RESUMO
Posterior fossa group A (PFA) ependymoma is a lethal brain cancer diagnosed in infants and young children. The lack of driver events in the PFA linear genome led us to search its 3D genome for characteristic features. Here, we reconstructed 3D genomes from diverse childhood tumor types and uncovered a global topology in PFA that is highly reminiscent of stem and progenitor cells in a variety of human tissues. A remarkable feature exclusively present in PFA are type B ultra long-range interactions in PFAs (TULIPs), regions separated by great distances along the linear genome that interact with each other in the 3D nuclear space with surprising strength. TULIPs occur in all PFA samples and recur at predictable genomic coordinates, and their formation is induced by expression of EZHIP. The universality of TULIPs across PFA samples suggests a conservation of molecular principles that could be exploited therapeutically.
Assuntos
Ependimoma , Ependimoma/genética , Humanos , Neoplasias Infratentoriais/genética , Neoplasias Infratentoriais/patologia , Genoma Humano , Lactente , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Criança , Masculino , FemininoRESUMO
Azole-treated plant bulbs have already been evoked as a potential explanation of the worldwide spread of azole-resistant Aspergillus fumigatus (ARAf). We previously pointed out the presence of a high rate of ARAf (71% of A. fumigatus detected on azole-supplemented media) in flower beds containing azole-treated bulbs at the hospital's surroundings. We show here that planting organic bulbs can be a solution to reduce ARAf burden (from 71% rate to below 3%). The results suggest that replacing treated bulbs with organic bulbs may be sufficient to regain a population that is predominantly susceptible in just 1 year. LAY SUMMARY: Antifungal resistance is increasingly observed in fungal pathogens. This study argues that planting organic bulbs in hospitals' outdoor surroundings could be a good alternative to continue to beautify green spaces, without the risk of dissipating antifungal-resistant fungal pathogens.
Assuntos
Antifúngicos/farmacologia , Aspergillus fumigatus/efeitos dos fármacos , Azóis/farmacologia , Farmacorresistência Fúngica , Raízes de Plantas/efeitos dos fármacos , Tulipa/efeitos dos fármacos , Proteínas Fúngicas/genética , Genótipo , Hospitais , Testes de Sensibilidade Microbiana , Agricultura Orgânica , Raízes de Plantas/microbiologia , Tulipa/microbiologiaRESUMO
BACKGROUND CONTEXT: Long-segment pedicle screw instrumentation is widely used to treat complex spinal disorders. Rods are routinely precontoured to maximize assistance on the correcting side of the deformity, but there often exists a residual gap discrepancy between the precontoured rods and screw tulips. No previous research has investigated the diminished pullout strength of the most proximal or distal pedicle screw resulting from a mismatched rod in long-segment pedicle screw instrumentation. PURPOSE: The present study aimed to investigate the decreased pullout force of pedicle screws affected by the gap discrepancy when forcefully engaging a mismatched rod into a tulip in a normal-density porcine spine. STUDY DESIGN: The pedicle screw fixation strength under axial pullout force was compared among three different gap discrepancies between rods and tulips using long porcine spine segments. METHODS: Twelve porcine lumbar vertebrae (L3-L6) were implanted with pedicle screws and rods. Screws on one side had no gap between the tulip and rod (0-mm group), while the most proximal screw on the other side had an intentional gap of 3 mm (3-mm group) or 6 mm (6-mm group). Three hours after forcefully engaging the rod into the tulips at room temperature, the set screws in all specimens were loosened, and each specimen was dissected into individual vertebrae for subsequent pullout testing. RESULTS: The control group exhibited significantly greater pullout strength (1987.68 ± 126.80 N) than the groups from different rod-tulip configurations (p<.05), with significantly greater strength in the 3-mm group (945.62 ± 97.43 N) than the 6-mm group (655.30 ± 194.49 N) (p<.05). Only 47.6% and 33.0% of the pullout strength was retained in the 3-mm and 6-mm groups, respectively, compared to the control group. CONCLUSIONS: Gap discrepancies between rods and tulips can significantly reduce pedicle screw pullout strength, with a correlation between decreased strength and increased gaps. Surgeons should avoid forcefully engaging mismatched rods and consider well-fitted contoured rods in spinal surgery to minimize the risk of screw loosening. CLINICAL SIGNIFICANCE: The gap discrepancy between rod and tulip significantly affected pullout strength, with greater gaps leading to reduced strength. Forcefully engaging mismatched rods into tulips in degenerative spinal surgery should be avoided to minimize the risk of early screw pullout.
Assuntos
Vértebras Lombares , Parafusos Pediculares , Fusão Vertebral , Animais , Suínos , Fenômenos Biomecânicos , Vértebras Lombares/cirurgia , Fusão Vertebral/instrumentação , Fusão Vertebral/métodosRESUMO
Although tulips are famous worldwide as ornamental plants, the knowledge about the seed germination of wild-growing species remains limited. The aim of the present study was to investigate the effect of temperature on seed germination of the local, wild-growing Greek endemics Tulipa bakeri and T. goulimyi and the sub-Balkan endemic T. undulatifolia, which are threatened with extinction, as well as the Mediterranean T. australis and the Asiatic T. clusiana naturalized on Chios Island (Greece). The germination responses at five constant temperatures (5, 10, 15, 20, and 25 °C) were assessed for all studied species in growth chambers under a 12:12 light-dark photoperiod. The ecological profile for each species was developed in R using open-source bioclimatic data; this was built to illustrate the abiotic environmental conditions of their wild habitats, to facilitate the examination of temperature effects on seed germination, and to facilitate their cultivation in artificial environments. The results indicated that the seed germination requirements of the studied species had a range-specific temperature dependence, reflecting their natural adaptation to local ecological conditions. Seed germination of T. bakeri, T. australis, and T. clusiana was observed only in a narrow range of very low temperatures (5-10 °C), whereas germination of T. undulatifolia and T. goulimyi occurred at temperatures between 5 and 15 °C. A temperature increase to 20 or 25 °C resulted in the absence of seed germination for all five Greek tulip species. The germinated seeds were planted in pots and bulblets were developed under greenhouse conditions. Seeds and bulblets constitute valuable genetic materials for the cultivation and ex situ conservation of these five Greek tulip species, three of which are threatened with extinction.
RESUMO
Due to botanical tulips' economic interest coupled with limited information regarding their seed germination, we investigated the effect of temperature on dormancy release and germination in two endangered local endemic tulip species of Greece (Tulipa hageri Heldr., T. orphanidea Heldr.). Their germination responses at five constant temperatures (5, 10, 15, 20, and 25 °C) were evaluated in growth chambers, while the type of seed dormancy and the temperature effect on its release were determined based on open-sourced, R-derived species-specific ecological profiles illustrating abiotic conditions of their wild habitats. The results indicated a range-specific temperature dependence in seed germination for both studied species with seed germination observed only in very low temperatures (5-10 °C). The seeds of both species after dispersal had an underdeveloped embryo. The existence of a complex morphophysiological seed dormancy was confirmed in both species by the significant embryo development only at 5 and 10 °C (almost doubled after 30 days) coupled with observed delay in germination only at low temperatures. Furthermore, to facilitate their cultivation and ex situ conservation, the germinated seeds were planted in pots to develop bulblets in greenhouse conditions resulting in bigger T. orphanidea bulblets compared to T. hageri.
RESUMO
Screening has been performed for azole-resistant Aspergillus fumigatus in the indoor air of the hospital since 2015 and in soil and dust samples since January 2019. In total, 83 azole-resistant A fumigatus isolates with a TR34/L98H mutation have been obtained: 1 from the air of the intensive care unit, 16 from the main corridors, 59 from pots of tulips imported from the Netherlands, and 5 from the soil of trees grown in pots.