Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 456
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 44(12)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38290848

RESUMO

The subthalamic nucleus (STN) receives cortical inputs via the hyperdirect and indirect pathways, projects to the output nuclei of the basal ganglia, and plays a critical role in the control of voluntary movements and movement disorders. STN neurons change their activity during execution of movements, while recent studies emphasize STN activity specific to cancelation of movements. To address the relationship between execution and cancelation functions, we examined STN activity in two Japanese monkeys (Macaca fuscata, both sexes) who performed a goal-directed reaching task with a delay that included Go, Cancel, and NoGo trials. We first examined responses to the stimulation of the forelimb regions in the primary motor cortex and/or supplementary motor area. STN neurons with motor cortical inputs were found in the dorsal somatomotor region of the STN. All these STN neurons showed activity changes in Go trials, suggesting their involvement in execution of movements. Part of them exhibited activity changes in Cancel trials and sustained activity during delay periods, suggesting their involvement in cancelation of planed movements and preparation of movements, respectively. The STN neurons rarely showed activity changes in NoGo trials. Go- and Cancel-related activity was selective to the direction of movements, and the selectivity was higher in Cancel trials than in Go trials. Changes in Go- and Cancel-related activity occurred early enough to initiate and cancel movements, respectively. These results suggest that the dorsal somatomotor region of the STN, which receives motor cortical inputs, is involved in preparation and execution of movements and cancelation of planned movements.


Assuntos
Córtex Motor , Núcleo Subtalâmico , Masculino , Feminino , Animais , Haplorrinos , Núcleo Subtalâmico/fisiologia , Gânglios da Base , Córtex Motor/fisiologia , Neurônios/fisiologia
2.
Cereb Cortex ; 34(1)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-37955674

RESUMO

We adapt our movements to new and changing environments through multiple processes. Sensory error-based learning counteracts environmental perturbations that affect the sensory consequences of movements. Sensory errors also cause the upregulation of reflexes and muscle co-contraction. Reinforcement-based learning enhances the selection of movements that produce rewarding outcomes. Although some findings have identified dissociable neural substrates of sensory error- and reinforcement-based learning, correlative methods have implicated dorsomedial frontal cortex in both. Here, we tested the causal contributions of dorsomedial frontal to adaptive motor control, studying people with chronic damage to this region. Seven human participants with focal brain lesions affecting the dorsomedial frontal and 20 controls performed a battery of arm movement tasks. Three experiments tested: (i) the upregulation of visuomotor reflexes and muscle co-contraction in response to unpredictable mechanical perturbations, (ii) sensory error-based learning in which participants learned to compensate predictively for mechanical force-field perturbations, and (iii) reinforcement-based motor learning based on binary feedback in the absence of sensory error feedback. Participants with dorsomedial frontal damage were impaired in the early stages of force field adaptation, but performed similarly to controls in all other measures. These results provide evidence for a specific and selective causal role for the dorsomedial frontal in sensory error-based learning.


Assuntos
Lobo Frontal , Desempenho Psicomotor , Humanos , Desempenho Psicomotor/fisiologia , Lobo Frontal/fisiologia , Reforço Psicológico , Aprendizagem/fisiologia , Recompensa , Movimento/fisiologia , Retroalimentação Sensorial/fisiologia
3.
J Neurosci ; 43(28): 5251-5263, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37339879

RESUMO

Intrinsic delays in sensory feedback can be detrimental for motor control. As a compensation strategy, the brain predicts the sensory consequences of movement via a forward model on the basis of a copy of the motor command. Using these predictions, the brain attenuates somatosensory reafference to facilitate the processing of exafferent information. Theoretically, this predictive attenuation is disrupted by (even minimal) temporal errors between the predicted and actual reafference; however, direct evidence of such disruption is lacking as previous neuroimaging studies contrasted nondelayed reafferent input with exafferent input. Here, we combined psychophysics with functional magnetic resonance imaging to test whether subtle perturbations in the timing of somatosensory reafference disrupt its predictive processing. Twenty-eight participants (14 women) generated touches on their left index finger by tapping a sensor with their right index finger. The touches on the left index finger were delivered close to the time of contact of the two fingers or with a temporal perturbation (i.e., 153 ms delay). We found that such a brief temporal perturbation disrupted the attenuation of the somatosensory reafference at both the perceptual and neural levels, leading to greater somatosensory and cerebellar responses and weaker somatosensory connectivity with the cerebellum, proportional to the perceptual changes. We interpret these effects as the failure of the forward model to predictively attenuate the perturbed somatosensory reafference. Moreover, we observed increased connectivity of the supplementary motor area with the cerebellum during the perturbations, which could indicate the communication of the temporal prediction error back to the motor centers.SIGNIFICANCE STATEMENT Our brain receives somatosensory feedback from our movements with a delay. To counteract these delays, motor control theories postulate that the brain predicts the timing of somatosensory consequences of our movements and attenuates sensations received at that time. Thus, a self-generated touch feels weaker than an identical external touch. However, how subtle temporal errors between the predicted and actual somatosensory feedback perturb this predictive attenuation remains unknown. We show that such errors make the otherwise attenuated touch feel stronger, elicit stronger somatosensory responses, weaken cerebellar connectivity with somatosensory areas, and increase this connectivity with motor areas. These findings show that motor and cerebellar areas are fundamental in forming temporal predictions about the sensory consequences of our movements.


