Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 902
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Genes Cells ; 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39284569

RESUMO

The evidence of the correlation between cellular senescence and aging has increased in research with animal models. These models have been intentionally generated to target and regulate cellular senescent cells with the promoter activity of p16Ink4a or p19Arf, genes that are highly expressed in aging cells. However, the senolytic efficiency in various organs and cells from these models represents unexpected variation and diversity in some cases. We have generated a novel knock-in model, p16tdT-hDTR mice, which possess tdTomato and human diphtheria toxin receptor (hDTR) downstream of Cdkn2a, an endogenous p16Ink4a gene. We successfully demonstrated that p16-derived tdTomato and hDTR expressions are observed in these mouse embryo fibroblasts and following treatment with diphtheria toxin (DT) eliminates those cells. Furthermore, we demonstrated the efficacy of eliminating p16-positive cells in vivo, and also observed a tendency to decrease their cutaneous SA-ß-gal activity after subcutaneous DT injection into p16tdT-hDTR mice. In particular, comprehensive gene expression analysis in skin revealed that upregulated genes related to lipid metabolisms with aging exhibited remarkable expressions under the senolysis. These results clearly unveiled p16-positive senescent cells contribute to age-related changes in skin.

2.
Lab Invest ; 104(2): 100268, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37898292

RESUMO

Skin aging is characterized by wrinkle formation and increased frailty and laxity, leading to the risk of age-related skin diseases. Keratinocyte is an important component of the epidermis in skin structure, and keratinocyte senescence has been identified as a pivotal factor in skin aging development. Because epigenetic pathways play a vital role in the regulation of skin aging, we evaluated human skin samples for DNA hydroxymethylation (5-hydroxymethylcytosine; 5-hmC) and SIRT4 expressions. Results found that both 5-hmC and SIRT4 showed a significant decrease in aged human skin samples. To test the results in vitro, human keratinocytes were cultured in H2O2, which modulates skin aging in vivo. However, H2O2-induced keratinocytes showed senescence-associated protein expression and significant downregulation of 5-hmC and SIRT4 expressions. Moreover, 5-hmC-converting enzymes ten eleven translocation 2 (TET2) showed a decrease and enhanced TET2 acetylation level in H2O2-induced keratinocytes. However, the overexpression of SIRT4 in keratinocytes alleviates the senescence phenotype, such as senescence-associated protein expression, decreases the TET2 acetylation, but increases TET2 and 5-hmC expressions. Our results provide a novel relevant mechanism whereby the epigenetic regulation of keratinocytes in skin aging may be correlated with SIRT4 expression and TET2 acetylation in 5-hmC alteration. Our study may provide a potential strategy for antiskin aging, which targets the SIRT4/TET2 axis involving epigenetic modification in keratinocyte senescence.


Assuntos
5-Metilcitosina/análogos & derivados , Dioxigenases , Sirtuínas , Humanos , Idoso , Epigênese Genética , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Queratinócitos/metabolismo , Metilação de DNA , Proteínas Mitocondriais/genética , Sirtuínas/genética , Sirtuínas/metabolismo , Dioxigenases/metabolismo
3.
Curr Issues Mol Biol ; 46(6): 5037-5051, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38920974

RESUMO

Skin aging is an unavoidable natural phenomenon caused by intrinsic and extrinsic factors. In modern society, the pursuit of a wrinkle-free and aesthetically appealing face has gained considerable prominence. Numerous studies have aimed at mitigating the appearance of facial wrinkles. Antiaging research focused on regulating the function of mitochondria, the main reactive oxygen species-generating organelles, has been extensively conducted. In this study, we investigated the correlation between facial wrinkles and the expression of PPARGC1B, considering the association of this gene with mitochondrial function, to identify its potential as a target for exploring antiaging cosmetic materials. We elucidated the role of PPARGC1B in the skin and identified five bioactive materials that modulated its expression. The effectiveness of these materials was verified through in vitro experiments on human dermal fibroblasts. We prepared cosmetic formulations incorporating the five materials and confirmed their ability to enhance dermal collagen in three-dimensional skin models and reduce facial wrinkles under the eyes and nasolabial fold areas in human subjects. The study findings have significant implications for developing novel antiaging cosmetic formulations by reinforcing mitochondrial functions.

4.
Curr Issues Mol Biol ; 46(8): 9122-9135, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39194756

RESUMO

Skin aging is a complex process with internal and external factors. Recent studies have suggested that enlargement and elongation of skin pores may be early signs of aging in addition to wrinkles and loss of elasticity. This study explores the potential of targeting the SGPP2 gene in keratinocytes to address these emerging concerns. Using siRNA knockdown, we demonstrated that SGPP2 modulates the production of inflammatory cytokines (interleukin (IL)-1ß and IL-8). Furthermore, conditioned media experiments revealed that keratinocytes with high SGPP2 expression indirectly influence fibroblast extracellular matrix remodeling, potentially contributing to enlarged pores and wrinkle formation. Based on these findings, we explored a complex formulation containing four SGPP2-modulating compounds. In vitro and in vivo experiments demonstrated the efficacy of the formulation in mitigating fine wrinkles and pore enlargement. This study highlights the significant implications of developing a more effective antiaging cosmetic formulation by targeting underlying inflammatory processes that drive skin aging.

5.
Clin Immunol ; 263: 110199, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38565329

RESUMO

Cell-cell communication is crucial for regulating signaling and cellular function. However, the precise cellular and molecular changes remain poorly understood in skin aging. Based on single-cell and bulk RNA data, we explored the role of cell-cell ligand-receptor interaction in skin aging. We found that the macrophage migration inhibitory factor (MIF)/CD74 ligand-receptor complex was significantly upregulatedin aged skin, showing the predominant paracrine effect of keratinocytes on fibroblasts. Enrichment analysis and in vitro experiment revealed a close association of the activation of the MIF/CD74 with inflammatory pathways and immune response. Mechanistically, MIF/CD74 could significantly inhibit PPARγ protein, which thus significantly increased the degree of fibroblast senescence, and significantly up-regulated the expression of senescence-associated secretory phenotype (SASP) factors and FOS gene. Therefore, our study reveals that MIF/CD74 inhibits the activation of the PPAR signaling pathway, subsequently inducing the production of SASP factors and the upregulation of FOS expression, ultimately accelerating fibroblast senescence.


Assuntos
Antígenos de Diferenciação de Linfócitos B , Fibroblastos , Antígenos de Histocompatibilidade Classe II , Fatores Inibidores da Migração de Macrófagos , Análise de Célula Única , Envelhecimento da Pele , Feminino , Humanos , Masculino , Antígenos de Diferenciação de Linfócitos B/genética , Antígenos de Diferenciação de Linfócitos B/metabolismo , Células Cultivadas , Senescência Celular/genética , Fibroblastos/metabolismo , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/metabolismo , Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/metabolismo , Queratinócitos/metabolismo , Queratinócitos/imunologia , Fatores Inibidores da Migração de Macrófagos/genética , Fatores Inibidores da Migração de Macrófagos/metabolismo , PPAR gama/metabolismo , PPAR gama/genética , Análise de Sequência de RNA , Transdução de Sinais , Análise de Célula Única/métodos , Pele/metabolismo , Pele/imunologia , Envelhecimento da Pele/genética , Envelhecimento da Pele/fisiologia , Animais , Camundongos
6.
Histochem Cell Biol ; 162(4): 259-271, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38954026

RESUMO

Skin represents the main barrier against the external environment, but also plays a role in human relations, as one of the prime determinants of beauty, resulting in a high consumer demand for skincare-related pharmaceutical products. Given the importance of skin aging in both medical and social spheres, the present research aims to characterize microscopic changes in human skin composition due to intrinsic aging (as opposed to aging influenced by external factors) via histological analysis of a photoprotected body region. Samples from 25 autopsies were taken from the periumbilical area and classified into four age groups: group 1 (0-12 years), group 2 (13-25 years), group 3 (26-54 years), and group 4 (≥ 55 years). Different traditional histological (hematoxylin-eosin, Masson's trichrome, orcein, toluidine, Alcian blue, and Feulgen reaction) and immunohistochemical (CK20, CD1a, Ki67, and CD31) stains were performed. A total of 1879 images photographed with a Leica DM3000 optical microscope were morphometrically analyzed using Image ProPlus 7.0 for further statistical analysis with GraphPad 9.0. Our results showed a reduction in epidermis thickness, interdigitation and mitotic indexes, while melanocyte count was raised. Papillary but not reticular dermis showed increased thickness with aging. Specifically, in the papillary layer mast cells and glycosaminoglycans were expanded, whereas the reticular dermis displayed a diminution in glycosaminoglycans and elastic fibers. Moreover, total cellularity and vascularization of both dermises were diminished with aging. This morphometric analysis of photoprotected areas reveals that intrinsic aging significantly influences human skin composition. This study paves the way for further research into the molecular basis underpinning these alterations, and into potential antiaging strategies.


Assuntos
Envelhecimento , Pele , Humanos , Pessoa de Meia-Idade , Adulto , Adolescente , Adulto Jovem , Pele/metabolismo , Pele/química , Feminino , Masculino , Criança , Envelhecimento/patologia , Lactente , Pré-Escolar , Recém-Nascido , Envelhecimento da Pele , Idoso , Imuno-Histoquímica
7.
Exp Dermatol ; 33(1): e14956, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37846942

RESUMO

Aging is a normal and complex biological process. Skin is located in the most superficial layer of the body, and its degree of aging directly reflects the aging level of the body. Endoplasmic reticulum stress refers to the aggregation of unfolded or misfolded proteins in the endoplasmic reticulum and the disruption of the calcium ion balance when cells are stimulated by external stimuli. Mild endoplasmic reticulum stress can cause a series of protective mechanisms, including the unfolded protein response, while sustained high intensity stimulation leads to endoplasmic reticulum stress and eventually apoptosis. Photoaging caused by ultraviolet radiation is an important stimulus in skin aging. Many studies have focused on oxidative stress, but increasing evidence shows that endoplasmic reticulum stress plays an important role in photoaging. This paper reviews the development and mechanism of endoplasmic reticulum stress (ERS) in skin photoaging, and provides research directions for targeting the ERS pathway to slow aging.


Assuntos
Envelhecimento da Pele , Dermatopatias , Humanos , Raios Ultravioleta , Estresse do Retículo Endoplasmático , Resposta a Proteínas não Dobradas , Pele/metabolismo , Dermatopatias/metabolismo , Apoptose
8.
Exp Dermatol ; 33(5): e15093, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38742821

RESUMO

Senile skin hyperpigmentation displays remarkable histopathological features of dermal aging. The crosstalk between melanocytes and dermal fibroblasts plays crucial roles in aging-related pigmentation. While senescent fibroblasts can upregulate pro-melanogenic factors, the role of anti-melanogenic factors, such as dickkopf1 (DKK1), and the upstream regulatory mechanism during aging remain obscure. This study investigated the roles of yes-associated protein (YAP) and DKK1 in the regulation of dermal fibroblast senescence and melanogenesis. Our findings demonstrated decreased YAP activity and DKK1 levels in intrinsic and extrinsic senescent fibroblasts. YAP depletion induced fibroblast senescence and downregulated the expression and secretion of DKK1, whereas YAP overexpression partially reversed the effect. The transcriptional regulation of DKK1 by YAP was supported by dual-luciferase reporter and chromatin immunoprecipitation assays. Moreover, YAP depletion in fibroblasts upregulated Wnt/ß-catenin in melanocytes and stimulated melanogenesis, which was partially rescued by the re-supplementation of DKK1. Conversely, overexpression of YAP in senescent fibroblasts decreased Wnt/ß-catenin levels in melanocytes and inhibited melanogenesis. Additionally, reduced levels of YAP and DKK1 were verified in the dermis of solar lentigines. These findings suggest that, during skin aging, epidermal pigmentation may be influenced by YAP in the dermal microenvironment via the paracrine effect of DKK1.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Senescência Celular , Fibroblastos , Peptídeos e Proteínas de Sinalização Intercelular , Melaninas , Melanócitos , Comunicação Parácrina , Envelhecimento da Pele , Fatores de Transcrição , Proteínas de Sinalização YAP , Fibroblastos/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Humanos , Melanócitos/metabolismo , Proteínas de Sinalização YAP/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Melaninas/metabolismo , Melaninas/biossíntese , Via de Sinalização Wnt , Derme/citologia , Células Cultivadas , Melanogênese
9.
Exp Dermatol ; 33(8): e15163, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39171635

RESUMO

Facial skin redness can be an indicator of skin inflammation, however the physiological connection between facial redness and inflammatory status, as well as its role in age-related skin changes, remains poorly understood. This study aims to investigate the association between the pattern of facial skin redness and biological inflammatory status, as well as age-related changes occurring in the skin. Four studies were conducted recruiting healthy Northern Asian females. Disordered spatial patterns of facial skin redness signals were assessed using image analysis, i.e., the a* gradient algorithm, which quantifies the disordered shape and pattern of localized redness signals on facial skin. This redness pattern was compared with (1) inflammatory protein markers (IL-1Ra/ IL-1α and IL-8) measured from stripped corneocyte samples, (2) gene expression profiles obtained through transcriptome analysis using skin biopsy samples, and (3) the distribution pattern of blood vessel measured using a photoacoustic microscope. The association between the skin redness pattern and current and future ageing-related skin changes was examined through a longitudinal study tracking the same subjects for 10 years. A significant correlation was observed between the a* gradient and the levels of inflammatory cytokines (IL-1Ra/IL-1α and IL-8). Transcriptome analysis revealed upregulation of genes related to acute inflammation, chronic inflammation, cellular senescence, and angiogenesis in subjects with higher a* gradients. The high a* gradient group exhibited an extension of blood vessel diameter and increased blood vessel density, while the medium a* gradient group only exhibited blood vessel extension. Lastly, the 10-year longitudinal study demonstrated that the a* gradient was associated with current and future skin ageing-related attributes, such as increased skin texture and wrinkle formation. The spatial pattern of localized redness on the skin reflects the biological inflammatory status, and this inflammatory condition helps predict current and future age-related skin changes.


Assuntos
Interleucina-1alfa , Envelhecimento da Pele , Pele , Humanos , Feminino , Interleucina-1alfa/metabolismo , Interleucina-1alfa/genética , Adulto , Pessoa de Meia-Idade , Pele/patologia , Interleucina-8/metabolismo , Proteína Antagonista do Receptor de Interleucina 1/genética , Perfilação da Expressão Gênica , Inflamação , Face , Idoso , Adulto Jovem , Estudos Longitudinais , Transcriptoma , Dermatite/genética , Dermatite/patologia
10.
Crit Rev Biotechnol ; : 1-22, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39294002

RESUMO

The skin aging process is a complex interaction of genetic, epigenetic, and environmental factors, such as chemical pollution and UV radiation. There is growing evidence that biosurfactants, especially those of microbial origin, have distinct age-supportive effects through different mechanisms, such as stimulation of fibroblast growth, high antioxidant capacities, and favorable anti-inflammatory properties. With a growing financial contribution of more than 15 m€per year, microbial surfactants (MSs) display unique biological effects on the skin including improved cell mobility, better nutrient access, and facilitated cellular growth under harsh conditions. Their biodegradable nature, unusual surface activity, good safety profile and tolerance to high temperature and pH variations widen their potential spectrum in biomedical and pharmaceutical applications. MSs typically have lower critical micelle concentration (CMC) levels than chemical surfactants enhancing their effectiveness. As natural surfactants, MSs are considered possible "green" alternatives to synthetic surfactants with better biodegradability, sustainability, and beneficial functional properties. This review therefore aims to explore the potential impacts of MSs as anti-aging ingredients.

11.
Hum Genomics ; 17(1): 23, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36927485

RESUMO

BACKGROUND: Blood metabolites are important to various aspects of our health. However, currently, there is little evidence about the role of circulating metabolites in the process of skin aging. OBJECTIVES: To examine the potential effects of circulating metabolites on the process of skin aging. METHOD: In the primary analyses, we applied several MR methods to study the associations between 249 metabolites and facial skin aging risk. In the secondary analyses, we replicated the analyses with another array of datasets including 123 metabolites. MR Bayesian model averaging (MR-BMA) method was further used to prioritize the metabolites for the identification of predominant metabolites that are associated with skin aging. RESULTS: In the primary analyses, only the unsaturation degree of fatty acids was found significantly associated with skin aging with the IVW method after multiple testing (odds ratio = 1.084, 95% confidence interval = 1.049-1.120, p = 1.737 × 10-06). Additionally, 11 out of 17 unsaturation-related biomarkers showed a significant or suggestively significant causal effect [p < 0.05 and > 2 × 10-4 (0.05/249 metabolites)]. In the secondary analyses, seven metabolic biomarkers were found significantly associated with skin aging [p < 4 × 10-4 (0.05/123)], while six of them were related to the unsaturation degree. MR-BMA method validated that the unsaturation degree of fatty acids plays a dominant role in facial skin aging. CONCLUSIONS: Our study used systemic MR analyses and provided a comprehensive atlas for the associations between circulating metabolites and the risk of facial skin aging. Genetically proxied unsaturation degree of fatty acids was highlighted as a dominant factor correlated with the risk of facial skin aging.


Assuntos
Envelhecimento da Pele , Humanos , Envelhecimento da Pele/genética , Teorema de Bayes , Análise da Randomização Mendeliana , Envelhecimento/genética , Ácidos Graxos , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único
12.
J Biomed Sci ; 31(1): 15, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263133

RESUMO

BACKGROUND: CDGSH iron-sulfur domain-containing protein 2 (CISD2), a pro-longevity gene, mediates healthspan in mammals. CISD2 is down-regulated during aging. Furthermore, a persistently high level of CISD2 promotes longevity and ameliorates an age-related skin phenotype in transgenic mice. Here we translate the genetic evidence into a pharmaceutical application using a potent CISD2 activator, hesperetin, which enhances CISD2 expression in HEK001 human keratinocytes from an older person. We also treated naturally aged mice in order to study the activator's anti-aging efficacy. METHODS: We studied the biological effects of hesperetin on aging skin using, firstly, a cell-based platform, namely a HEK001 human keratinocyte cell line established from an older person. Secondly, we used a mouse model, namely old mice at 21-month old. In the latter case, we investigate the anti-aging efficacy of hesperetin on ultraviolet B (UVB)-induced photoaging and naturally aged skin. Furthermore, to identify the underlying mechanisms and potential biological pathways involved in this process we carried out transcriptomic analysis. Finally, CISD2 knockdown HEK001 keratinocytes and Cisd2 knockout mice were used to study the Cisd2-dependent effects of hesperetin on skin aging. RESULTS: Four findings are pinpointed. Firstly, in human skin, CISD2 is mainly expressed in proliferating keratinocytes from the epidermal basal layer and, furthermore, CISD2 is down-regulated in the sun-exposed epidermis. Secondly, in HEK001 human keratinocytes from an older person, hesperetin enhances mitochondrial function and protects against reactive oxygen species-induced oxidative stress via increased CISD2 expression; this enhancement is CISD2-dependent. Additionally, hesperetin alleviates UVB-induced damage and suppresses matrix metalloproteinase-1 expression, the latter being a major indicator of UVB-induced damage in keratinocytes. Thirdly, transcriptomic analysis revealed that hesperetin modulates a panel of differentially expressed genes that are associated with mitochondrial function, redox homeostasis, keratinocyte function, and inflammation in order to attenuate senescence. Intriguingly, hesperetin activates two known longevity-associated regulators, namely FOXO3a and FOXM1, in order to suppress the senescence-associated secretory phenotype. Finally, in mouse skin, hesperetin enhances CISD2 expression to ameliorate UVB-induced photoaging and this occurs via a mechanism involving CISD2. Most strikingly, late-life treatment with hesperetin started at 21-month old and lasting for 5 months, is able to retard skin aging and rejuvenate naturally aged skin in mice. CONCLUSIONS: Our results reveal that a pharmacological elevation of CISD2 expression at a late-life stage using hesperetin treatment is a feasible approach to effectively mitigating both intrinsic and extrinsic skin aging and that hesperetin could act as a functional food or as a skincare product for fighting skin aging.


Assuntos
Hesperidina , Envelhecimento da Pele , Idoso , Animais , Humanos , Camundongos , Queratinócitos , Mamíferos , Camundongos Transgênicos
13.
EMBO Rep ; 23(12): e55478, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36278510

RESUMO

Tissue stem cells (SCs) divide infrequently as a protective mechanism against internal and external stresses associated with aging. Here, we demonstrate that slow- and fast-cycling SCs in the mouse skin epidermis undergo distinct aging processes. Two years of lineage tracing reveals that Dlx1+ slow-cycling clones expand into the fast-cycling SC territory, while the number of Slc1a3+ fast-cycling clones gradually declines. Transcriptome analysis further indicate that the molecular properties of each SC population are altered with age. Mice lacking fibulin 7, an extracellular matrix (ECM) protein, show early impairments resembling epidermal SC aging, such as the loss of fast-cycling clones, delayed wound healing, and increased expression of inflammation- and differentiation-related genes. Fibulin 7 interacts with structural ECM and matricellular proteins, and the overexpression of fibulin 7 in primary keratinocytes results in slower proliferation and suppresses differentiation. These results suggest that fibulin 7 plays a crucial role in maintaining tissue resilience and epidermal SC heterogeneity during skin aging.


Assuntos
Proteínas de Ligação ao Cálcio , Envelhecimento da Pele , Animais , Camundongos , Matriz Extracelular , Envelhecimento da Pele/genética , Células-Tronco
14.
Biogerontology ; 25(3): 529-542, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38436793

RESUMO

Aging negatively affects the appearance and texture of the skin owing to the accumulation of senescent fibroblasts within the dermis. Senescent cells undergo abnormal remodeling of collagen and the extracellular matrix through an inflammatory histolytic senescence-associated secretory phenotype (SASP). Therefore, suppression of SASP in senescent cells is essential for the development of effective skin anti-aging therapies. Ectonucleotide pyrophosphatase/phosphodiesterase family member 5 (ENPP5), an extracellular signaling molecule, has been implicated in vascular aging and apoptosis; however, its role in SASP remains unclear. Therefore, this study aimed to investigate the role of ENPP5 in SASP and skin aging using molecular techniques. We investigated the effects of siRNA-mediated ENPP5 knockdown, human recombinant ENPP5 (rENPP5) treatment, and lentiviral overexpression of ENPP5 on SASP and aging in human skin fibroblasts. Additionally, we investigated the effect of siRNA-mediated ENPP5 knockdown on the skin of C57BL/6 mice. We found that ENPP5 was significantly expressed in replication-aged and otherwise DNA-damaged human skin fibroblasts and that treatment with human rENPP5 and lentiviral overexpression of ENPP5 promoted SASP and senescence. By contrast, siRNA-mediated knockdown of ENPP5 suppressed SASP and the expression of skin aging-related factors. Additionally, ENPP5 knockdown in mouse skin ameliorated the age-related reduction of subcutaneous adipose tissue, the panniculus carnosus muscle layer, and thinning of collagen fibers. Conclusively, these findings suggest that age-related changes may be prevented through the regulation of ENPP5 expression to suppress SASP in aging cells, contributing to the development of anti-aging treatments for the skin.


Assuntos
Senescência Celular , Fibroblastos , Diester Fosfórico Hidrolases , Pirofosfatases , Envelhecimento da Pele , Animais , Humanos , Camundongos , Células Cultivadas , Senescência Celular/genética , Senescência Celular/fisiologia , Fibroblastos/metabolismo , Camundongos Endogâmicos C57BL , Diester Fosfórico Hidrolases/metabolismo , Diester Fosfórico Hidrolases/genética , Pirofosfatases/genética , Pirofosfatases/metabolismo , Fenótipo Secretor Associado à Senescência/genética , Pele/metabolismo , Pele/patologia , Envelhecimento da Pele/fisiologia
15.
Biogerontology ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261410

RESUMO

In skin aging, it has been hypothesized that aging fibroblasts accumulate within the epidermal basal layer, dermis, and subcutaneous fat, causing abnormal tissue remodeling and extracellular matrix dysfunction, thereby inducing an aging-related secretory phenotype (SASP). A new treatment for skin aging involves the specific elimination of senescent skin cells, especially fibroblasts within the dermis and keratinocytes in the basal layer. This requires the identification of specific protein markers of senescent cells, such as ribonucleoside-diphosphate reductase subunit M2 B (RRM2B), which is upregulated in various malignancies in response to DNA stress damage. However, the behavior and role of RRM2B in skin aging remain unclear. Therefore, we examined whether RRM2B functions as a senescence marker using a human dermal fibroblast model of aging. In a model of cellular senescence induced by replicative aging and exposure to ionizing radiation or UVB, RRM2B was upregulated at the gene and protein levels. This was correlated with decreased uptake of the senescence-associated ß-galactosidase activity and proliferation marker bromodeoxyuridine. RRM2B upregulation was concurrent with the increased expression of SASP factor genes. Furthermore, using fluorescence flow cytometry, RRM2B-positive cells were recovered more frequently in the aging cell population. In aging human skin, RRM2B was also found to be more abundant in the dermis and epidermal basal layer than other proteins. Therefore, RRM2B may serve as a clinical marker to identify senescent skin cells.

16.
J Appl Microbiol ; 135(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37977853

RESUMO

AIMS: This study aimed to investigate the efficacy of a cream containing VHProbi® MixA for improving skin aging. METHODS AND RESULTS: In vitro studies demonstrated that the lysate produced from Lacticaseibacillus paracasei E12 (E12) exhibited immunoregulatory effects in a 3D skin model, with significant reductions in levels of interleukin (IL)-1α, IL-1ß, and IL-8 (P < 0.05) compared with the control group. In addition, the lysate of E12 mitigated the hydrogen peroxide-induced mortality of 3D skin cells and enhanced the transepithelial electrical resistance to show significant differences in comparison with control (P < 0.05), suggesting favorable antioxidant effects. The antioxidant capacity of the lysate of E12 was also confirmed using the Caenorhabditis elegans N2 model. C. elegans N2 fed the E12 strain showed a significantly higher % survival than those fed Escherichia coli OP50 (P < 0.05). Subsequently, VHProbi® MixA was formulated using the fermented lysates of E12, Lactiplantibacillus plantarum E15, and Limosilactobacillus reuteri E18. In a clinical study to ascertain if a cream containing VHProbi® MixA could improve the skin aging trends, participants were asked to use the investigational products for 60 days, and six indicators, transepidermal water loss (TEWL), hydration, elasticity, wrinkles, skin texture (roughness), and pores were measured at baseline and the endpoint of the study. A self-evaluation questionnaire analysis was also provided. TEWL, wrinkles, skin texture, and thickness of pores decreased significantly after treatment with the cream for 60 days (P < 0.01), whereas hydration and elasticity increased significantly (P < 0.01), in comparison to the baseline measurements. CONCLUSIONS: We hypothesize that the use of the cream containing VHProbi® MixA could be favorable for skin anti-aging management.


Assuntos
Caenorhabditis elegans , Envelhecimento da Pele , Animais , Humanos , Pele , Antioxidantes/farmacologia , Envelhecimento
17.
Gerontology ; 70(1): 7-14, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37879300

RESUMO

BACKGROUND: As the largest organ in the human body, the skin is continuously exposed to intrinsic and extrinsic stimuli that impact its functionality and morphology with aging. Skin aging entails dysregulation of skin cells and loss, fragmentation, or fragility of extracellular matrix fibers that are manifested macroscopically by wrinkling, laxity, and pigmentary abnormalities. Age-related skin changes are the focus of many surgical and nonsurgical treatments aimed at improving overall skin appearance and health. SUMMARY: As a hallmark of aging, cellular senescence, an essentially irreversible cell cycle arrest with apoptosis resistance and a secretory phenotype, manifests across skin layers by affecting epidermal and dermal cells. Knowledge of skin-specific senescent cells, such as melanocytes (epidermal aging) and fibroblasts (dermal aging), will promote our understanding of age-related skin changes and how to optimize patient outcomes in esthetic procedures. KEY MESSAGES: This review provides an overview of skin aging in the context of cellular senescence and discusses senolytic intervention strategies to selectively target skin senescent cells that contribute to premature skin aging.


Assuntos
Senoterapia , Envelhecimento da Pele , Humanos , Envelhecimento/fisiologia , Senescência Celular/fisiologia , Melanócitos , Pele
18.
Skin Res Technol ; 30(2): e13602, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38348764

RESUMO

INTRODUCTION: Software to predict the impact of aging on physical appearance is increasingly popular. But it does not consider the complex interplay of factors that contribute to skin aging. OBJECTIVES: To predict the +15-year progression of clinical signs of skin aging by developing Causal Bayesian Belief Networks (CBBNs) using expert knowledge from dermatologists. MATERIAL AND METHODS: Structures and conditional probability distributions were elicited worldwide from dermatologists with experience of at least 15 years in aesthetics. CBBN models were built for all phototypes and for ages ranging from 18 to 65 years, focusing on wrinkles, pigmentary heterogeneity and facial ptosis. Models were also evaluated by a group of independent dermatologists ensuring the quality of prediction of the cumulative effects of extrinsic and intrinsic skin aging factors, especially the distribution of scores for clinical signs 15 years after the initial assessment. RESULTS: For easiness, only models on African skins are presented in this paper. The forehead wrinkle evolution model has been detailed. Specific atlas and extrinsic factors of facial aging were used for this skin type. But the prediction method has been validated for all phototypes, and for all clinical signs of facial aging. CONCLUSION: This method proposes a skin aging model that predicts the aging process for each clinical sign, considering endogenous and exogenous factors. It simulates aging curves according to lifestyle. It can be used as a preventive tool and could be coupled with a generative AI algorithm to visualize aging and, potentially, other skin conditions, using appropriate images.


Assuntos
Envelhecimento da Pele , Humanos , Teorema de Bayes , Face , Envelhecimento , Testa
19.
Skin Res Technol ; 30(9): e13730, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39233460

RESUMO

BACKGROUND: Photoaging is a process of the architecture of normal skin damaged by ultraviolet radiation. Topical cosmeceuticals have been used to treat this condition. The authors aimed to understand the mechanism and level of evidence of different commonly used cosmeceuticals used to treat photodamaged skin. OBJECTIVE: A range of commonly used topical cosmeceuticals (botanicals, peptides, and hydroquinone) has been used in cosmetic medicine for many years to treat photodamaged skin. This review article compares their efficacy and level of evidence. MATERIAL AND METHODS: This study was a systematic review to evaluate the efficacy of different topical cosmeceuticals. Keywords including "Photoaging," "Azelaic acid," "Soy," "Green Tea," "Chamomile," "Ginkgo," "Tea Tree Oil," "Resveratrol," "Cucumber," "Ginseng," "Centella asiatica," "Licorice Root," "Aloe Vera," "Peptides," "Argireline," "Hydroquinone," were typed on OVID, PUBMED, MEDLINE for relevant studies published on photoaging treatment. RESULTS: Most of the evidence behind cosmeceuticals is of high-quality ranging from Level I to Level II. In particular, the evidence base behind peptides is the strongest with most studies achieving Level Ib status in the evidence hierarchy. CONCLUSION: Topical cosmeceuticals like botanicals, peptides and hydroquinone can effectively treat photodamaged skin.


Assuntos
Cosmecêuticos , Envelhecimento da Pele , Humanos , Envelhecimento da Pele/efeitos dos fármacos , Envelhecimento da Pele/efeitos da radiação , Cosmecêuticos/farmacologia , Cosmecêuticos/uso terapêutico , Raios Ultravioleta/efeitos adversos , Pele/efeitos dos fármacos , Pele/efeitos da radiação , Administração Tópica , Hidroquinonas/uso terapêutico , Hidroquinonas/farmacologia , Hidroquinonas/administração & dosagem
20.
Skin Res Technol ; 30(3): e13647, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38465749

RESUMO

BACKGROUND: Current methods for evaluating efficacy of cosmetics have limitations because they cannot accurately measure changes in the dermis. Skin sampling using microneedles allows identification of skin-type biomarkers, monitoring treatment for skin inflammatory diseases, and evaluating efficacy of anti-aging and anti-pigmentation products. MATERIALS AND METHODS: Two studies were conducted: First, 20 participants received anti-aging treatment; second, 20 participants received anti-pigmentation treatment. Non-invasive devices measured skin aging (using high-resolution 3D-imaging in the anti-aging study) or pigmentation (using spectrophotometry in the anti-pigmentation study) at weeks 0 and 4, and adverse skin reactions were monitored. Skin samples were collected with biocompatible microneedle patches. Changes in expression of biomarkers for skin aging and pigmentation were analyzed using qRT-PCR. RESULTS: No adverse events were reported. In the anti-aging study, after 4 weeks, skin roughness significantly improved in 17 out of 20 participants. qRT-PCR showed significantly increased expression of skin-aging related biomarkers: PINK1 in 16/20 participants, COL1A1 in 17/20 participants, and MSN in 16/20 participants. In the anti-pigmentation study, after 4 weeks, skin lightness significantly improved in 16/20 participants. qRT-PCR showed significantly increased expression of skin-pigmentation-related biomarkers: SOD1 in 15/20 participants and Vitamin D Receptor (VDR) in 15/20 participants. No significant change in TFAP2A was observed. CONCLUSION: Skin sampling and mRNA analysis for biomarkers provides a novel, objective, quantitative method for measuring changes in the dermis and evaluating the efficacy of cosmetics. This approach complements existing evaluation methods and has potential application in assessing the effectiveness of medical devices, medications, cosmeceuticals, healthy foods, and beauty devices.


Assuntos
Cosméticos , Transtornos da Pigmentação , Envelhecimento da Pele , Humanos , Pele/diagnóstico por imagem , Pigmentação da Pele , Biomarcadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA