia , Genes de Plantas/genética , Genoma de Planta/genéticaRESUMO
Maternal immune activation (MIA) and infection during pregnancy are known to reprogramme offspring phenotypes. However, the epigenetic effects of preconceptual paternal infection and paternal immune activation (PIA) are not currently well understood. Recent reports show that paternal infection and immune activation can affect offspring phenotypes, particularly brain function, behaviour, and immune system functioning, across multiple generations without re-exposure to infection. Evidence from other environmental exposures indicates that epigenetic inheritance also occurs in humans. Given the growing impact of the coronavirus disease 2019 (COVID-19) pandemic, it is imperative that we investigate all of the potential epigenetic mechanisms and multigenerational phenotypes that may arise from both maternal and paternal severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, as well as associated MIA, PIA, and inflammation. This will allow us to understand and, if necessary, mitigate any potential changes in disease susceptibility in the children, and grandchildren, of affected parents.
Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/genética , Suscetibilidade a Doenças , Epigênese Genética , Feminino , Humanos , Pais , Gravidez , SARS-CoV-2/genéticaRESUMO
HIV infection is associated with gut dysbiosis, and microbiome variability may affect HIV control when antiretroviral therapy (ART) is stopped. The TLR7 agonist, vesatolimod, was previously associated with a modest delay in viral rebound following analytical treatment interruption in HIV controllers (HCs). Using a retrospective analysis of fecal samples from HCs treated with vesatolimod or placebo (NCT03060447), people with chronic HIV (CH; NCT02858401) or without HIV (PWOH), we examined fecal microbiome profile in HCs before/after treatment, and in CH and PWOH. Microbiome diversity and abundance were compared between groups to investigate the association between specific phyla/species, immune biomarkers, and viral outcomes during treatment interruption. Although there were no significant differences in gut microbiome diversity between people with and without HIV, HCs, and CH shared common features that distinguished them from PWOH. there was a trend toward greater microbiome diversity among HCs. Treatment with vesatolimod reduced dysbiosis in HCs. Firmicutes positively correlated with T-cell activation, while Bacteroidetes and Euryarchaeota inversely correlated with TLR7-mediated immune activation. Specific types of fecal microbiome abundance (e.g. Alistipes putredinis) positively correlated with HIV rebound. In conclusion, variability in the composition of the fecal microbiome is associated with markers of immune activation following vesatolimod treatment and ART interruption.
Assuntos
Disbiose , Fezes , Microbioma Gastrointestinal , Infecções por HIV , Humanos , Infecções por HIV/imunologia , Infecções por HIV/microbiologia , Infecções por HIV/tratamento farmacológico , Fezes/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/imunologia , Masculino , Feminino , Adulto , Disbiose/microbiologia , Disbiose/imunologia , Pessoa de Meia-Idade , Estudos Retrospectivos , Carga Viral/efeitos dos fármacos , Receptor 7 Toll-Like/imunologia , HIV-1/imunologia , PteridinasRESUMO
Hayes and collaborators recently unraveled that maternal immune activation in mice led to a long-lasting decrease in microglial immune reactivity. Thus, microglia exhibited a reduced immune response to a second proinflammatory stressor in adulthood. This altered microglial response impacted both astrocytic reactivity and neuronal circuitry.
Assuntos
Inflamação , Microglia , Gravidez , Feminino , Animais , Camundongos , ImunidadeRESUMO
While conventional cancer modalities, such as chemotherapy and radiotherapy, act through direct killing of tumor cells, cancer immunotherapy elicits potent anti-tumor immune responses thereby eliminating tumors. Nevertheless, promising outcomes have not been reported in patients with glioblastoma (GBM) likely due to the immune privileged status of the central nervous system and immunosuppressive micro-environment within GBM. In the past years, several exciting findings, such as the re-discovery of meningeal lymphatic vessels (MLVs), three-dimensional anatomical reconstruction of MLV networks, and the demonstration of the promotion of GBM immunosurveillance by lymphatic drainage enhancement, have revealed an intricate communication between the nervous and immune systems, and brought hope for the development of new GBM treatment. Based on conceptual framework of the updated cancer-immunity (CI) cycle, here we focus on GBM antigen drainage and immune activation, the early events in driving the CI cycle. We also discuss the implications of these findings for developing new therapeutic approaches in tackling fatal GBM in the future.
Assuntos
Antígenos de Neoplasias , Neoplasias Encefálicas , Glioblastoma , Imunoterapia , Humanos , Glioblastoma/imunologia , Glioblastoma/terapia , Glioblastoma/patologia , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologia , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/metabolismo , Animais , Microambiente Tumoral/imunologia , Vasos Linfáticos/imunologia , Vasos Linfáticos/patologiaRESUMO
Rationale: In asthma, sputum group 2 innate lymphoid cells (ILC2s) are activated within 7 hours after allergen challenge. Neuroimmune interactions mediate rapid host responses at mucosal interfaces. In murine models of asthma, lung ILC2s colocalize to sensory neuronal termini expressing the neuropeptide neuromedin U (NMU), which stimulates type 2 (T2) cytokine secretion by ILC2s, with additive effects to alarmins in vitro. Objectives: To investigate the effect of the NMU/NMUR1 (NMU receptor 1) axis on early activation of ILC2s in asthma. Methods: Subjects with mild asthma (n = 8) were enrolled in a diluent-controlled allergen inhalation challenge study. Sputum ILC2 expression of NMUR1 and T2 cytokines was enumerated by flow cytometry, and airway NMU levels were assessed by ELISA. This was compared with samples from subjects with moderate to severe asthma (n = 9). Flow sort-purified and ex vivo-expanded ILC2s were used for functional assays and transcriptomic analyses. Measurements and Main Results: Significant increases in sputum ILC2s expressing NMUR1 were detected 7 hours after allergen versus diluent challenge whereby the majority of NMUR1+ ILC2s expressed IL-5/IL-13. Sputum NMUR1+ ILC2 counts were significantly greater in mild versus moderate to severe asthma, and NMUR1+ ILC2s correlated inversely with the dose of inhaled corticosteroid in the latter group. Coculturing with alarmins upregulated NMUR1 in ILC2s, which was attenuated by dexamethasone. NMU-stimulated T2 cytokine expression by ILC2s, maximal at 6 hours, was abrogated by dexamethasone or specific signaling inhibitors for mitogen-activated protein kinase 1/2 and phosphoinositol 3-kinase but not the IL-33 signaling moiety MyD88 in vitro. Conclusions: The NMU/NMUR1 axis stimulates rapid effects on ILC2s and may be an important early activator of these cells in eosinophilic inflammatory responses in asthma.
Assuntos
Asma , Linfócitos , Neuropeptídeos , Escarro , Asma/imunologia , Humanos , Feminino , Masculino , Neuropeptídeos/metabolismo , Adulto , Linfócitos/imunologia , Linfócitos/metabolismo , Escarro/imunologia , Imunidade Inata , Pessoa de Meia-Idade , Citocinas/imunologia , Citocinas/metabolismo , Receptores de NeurotransmissoresRESUMO
Rationale: Respiratory viral infections can be transmitted from pregnant women to their offspring, but frequency, mechanisms, and postnatal outcomes remain unclear. Objectives: The aims of this prospective cohort study were to compare the frequencies of transplacental transmission of respiratory syncytial virus (RSV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), analyze the concentrations of inflammatory mediators in maternal and fetal blood, and assess clinical consequences. Methods: We recruited pregnant women who developed upper respiratory infections or tested positive for SARS-CoV-2. Maternal and cord blood samples were collected at delivery. Study questionnaires and electronic medical records were used to document demographic and medical information. Measurements and Main Results: From October 2020 to June 2022, droplet digital PCR was used to test blood mononuclear cells from 103 mother-baby dyads. Twice more newborns in our sample were vertically infected with RSV compared with SARS-CoV-2 (25.2% [26 of 103] vs. 11.9% [12 of 101]; P = 0.019). Multiplex ELISA measured significantly increased concentrations of several inflammatory cytokines and chemokines in maternal and cord blood from newborns, with evidence of viral exposure in utero compared with control dyads. Prenatal infection was associated with significantly lower birth weight and postnatal weight growth. Conclusions: Data suggest a higher frequency of vertical transmission for RSV than SARS-CoV-2. Intrauterine exposure is associated with fetal inflammation driven by soluble inflammatory mediators, with expression profiles dependent on the virus type and affecting the rate of viral transmission. Virus-induced inflammation may have pathological consequences already in the first days of life, as shown by its effects on birth weight and postnatal weight growth.
Assuntos
Complicações Infecciosas na Gravidez , Vírus Sincicial Respiratório Humano , Gravidez , Recém-Nascido , Feminino , Humanos , Estudos Prospectivos , Peso ao Nascer , SARS-CoV-2 , Feto , Inflamação , Mediadores da Inflamação , Complicações Infecciosas na Gravidez/epidemiologiaRESUMO
Exposure to maternal immune activation (MIA) in utero is a risk factor for neurodevelopmental and psychiatric disorders. MIA-induced deficits in adolescent and adult offspring have been well characterized; however, less is known about the effects of MIA exposure on embryo development. To address this gap, we performed high-resolution ex vivo MRI to investigate the effects of early (gestational day [GD]9) and late (GD17) MIA exposure on embryo (GD18) brain structure. We identify striking neuroanatomical changes in the embryo brain, particularly in the late-exposed offspring. We further examined the putative neuroanatomical underpinnings of MIA timing in the hippocampus using electron microscopy and identified differential effects due to MIA timing. An increase in apoptotic cell density was observed in the GD9-exposed offspring, while an increase in the density of neurons and glia with ultrastructural features reflective of increased neuroinflammation and oxidative stress was observed in GD17-exposed offspring, particularly in females. Overall, our findings integrate imaging techniques across different scales to identify differential impact of MIA timing on the earliest stages of neurodevelopment.
Assuntos
Transtorno do Espectro Autista , Sistema Imunitário , Efeitos Tardios da Exposição Pré-Natal , Esquizofrenia , Adolescente , Animais , Encéfalo , Modelos Animais de Doenças , Feminino , Humanos , Sistema Imunitário/fisiologia , Inflamação , Imageamento por Ressonância Magnética , Camundongos , GravidezRESUMO
This study examined the changes in the lipidome and associations with immune activation and cardiovascular disease markers in youth living with perinatally acquired HIV (YPHIV). The serum lipidome was measured in ART-treated YPHIV (n=100) and HIV- Ugandan children (n=98) Plasma markers of systemic inflammation, monocyte activation, gut integrity, T cell activation, as well as and common carotid artery intima-media thickness (IMT) and pulse wave velocity (PWV) were evaluated at baseline and 96 weeks. Overall, median age was 12 years,52% were females. Total cholesterol, LDL, and HDL were similar between the groups, however, the concentrations of ceramides, diacylglycerols, free fatty acids, lysophysophatidylcholines and phosphatidylcholines, were higher in YPHIV (P≤0.03). Increases in phosphatidylethanolamine (16:0 and 18:0) correlated with increases in sCD163, OxLDL, CRP, IFAB and PWV in PHIV (r≥0.3). YPHIV, successfully suppressed on ART, have elevated lipid species that are associated with CVD, specificallypalmitic acid (C16:0) and stearic acid (C18:0).
RESUMO
Proteinase 3 (PR3) is the main target antigen of antineutrophil cytoplasmic antibodies (ANCAs) in PR3-ANCA-associated vasculitis. A small fraction of PR3 is constitutively exposed on the surface of quiescent blood neutrophils in a proteolytically inactive form. When activated, neutrophils expose an induced form of membrane-bound PR3 (PR3mb) on their surface as well, which is enzymatically less active than unbound PR3 in solution due to its altered conformation. In this work, our objective was to understand the respective role of constitutive and induced PR3mb in the immune activation of neutrophils triggered by murine anti-PR3 mAbs and human PR3-ANCA. We quantified immune activation of neutrophils by the measurement of the production of superoxide anions and secreted protease activity in the cell supernatant before and after treatment of the cells by alpha-1 protease inhibitor that clears induced PR3mb from the cell surface. Incubation of TNFα-primed neutrophils with anti-PR3 antibodies resulted in a significant increase in superoxide anion production, membrane activation marker exposition, and secreted protease activity. When primed neutrophils were first treated with alpha-1 protease inhibitor, we observed a partial reduction in antibody-induced neutrophil activation, suggesting that constitutive PR3mb is sufficient to activate neutrophils. The pretreatment of primed neutrophils with purified antigen-binding fragments used as competitor significantly reduced cell activation by whole antibodies. This led us to the conclusion that PR3mb promoted immune activation of neutrophils. We propose that blocking and/or elimination of PR3mb offers a new therapeutic strategy to attenuate neutrophil activation in patients with PR3-ANCA-associated vasculitis.
Assuntos
Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos , Anticorpos Anticitoplasma de Neutrófilos , Mieloblastina , Animais , Humanos , Camundongos , Vasculite Associada a Anticorpo Anticitoplasma de Neutrófilos/metabolismo , Mieloblastina/imunologia , Mieloblastina/metabolismo , Neutrófilos/metabolismo , Inibidores de Proteases/metabolismo , Superóxidos/metabolismoRESUMO
Considerable research has been done in investigating SARS-CoV-2 infection, its characteristics, and host immune response. However, debate is still ongoing over the emergence of post-acute sequelae of SARS-CoV-2 infection (PASC). A multitude of long-lasting symptoms have been reported several weeks after the primary acute SARS-CoV-2 infection that resemble several other viral infections. Thousands of research articles have described various post-COVID-19 conditions. Yet, the evidence around these ongoing health problems, the reasons behind them, and their molecular underpinnings are scarce. These persistent symptoms are also known as long COVID-19. The persistence of SARS-CoV-2 and/or its components in host tissues can lead to long COVID. For example, the presence of viral nucleocapsid protein and RNA was detected in the skin, appendix, and breast tissues of some long COVID patients. The persistence of viral RNA was reported in multiple anatomic sites, including non-respiratory tissues such as the adrenal gland, ocular tissue, small intestine, lymph nodes, myocardium, and sciatic nerve. Distinctive viral spike sequence variants were also found in non-respiratory tissues. Interestingly, prolonged detection of viral subgenomic RNA was observed across all tissues, sometimes in multiple tissues of the same patient, which likely reflects recent but defective viral replication. Moreover, the persistence of SARS-CoV-2 RNA was noticed throughout the brain at autopsy, as late as 230 days following symptom onset among unvaccinated patients who died of severe infection. Here, we review the persistence of SARS-CoV-2 and its components as an intrinsic factor behind long COVID. We also highlight the immunological consequences of this viral persistence.
Assuntos
COVID-19 , Síndrome de COVID-19 Pós-Aguda , Humanos , SARS-CoV-2 , Fator Intrínseco , RNA Viral/genéticaRESUMO
Maternal immune activation (MIA) induces a variety of behavioral and brain abnormalities in offspring of rodent models, compatible with neurodevelopmental disorders, such as schizophrenia or autism. However, it remains controversial whether MIA impairs reversal learning, a basic expression of cognitive flexibility that seems to be altered in schizophrenia. In the present study, MIA was induced by administration of a single dose of polyriboinosinic-polyribocytidylic acid (Poly (I:C) (5 mg/kg i.p.)) or saline to mouse pregnant dams in gestational day (GD) 9.5. Immune activation was monitored through changes in weight and temperature. The offspring were evaluated when they reached adulthood (8 weeks) using a touchscreen-based system to investigate the effects of Poly (I:C) on discrimination and reversal learning performance. After an initial pre-training, mice were trained to discriminate between two different stimuli, of which only one was rewarded (acquisition phase). When the correct response reached above 80% values for two consecutive days, the images were reversed (reversal phase) to assess the adaptation capacity to a changing environment. Maternal Poly (I:C) treatment did not interfere with the learning process but induced deficits in reversal learning compared to control saline animals. Thus, the accuracy in the reversal phase was lower, and Poly (I:C) animals required more sessions to complete it, suggesting impairments in cognitive flexibility. This study advances the knowledge of how MIA affects behavior, especially cognitive domains that are impaired in schizophrenia. The findings support the validity of the Poly (I:C)-based MIA model as a tool to develop pharmacological treatments targeting cognitive deficits associated with neurodevelopmental disorders.