Assuntos
Córtex Motor , Córtex Sensório-Motor , Percepção do Tato , Humanos , Feminino , Cerebelo/fisiologia , Percepção do Tato/fisiologia , Tato/fisiologia , Movimento/fisiologia
4.
J Neurosci ; 43(8): 1414-1421, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36650059

RESUMO

Impulsivity refers to the tendency to act prematurely or without forethought, and excessive impulsivity is a key problem in many neuropsychiatric disorders. Since the pre-supplementary motor area (pre-SMA) has been implicated in inhibitory control, this region may also contribute to impulsivity. Here, we examined whether functional recruitment of pre-SMA may contribute to risky choice behavior (state impulsivity) during sequential gambling and its relation to self-reported trait impulsivity. To this end, we performed task-based functional MRI (fMRI) after low-frequency (1 Hz) repetitive transcranial magnetic stimulation (rTMS) of the pre-SMA. We expected low-frequency rTMS to modulate task-related engagement of the pre-SMA and, hereby, tune the tendency to make risky choices. Twenty-four healthy volunteers (12 females; age range, 19-52 years) received real or sham-rTMS on separate days in counterbalanced order. Thereafter, participants performed a sequential gambling task with concurrently increasing stakes and risk during whole-brain fMRI. In the sham-rTMS session, self-reported trait impulsivity scaled positively with state impulsivity (riskier choice behavior) during gambling. The higher the trait impulsivity, the lower was the task-related increase in pre-SMA activity with increasingly risky choices. Following real-rTMS, low-impulsivity participants increased their preference for risky choices, while the opposite was true for high-impulsivity participants, resulting in an overall decoupling of trait impulsivity and state impulsivity during gambling. This rTMS-induced behavioral shift was mirrored in the rTMS-induced change in pre-SMA activation. These results provide converging evidence for a causal link between the level of task-related pre-SMA activity and the propensity for impulsive risk-taking behavior in the context of sequential gambling.SIGNIFICANCE STATEMENT Impulsivity is a personal trait characterized by a tendency to act prematurely or without forethought, and excessive impulsivity is a key problem in many neuropsychiatric disorders. Here we provide evidence that the pre-supplementary motor area (pre-SMA) is causally involved in implementing general impulsive tendencies (trait impulsivity) into actual behavior (state impulsivity). Participants' self-reported impulsivity levels (trait impulsivity) were reflected in their choice behavior (state impulsivity) when involved in a sequential gambling task. This relationship was uncoupled after perturbing the pre-SMA with repetitive transcranial stimulation (rTMS). This effect was contingent on trait impulsivity and was echoed in rTMS-induced changes in pre-SMA activity. Pre-SMA is key in translating trait impulsivity into behavior, possibly by integrating prefrontal goals with corticostriatal motor control.


Assuntos
Jogo de Azar , Córtex Motor , Feminino , Humanos , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Córtex Motor/fisiologia , Comportamento Impulsivo , Estimulação Magnética Transcraniana/métodos , Assunção de Riscos
5.
Neurobiol Dis ; 196: 106518, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38679112

RESUMO

Resting tremor is the most common presenting motor symptom in Parkinson's disease (PD). The supplementary motor area (SMA) is a main target of the basal-ganglia-thalamo-cortical circuit and has direct, facilitatory connections with the primary motor cortex (M1), which is important for the execution of voluntary movement. Dopamine potentially modulates SMA and M1 activity, and both regions have been implicated in resting tremor. This study investigated SMA-M1 connectivity in individuals with PD ON and OFF dopamine medication, and whether SMA-M1 connectivity is implicated in resting tremor. Dual-site transcranial magnetic stimulation was used to measure SMA-M1 connectivity in PD participants ON and OFF levodopa. Resting tremor was measured using electromyography and accelerometry. Stimulating SMA inhibited M1 excitability OFF levodopa, and facilitated M1 excitability ON levodopa. ON medication, SMA-M1 facilitation was significantly associated with smaller tremor than SMA-M1 inhibition. The current findings contribute to our understanding of the neural networks involved in PD which are altered by levodopa medication and provide a neurophysiological basis for the development of interventions to treat resting tremor.


Assuntos
Antiparkinsonianos , Eletromiografia , Levodopa , Córtex Motor , Doença de Parkinson , Estimulação Magnética Transcraniana , Tremor , Humanos , Levodopa/uso terapêutico , Levodopa/farmacologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/fisiopatologia , Masculino , Córtex Motor/efeitos dos fármacos , Córtex Motor/fisiopatologia , Feminino , Tremor/fisiopatologia , Tremor/tratamento farmacológico , Idoso , Pessoa de Meia-Idade , Estimulação Magnética Transcraniana/métodos , Antiparkinsonianos/uso terapêutico , Antiparkinsonianos/farmacologia , Vias Neurais/fisiopatologia , Vias Neurais/efeitos dos fármacos , Potencial Evocado Motor/efeitos dos fármacos , Potencial Evocado Motor/fisiologia
6.
Neurobiol Dis ; 199: 106557, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38852752

RESUMO

BACKGROUND: Freezing of gait (FOG) is a debilitating symptom of Parkinson's disease (PD) characterized by paroxysmal episodes in which patients are unable to step forward. A research priority is identifying cortical changes before freezing in PD-FOG. METHODS: We tested 19 patients with PD who had been assessed for FOG (n=14 with FOG and 5 without FOG). While seated, patients stepped bilaterally on pedals to progress forward through a virtual hallway while 64-channel EEG was recorded. We assessed cortical activities before and during lower limb motor blocks (LLMB), defined as a break in rhythmic pedaling, and stops, defined as movement cessation following an auditory stop cue. This task was selected because LLMB correlates with FOG severity in PD and allows recording of high-quality EEG. Patients were tested after overnight withdrawal from dopaminergic medications ("off" state) and in the "on" medications state. EEG source activities were evaluated using individual MRI and standardized low resolution brain electromagnetic tomography (sLORETA). Functional connectivity was evaluated by phase lag index between seeds and pre-defined cortical regions of interest. RESULTS: EEG source activities for LLMB vs. cued stops localized to right posterior parietal area (Brodmann area 39), lateral premotor area (Brodmann area 6), and inferior frontal gyrus (Brodmann area 47). In these areas, PD-FOG (n=14) increased alpha rhythms (8-12 Hz) before LLMB vs. typical stepping, whereas PD without FOG (n=5) decreased alpha power. Alpha rhythms were linearly correlated with LLMB severity, and the relationship became an inverted U-shape when assessing alpha rhythms as a function of percent time in LLMB in the "off" medication state. Right inferior frontal gyrus and supplementary motor area connectivity was observed before LLMB in the beta band (13-30 Hz). This same pattern of connectivity was seen before stops. Dopaminergic medication improved FOG and led to less alpha synchronization and increased functional connections between frontal and parietal areas. CONCLUSIONS: Right inferior parietofrontal structures are implicated in PD-FOG. The predominant changes were in the alpha rhythm, which increased before LLMB and with LLMB severity. Similar connectivity was observed for LLMB and stops between the right inferior frontal gyrus and supplementary motor area, suggesting that FOG may be a form of "unintended stopping." These findings may inform approaches to neurorehabilitation of PD-FOG.


Assuntos
Eletroencefalografia , Transtornos Neurológicos da Marcha , Doença de Parkinson , Humanos , Doença de Parkinson/fisiopatologia , Doença de Parkinson/tratamento farmacológico , Masculino , Feminino , Transtornos Neurológicos da Marcha/fisiopatologia , Transtornos Neurológicos da Marcha/etiologia , Idoso , Eletroencefalografia/métodos , Pessoa de Meia-Idade , Extremidade Inferior/fisiopatologia , Córtex Cerebral/fisiopatologia , Córtex Cerebral/diagnóstico por imagem , Imageamento por Ressonância Magnética
7.
Int J Geriatr Psychiatry ; 39(1): e6056, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38229210

RESUMO

OBJECTIVES: We have previously demonstrated difficulties in written production in dementia with Lewy bodies (DLB) patients. We now aim to determine the neural correlates of writing production in DLB, combining clinical data and structural MRI measures. METHOD: Sixteen prodromal to mild DLB patients were selected to participate in the study. The GREMOTS test was used to assess writing production. Using three-dimensional T1 brain MRI images, correlations between the GREMOTS test and grey matter (GM) volume were performed using voxel-based morphometry (VBM; SPM12, XjView and Matlab R2021b softwares). RESULTS: VBM analysis (p < 0.001, uncorrected) revealed a positive and significant correlation between both left anterior insula and left supramarginal gyrus GM volumes and DLB patients' ability to write logatoms using the phonological route. The handwriting deficit was negatively and significantly correlated to the supplementary motor area. The parkinsonism-like characteristics of agraphia were negatively and significantly correlated with both right anterior and right posterior cerebellum GM volumes. Our study also revealed a negative and significant correlation between grammatical spelling impairments and an area of the orbitofrontal gyrus, and a negative and significant correlation between supramarginal gyrus and general slowness in dictation tasks. CONCLUSION: Writing disorders in early DLB patients appears to be GM decreases in several brain regions, such as the left anterior insula, the left supramaginal gyrus, as well as two areas of the right cerebellum.


Assuntos
Demência , Doença por Corpos de Lewy , Humanos , Doença por Corpos de Lewy/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Imageamento por Ressonância Magnética , Redação
8.
Eur Arch Psychiatry Clin Neurosci ; 274(3): 655-671, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37638997

RESUMO

Although implicated in unsuccessful treatment, psychomotor deficits and their neurobiological underpinnings in bipolar (BD) and unipolar (UD) depression remain poorly investigated. Here, we hypothesized that motor performance deficits in depressed patients would relate to basal functional coupling of the hand primary motor cortex (M1) and the posterior cingulate cortex (PCC) with the supplementary motor area (SMA). We performed a longitudinal, naturalistic study in BD, UD and matched healthy controls comprising of two resting-state functional MRI measurements five weeks apart and accompanying assessments of motor performance using a finger tapping task (FTT). A subject-specific seed-based analysis describing functional connectivity between PCC-SMA as well as M1-SMA was conducted. The basal relationships with motor performance were investigated using linear regression models and all measures were compared across groups. Performance in FTT was impaired in BD in comparison to HC in both sessions. Behavioral performance across groups correlated significantly with resting state functional coupling of PCC-SMA, but not of M1-SMA regions. This relationship was partially reflected in a reduced PCC-SMA connectivity in BD vs HC in the second session. Exploratory evaluation of large-scale networks coupling (SMN-DMN) exhibited no correlation to motor performance. Our results shed new light on the association between the degree of disruption in the SMA-PCC anticorrelation and the level of motor impairment in BD.


Assuntos
Transtorno Bipolar , Transtorno Depressivo , Córtex Motor , Humanos , Córtex Motor/diagnóstico por imagem , Transtorno Bipolar/diagnóstico por imagem , Giro do Cíngulo/diagnóstico por imagem , Encéfalo , Imageamento por Ressonância Magnética/métodos , Mapeamento Encefálico
9.
Cereb Cortex ; 33(23): 11339-11353, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-37804253

RESUMO

Dual-site transcranial magnetic stimulation has been widely employed to investigate the influence of cortical structures on the primary motor cortex. Here, we leveraged this technique to probe the causal influence of two key areas of the medial frontal cortex, namely the supplementary motor area and the medial orbitofrontal cortex, on primary motor cortex. We show that supplementary motor area stimulation facilitates primary motor cortex activity across short (6 and 8 ms) and long (12 ms) inter-stimulation intervals, putatively recruiting cortico-cortical and cortico-subcortico-cortical circuits, respectively. Crucially, magnetic resonance imaging revealed that this facilitatory effect depended on a key morphometric feature of supplementary motor area: individuals with larger supplementary motor area volumes exhibited more facilitation from supplementary motor area to primary motor cortex for both short and long inter-stimulation intervals. Notably, we also provide evidence that the facilitatory effect of supplementary motor area stimulation at short intervals is unlikely to arise from spinal interactions of volleys descending simultaneously from supplementary motor area and primary motor cortex. On the other hand, medial orbitofrontal cortex stimulation moderately suppressed primary motor cortex activity at both short and long intervals, irrespective of medial orbitofrontal cortex volume. These results suggest that dual-site transcranial magnetic stimulation is a fruitful approach to investigate the differential influence of supplementary motor area and medial orbitofrontal cortex on primary motor cortex activity, paving the way for the multimodal assessment of these fronto-motor circuits in health and disease.


Assuntos
Córtex Motor , Humanos , Córtex Motor/diagnóstico por imagem , Córtex Motor/fisiologia , Estimulação Magnética Transcraniana/métodos , Potencial Evocado Motor/fisiologia , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiologia
10.
Cereb Cortex ; 33(7): 3922-3933, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35972405

RESUMO

Tourette syndrome (TS) is a childhood-onset disorder in which tics are often preceded by premonitory sensory urges. More severe urges correlate with worse tics and can render behavioral therapies less effective. The supplementary motor area (SMA) is a prefrontal region believed to influence tic performance. To determine whether cortical physiological properties correlate with urges and tics, we evaluated, in 8-12-year-old right-handed TS children (n = 17), correlations of urge and tic severity scores and compared both to cortical excitability (CE) and short- and long-interval cortical inhibition (SICI and LICI) in both left and right M1. We also modeled these M1 transcranial magnetic stimulation measures with SMA gamma-amino butyric acid (GABA) levels in TS and typically developing control children (n = 16). Urge intensity correlated strongly with tic scores. More severe urges correlated with lower CE and less LICI in both right and left M1. Unexpectedly, in right M1, lower CE and less LICI correlated with less severe tics. We found that SMA GABA modulation of right, but not left, M1 CE and LICI differed in TS. We conclude that in young children with TS, lower right M1 CE and LICI, modulated by SMA GABA, may reflect compensatory mechanisms to diminish tics in response to premonitory urges.


Assuntos
Córtex Motor , Tiques , Síndrome de Tourette , Humanos , Criança , Pré-Escolar , Tiques/complicações , Síndrome de Tourette/complicações , Inibição Psicológica , Ácido gama-Aminobutírico
11.
Neurosurg Rev ; 47(1): 651, 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39304542

RESUMO

Resection of a glioma from the dorsomedial frontal lobe, including the supplementary motor area (SMA), can result in postoperative SMA syndrome. SMA syndrome may occur during awake craniotomies. However, it is often difficult to intraoperatively distinguish between motor dysfunction due to pyramidal tract damage from that due to SMA syndrome. Patients with suspected intraoperative SMA syndrome are indifferent to their surroundings, have stiff facial muscles, and maintain a fixed gaze. We defined this condition as "apathetic look." The present study aimed to investigate whether intraoperative "apathetic look" is useful for identifying intraoperative SMA syndrome in patients with glioma close to motor-related areas, including the SMA, during awake craniotomy. This study included 33 consecutive patients with glioma included in the SMA. We excluded patients whose tumors extended to motor-related areas. We also assessed whether intraoperative SMA syndrome occurred in each patient. We evaluated the correlation between the occurrence of intraoperative SMA syndrome and various clinical factors, including intraoperative "apathetic look." Of the 33 patients, 12 had intraoperative SMA syndrome. Intraoperative "apathetic look" showed strong correlation with intraoperative SMA syndrome (p < 0.0001). Additionally, higher extent of resection (EOR) and resection of the corpus callosum showed a significantly higher incidence of intraoperative "apathetic look." All 12 patients with intraoperative SMA syndrome showed intraoperative "apathetic look" and recovered from SMA syndrome with high EOR. In conclusion, intraoperative "apathetic look" shows strong correlation with intraoperative SMA syndrome. Therefore, "apathetic look" may be a valuable indicator of intraoperative SMA syndrome during awake craniotomy.


Assuntos
Neoplasias Encefálicas , Craniotomia , Glioma , Córtex Motor , Vigília , Humanos , Craniotomia/efeitos adversos , Craniotomia/métodos , Masculino , Feminino , Neoplasias Encefálicas/cirurgia , Pessoa de Meia-Idade , Adulto , Glioma/cirurgia , Córtex Motor/cirurgia , Idoso , Complicações Intraoperatórias/diagnóstico , Adulto Jovem , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/diagnóstico
12.
Neurosurg Rev ; 47(1): 114, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38480549

RESUMO

Supplementary motor area syndrome (SMAS) represents a common neurosurgical sequela. The incidence and time frame of its occurrence have yet to be characterized after surgery for brain tumors. We examined patients suffering from a brain tumor preoperatively, postoperatively, and during follow-up examinations after three months, including fine motor skills testing and transcranial magnetic stimulation (TMS). 13 patients suffering from a tumor in the dorsal part of the superior frontal gyrus underwent preoperative, early postoperative, and 3-month follow-up testing of fine motor skills using the Jebsen-Taylor Hand Function Test (JHFT) and the Nine-Hole Peg Test (NHPT) consisting of 8 subtests for both upper extremities. They completed TMS for cortical motor function mapping. Test completion times (TCTs) were recorded and compared. No patient suffered from neurological deficits before surgery. On postoperative day one, we detected motor deficits in two patients, which remained clinically stable at a 3-month follow-up. Except for page-turning, every subtest indicated a significant worsening of function, reflected by longer TCTs (p < 0.05) in the postoperative examinations for the contralateral upper extremity (contralateral to the tumor manifestation). At 3-month follow-up examinations for the contralateral upper extremity, each subtest indicated significant worsening compared to the preoperative status despite improvement to the immediate postoperative level. We also detected significantly longer TCTs (p < 0.05) postoperatively in the ipsilateral upper extremity. This study suggests a long-term worsening of fine motor skills even three months after SMA tumor resection, indicating the necessity of targeted physical therapy for these patients.


Assuntos
Neoplasias Encefálicas , Córtex Motor , Humanos , Córtex Motor/cirurgia , Destreza Motora , Neoplasias Encefálicas/etiologia , Estimulação Magnética Transcraniana , Procedimentos Neurocirúrgicos/efeitos adversos
13.
Sensors (Basel) ; 24(20)2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39460125

RESUMO

Although significant progress has been made in understanding the cortical correlates underlying balance control, these studies focused on a single task, limiting the ability to generalize the findings. Different balance tasks may elicit cortical activations in the same regions but show different levels of activation because of distinct underlying mechanisms. In this study, twenty young, neurotypical adults were instructed to maintain standing balance while the standing support surface was either translated or rotated. The differences in cortical activations in the frontocentral region between these two widely used tasks were examined using electroencephalography (EEG). Additionally, the study investigated whether transcranial magnetic stimulation could modulate these cortical activations during the platform translation task. Higher delta and lower alpha relative power were found over the frontocentral region during the platform translation task when compared to the platform rotation task, suggesting greater engagement of attentional and sensory integration resources for the former. Continuous theta burst stimulation over the supplementary motor area significantly reduced delta activity in the frontocentral region but did not alter alpha activity during the platform translation task. The results provide a direct comparison of neural activations between two commonly used balance tasks and are expected to lay a strong foundation for designing neurointerventions for balance improvements with effects generalizable across multiple balance scenarios.


Assuntos
Eletroencefalografia , Equilíbrio Postural , Estimulação Magnética Transcraniana , Humanos , Equilíbrio Postural/fisiologia , Masculino , Feminino , Eletroencefalografia/métodos , Estimulação Magnética Transcraniana/métodos , Adulto , Adulto Jovem , Córtex Motor/fisiologia
14.
Eur J Neurosci ; 58(10): 4181-4194, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37864365

RESUMO

Conventional transcranial direct-current stimulation (tDCS) delivered to the primary motor cortex (M1) has been shown to enhance implicit motor sequence learning (IMSL). Conventional tDCS targets M1 but also the motor association cortices (MAC), making the precise contribution of these areas to IMSL presently unclear. We aimed to address this issue by comparing conventional tDCS of M1 and MAC to 4 * 1 high-definition (HD) tDCS, which more focally targets M1. In this mixed-factorial, sham-controlled, crossover study in 89 healthy young adults, we used mixed-effects models to analyse sequence-specific and general learning effects in the acquisition and short- and long-term consolidation phases of IMSL, as measured by the serial reaction time task. Conventional tDCS did not influence general learning, improved sequence-specific learning during acquisition (anodal: M = 42.64 ms, sham: M = 32.87 ms, p = .041), and seemingly deteriorated it at long-term consolidation (anodal: M = 75.37 ms, sham: M = 86.63 ms, p = .019). HD tDCS did not influence general learning, slowed performance specifically in sequential blocks across all learning phases (all p's < .050), and consequently deteriorated sequence-specific learning during acquisition (anodal: M = 24.13 ms, sham: M = 35.67 ms, p = .014) and long-term consolidation (anodal: M = 60.03 ms, sham: M = 75.01 ms, p = .002). Our findings indicate that the observed superior conventional tDCS effects on IMSL are possibly attributable to a generalized stimulation of M1 and/or adjacent MAC, rather than M1 alone. Alternatively, the differential effects can be attributed to cathodal inhibition of other cortical areas involved in IMSL by the 4 * 1 HD tDCS return electrodes, and/or more variable electric field strengths induced by HD tDCS, compared with conventional tDCS.


Assuntos
Córtex Motor , Estimulação Transcraniana por Corrente Contínua , Adulto Jovem , Humanos , Córtex Motor/fisiologia , Estudos Cross-Over , Aprendizagem/fisiologia , Tempo de Reação/fisiologia
15.
J Neurosci Res ; 101(2): 263-277, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36353842

RESUMO

Substantia nigra (SN) hyperechogenicity, viewed with transcranial ultrasound, is a risk marker for Parkinson's disease. We hypothesized that SN hyperechogenicity in healthy adults aged 50-70 years is associated with reduced short-interval intracortical inhibition in primary motor cortex, and that the reduced intracortical inhibition is associated with neurochemical markers of activity in the pre-supplementary motor area (pre-SMA). Short-interval intracortical inhibition and intracortical facilitation in primary motor cortex was assessed with paired-pulse transcranial magnetic stimulation in 23 healthy adults with normal (n = 14; 61 ± 7 yrs) or abnormally enlarged (hyperechogenic; n = 9; 60 ± 6 yrs) area of SN echogenicity. Thirteen of these participants (7 SN- and 6 SN+) also underwent brain magnetic resonance spectroscopy to investigate pre-SMA neurochemistry. There was no relationship between area of SN echogenicity and short-interval intracortical inhibition in the ipsilateral primary motor cortex. There was a significant positive relationship, however, between area of echogenicity in the right SN and the magnitude of intracortical facilitation in the right (ipsilateral) primary motor cortex (p = .005; multivariate regression), evidenced by the amplitude of the conditioned motor evoked potential (MEP) at the 10-12 ms interstimulus interval. This relationship was not present on the left side. Pre-SMA glutamate did not predict primary motor cortex inhibition or facilitation. The results suggest that SN hyperechogenicity in healthy older adults may be associated with changes in excitability of motor cortical circuitry. The results advance understanding of brain changes in healthy older adults at risk of Parkinson's disease.


Assuntos
Excitabilidade Cortical , Córtex Motor , Doença de Parkinson , Humanos , Idoso , Córtex Motor/diagnóstico por imagem , Doença de Parkinson/diagnóstico por imagem
16.
Eur J Neurol ; 30(5): 1209-1219, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36869612

RESUMO

OBJECTIVE: Primary progressive apraxia of speech (PPAOS) is associated with imaging abnormalities in the lateral premotor cortex (LPC) and supplementary motor area (SMA). It is not known whether greater involvement of these regions in either hemisphere is associated with demographics, presenting, and/or longitudinal features. METHODS: In 51 prospectively recruited PPAOS patients who completed [18 F]-fluorodeoxyglucose (FDG) positron emission tomography (PET), we classified patients as left-dominant, right-dominant, or symmetric, based on visual assessment of the LPC and SMA on FDG-PET. SPM and statistical analyses of regional metabolic values were performed. Diagnosis of PPAOS was made if apraxia of speech was present and aphasia absent. Thirteen patients completed ioflupane-123I (dopamine transporter [DAT]) scans. We compared cross-sectional and longitudinal clinicopathological, genetic, and neuroimaging characteristics across the three groups, with area under the receiver-operating curve (AUROC) determined as a measure of effect size. RESULTS: In all, 49% of the PPAOS patients were classified as left-dominant, 31% as right-dominant, and 20% as symmetric, which was supported by results from the SPM and regional analyses. There were no differences in baseline characteristics. Longitudinally, right-dominant PPAOS showed faster rates of progression of ideomotor apraxia (AUROC 0.79), behavioral disturbances (AUROC 0.84), including disinhibition symptoms (AUROC 0.82) and negative behaviors (AUROC 0.82), and parkinsonism (AUROC 0.75) compared to left-dominant PPAOS. Symmetric PPAOS showed faster rates of dysarthria progression compared to left-dominant (AUROC 0.89) and right-dominant PPAOS (AUROC 0.79). Five patients showed abnormal DAT uptake. Braak neurofibrillary tangle stage differed across groups (p = 0.01). CONCLUSIONS: Patients with PPAOS and a right-dominant pattern of hypometabolism on FDG-PET have the fastest rates of decline of behavioral and motor features.


Assuntos
Afasia Primária Progressiva , Apraxias , Humanos , Fala/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Fluordesoxiglucose F18 , Estudos Transversais , Apraxias/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Afasia Primária Progressiva/diagnóstico por imagem
17.
Acta Neurochir (Wien) ; 165(9): 2473-2478, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36625909

RESUMO

Supplementary motor area (SMA) syndrome is characterised by transient disturbance in volitional movement and speech production which classically occurs after injury to the medial premotor area. We present two cases of SMA syndrome following isolated surgical injury to the frontal aslant tract (FAT) with the SMA intact. The first case occurred after resection of a left frontal operculum tumour. The second case occurred after a transcortical approach to a ventricular neurocytoma. The clinical picture and fMRI activation patterns during recovery were typical for SMA syndrome and support the theory that the FAT is a critical bundle in the SMA complex function.


Assuntos
Córtex Motor , Humanos , Córtex Motor/diagnóstico por imagem , Córtex Motor/cirurgia , Imagem de Tensor de Difusão , Imageamento por Ressonância Magnética , Fala/fisiologia
18.
J Phys Ther Sci ; 35(7): 502-506, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37405183

RESUMO

[Purpose] Humans keep their trunks vertical while walking. This defining characteristic is known as upright bipedalism. Research on the neural control of locomotion indicates that not only subcortical structures, but also the cerebral cortex, especially the supplementary motor area (SMA), is involved in locomotion. A previous study suggested that SMA may contribute to truncal upright posture-control during walking. Trunk Solution® (TS) is a trunk orthosis designed to support the trunk in decreasing the low back load. We hypothesized that the trunk orthosis might reduce the burden of truncal control on the SMA. The objective of this study was, therefore, to determine the effect of trunk orthosis on the SMA during walking. [Participants and Methods] Thirteen healthy participants were enrolled in the study. We measured the hemodynamics of the SMA during walking with functional near-infrared spectroscopy (fNIRS). The participants performed two gait tasks on a treadmill: (A) independent gait (usual gait) and (B) supported gait while wearing the TS. [Results] During (A) independent gait, the hemodynamics of the SMA exhibited no significant changes. During (B) gait with truncal support, the SMA hemodynamics decreased significantly. [Conclusion] TS may reduce the burden of truncal control on the SMA during walking.

19.
Artigo em Inglês, Russo | MEDLINE | ID: mdl-36763548

RESUMO

After surgical treatment of tumors of the supplementary motor area (SMA) post-operative speech and/or motor neurological deficit may occur. OBJECTIVE: To determinate frequency and reversibility of such deficit and identify risk factors for its development. MATERIAL AND METHODS: We retrospectively analyzed postoperative outcomes in 34 patients with SMA tumors. Pre- and postoperative neurological status, localization of tumors, extent of resection relative to adjacent regions and relationship of tumor with white matter tracts were assessed. We also analyzed the influence of these factors on the risk of postoperative neurological impairment. RESULTS: Postoperative neurological impairment occurred in 47% of cases. Complete or significant regression was observed in all patients within 5.7 month after surgery. Major risk factors were lesion of dominant hemisphere (p=0.029), tumor spreading to primary motor cortex (p=0.018) and resection of SMA together with cingulate gyrus (p=0.000). Location of frontal aslant tract in dominant hemisphere just near the tumor contributed to disorders regarding speech initiation and fluency (p=0.016). Resection of SMA with cingulate gyrus in dominant hemisphere affected development of more serious speech disorders (p=0.003). CONCLUSION: Surgery for SMA tumors is safe and followed by favorable functional outcomes.


Assuntos
Neoplasias Encefálicas , Glioma , Córtex Motor , Humanos , Córtex Motor/diagnóstico por imagem , Córtex Motor/cirurgia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia , Estudos Retrospectivos , Glioma/cirurgia , Distúrbios da Fala/etiologia , Imageamento por Ressonância Magnética
20.
Neuroimage ; 264: 119767, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36435342

RESUMO

The supplementary motor area (SMA) has been implicated in the feedforward control of speech production. Whether this region is involved in speech motor control through auditory feedback, however, remains uncertain. The present event-related potential (ERP) study examined the role of the left SMA in vocal pitch regulation in a causal manner by combining auditory feedback manipulations and neuronavigated continuous theta bust stimulation (c-TBS). After receiving c-TBS over the left SMA or the control site (vertex), twenty young adults vocalized the vowel sound /u/ while hearing their voice unexpectedly pitch-shifted -50 or -200 cents. Compared to the control stimulation, c-TBS over the left SMA led to decreased vocal compensations for pitch perturbations of -50 and -200 cents. A significant decrease of N1 and P2 responses to -200 cents perturbations was also found when comparing active and control stimulation. Major neural generators of decreased P2 responses included the right-lateralized superior and middle temporal gyrus and angular gyrus. Notably, a significant correlation was found between active-control differences in the vocal compensation and P2 responses for the -200 cents perturbations. These findings provide neurobehavioral evidence for a causal link between the left SMA and auditory-motor integration for vocal pitch regulation, suggesting that the left SMA receives auditory feedback information and mediates vocal compensations for feedback errors in a bottom-up manner.


Assuntos
Córtex Motor , Voz , Adulto Jovem , Humanos , Percepção da Altura Sonora/fisiologia , Estimulação Acústica , Estimulação Magnética Transcraniana , Voz/fisiologia , Fala/fisiologia , Retroalimentação Sensorial/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA