Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.163
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 183(4): 1070-1085.e12, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33031744

RESUMO

The SARS-CoV-2 pandemic has caused extreme human suffering and economic harm. We generated and characterized a new mouse-adapted SARS-CoV-2 virus that captures multiple aspects of severe COVID-19 disease in standard laboratory mice. This SARS-CoV-2 model exhibits the spectrum of morbidity and mortality of COVID-19 disease as well as aspects of host genetics, age, cellular tropisms, elevated Th1 cytokines, and loss of surfactant expression and pulmonary function linked to pathological features of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). This model can rapidly access existing mouse resources to elucidate the role of host genetics, underlying molecular mechanisms governing SARS-CoV-2 pathogenesis, and the protective or pathogenic immune responses related to disease severity. The model promises to provide a robust platform for studies of ALI and ARDS to evaluate vaccine and antiviral drug performance, including in the most vulnerable populations (i.e., the aged) using standard laboratory mice.


Assuntos
Lesão Pulmonar Aguda/patologia , Betacoronavirus/patogenicidade , Infecções por Coronavirus/patologia , Pneumonia Viral/patologia , Animais , Betacoronavirus/isolamento & purificação , Betacoronavirus/fisiologia , COVID-19 , Linhagem Celular , Quimiocinas/sangue , Infecções por Coronavirus/mortalidade , Infecções por Coronavirus/virologia , Citocinas/sangue , Modelos Animais de Doenças , Feminino , Humanos , Pulmão/patologia , Pulmão/fisiologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Pandemias , Pneumonia Viral/mortalidade , Pneumonia Viral/virologia , Síndrome do Desconforto Respiratório/patologia , SARS-CoV-2 , Índice de Gravidade de Doença , Taxa de Sobrevida
2.
Cell ; 178(5): 1205-1221.e17, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31442408

RESUMO

A hallmark feature of inflammation is the orchestrated recruitment of neutrophils from the bloodstream into inflamed tissue. Although selectins and integrins mediate recruitment in many tissues, they have a minimal role in the lungs and liver. Exploiting an unbiased in vivo functional screen, we identified a lung and liver homing peptide that functionally abrogates neutrophil recruitment to these organs. Using biochemical, genetic, and confocal intravital imaging approaches, we identified dipeptidase-1 (DPEP1) as the target and established its role as a physical adhesion receptor for neutrophil sequestration independent of its enzymatic activity. Importantly, genetic ablation or functional peptide blocking of DPEP1 significantly reduced neutrophil recruitment to the lungs and liver and provided improved survival in models of endotoxemia. Our data establish DPEP1 as a major adhesion receptor on the lung and liver endothelium and identify a therapeutic target for neutrophil-driven inflammatory diseases of the lungs.


Assuntos
Dipeptidases/metabolismo , Neutrófilos/fisiologia , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Animais , Cilastatina/farmacologia , Cilastatina/uso terapêutico , Dipeptidases/antagonistas & inibidores , Dipeptidases/genética , Modelos Animais de Doenças , Endotoxemia/mortalidade , Endotoxemia/patologia , Endotoxemia/prevenção & controle , Proteínas Ligadas por GPI/antagonistas & inibidores , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Humanos , Lipopolissacarídeos/farmacologia , Fígado/efeitos dos fármacos , Fígado/imunologia , Fígado/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos SCID , Infiltração de Neutrófilos/efeitos dos fármacos , Peptídeos/síntese química , Peptídeos/química , Peptídeos/farmacologia , Taxa de Sobrevida
3.
Proc Natl Acad Sci U S A ; 120(3): e2216458120, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36626557

RESUMO

The lack of techniques for noninvasive imaging of inflammation has challenged precision medicine management of acute respiratory distress syndrome (ARDS). Here, we determined the potential of positron emission tomography (PET) of chemokine-like receptor-1 (CMKLR1) to monitor lung inflammation in a murine model of lipopolysaccharide-induced injury. Lung uptake of a CMKLR1-targeting radiotracer, [64Cu]NODAGA-CG34, was significantly increased in lipopolysaccharide-induced injury, correlated with the expression of multiple inflammatory markers, and reduced by dexamethasone treatment. Monocyte-derived macrophages, followed by interstitial macrophages and monocytes were the major CMKLR1-expressing leukocytes contributing to the increased tracer uptake throughout the first week of lipopolysaccharide-induced injury. The clinical relevance of CMKLR1 as a biomarker of lung inflammation in ARDS was confirmed using single-nuclei RNA-sequencing datasets which showed significant increases in CMKLR1 expression among transcriptionally distinct subsets of lung monocytes and macrophages in COVID-19 patients vs. controls. CMKLR1-targeted PET is a promising strategy to monitor the dynamics of lung inflammation and response to anti-inflammatory treatment in ARDS.


Assuntos
Lesão Pulmonar Aguda , COVID-19 , Síndrome do Desconforto Respiratório , Humanos , Camundongos , Animais , Lipopolissacarídeos/toxicidade , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/diagnóstico por imagem , Lesão Pulmonar Aguda/metabolismo , Pulmão/diagnóstico por imagem , Pulmão/metabolismo , Quimiocinas/metabolismo , Síndrome do Desconforto Respiratório/diagnóstico por imagem , Imagem Molecular , Receptores de Quimiocinas
4.
Annu Rev Physiol ; 84: 611-629, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-34724436

RESUMO

The use of electronic (e)-cigarettes was initially considered a beneficial solution to conventional cigarette smoking cessation. However, paradoxically, e-cigarette use is rapidly growing among nonsmokers, including youth and young adults. In 2019, this rapid growth resulted in an epidemic of hospitalizations and deaths of e-cigarette users (vapers) due to acute lung injury; this novel disease was termed e-cigarette or vaping use-associated lung injury (EVALI). Pathophysiologic mechanisms of EVALI likely involve cytotoxicity and neutrophilic inflammation caused by inhaled chemicals, but further details remain unknown. The undiscovered mechanisms of EVALI are a barrier to identifying biomarkers and developing therapeutics. Furthermore, adverse effects of e-cigarette use have been linked to chronic lung diseases and systemic effects on multiple organs. In this comprehensive review, we discuss the diverse spectrum of vaping exposures, epidemiological and clinical reports, and experimental findings to provide a better understanding of EVALI and the adverse health effects of chronic e-cigarette exposure.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Lesão Pulmonar , Pneumonia , Vaping , Adolescente , Biomarcadores , Humanos , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/epidemiologia , Pneumonia/etiologia , Vaping/efeitos adversos , Vaping/epidemiologia , Adulto Jovem
5.
FASEB J ; 38(1): e9664, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38038805

RESUMO

The α7 nicotinic acetylcholine receptor (α7nAChR) plays a crucial role in the cholinergic anti-inflammatory pathway (CAP) during sepsis-associated acute lung injury (ALI). Increasing evidence suggests that specialized pro-resolving mediators (SPMs) are important in resolving α7nAChR-mediated ALI resolution. Our study aims to elucidate the pivotal role of α7nAChR in the CAP during LPS-associated acute lung injury (ALI). By employing vagus nerve stimulation (VNS), we identified α7nAChR as the key CAP subunit in ALI mice, effectively reducing lung permeability and the release of inflammatory cytokines. We further investigated the alterations in SPMs regulated by α7nAChR, revealing a predominant synthesis of lipoxin A4 (LXA4). The significance of α7nAChR-netrin-1 pathway in governing SPM synthesis was confirmed through the use of netrin-1 knockout mice and siRNA-transfected macrophages. Additionally, our evaluation identified a synchronous alteration of LXA4 synthesis in the α7nAChR-netrin-1 pathway accompanied by 5-lipoxygenase (5-LOX), thereby confirming an ameliorative effect of LXA4 on lung injury and macrophage inflammatory response. Concurrently, inhibiting the function of LXA4 annulled the lung-protective effect of VNS. As a result, our findings reveal a novel anti-inflammatory pathway wherein VNS modulates netrin-1 expression via α7nAChR, ultimately leading to LXA4 synthesis and subsequent lung protection.


Assuntos
Lesão Pulmonar Aguda , Estimulação do Nervo Vago , Camundongos , Animais , Receptor Nicotínico de Acetilcolina alfa7/genética , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Lipopolissacarídeos/toxicidade , Netrina-1/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente
6.
EMBO Rep ; 24(2): e55363, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36520372

RESUMO

Macrophages are key cells after tissue damage since they mediate both acute inflammatory phase and regenerative inflammation by shifting from pro-inflammatory to restorative cells. Glucocorticoids (GCs) are the most potent anti-inflammatory hormone in clinical use, still their actions on macrophages are not fully understood. We show that the metabolic sensor AMP-activated protein kinase (AMPK) is required for GCs to induce restorative macrophages. GC Dexamethasone activates AMPK in macrophages and GC receptor (GR) phosphorylation is decreased in AMPK-deficient macrophages. Loss of AMPK in macrophages abrogates the GC-induced acquisition of their repair phenotype and impairs GC-induced resolution of inflammation in vivo during post-injury muscle regeneration and acute lung injury. Mechanistically, two categories of genes are impacted by GC treatment in macrophages. Firstly, canonical cytokine regulation by GCs is not affected by AMPK loss. Secondly, AMPK-dependent GC-induced genes required for the phenotypic transition of macrophages are co-regulated by the transcription factor FOXO3, an AMPK substrate. Thus, beyond cytokine regulation, GR requires AMPK-FOXO3 for immunomodulatory actions in macrophages, linking their metabolic status to transcriptional control in regenerative inflammation.


Assuntos
Proteínas Quinases Ativadas por AMP , Glucocorticoides , Humanos , Glucocorticoides/farmacologia , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Macrófagos/metabolismo , Inflamação/metabolismo , Citocinas/metabolismo
7.
Exp Cell Res ; 438(2): 114039, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38641125

RESUMO

The pathogenesis of acute lung injury is not fully understood. Stimulator of interferon genes (STING) and ferroptosis have been implicated in various pathological and physiological processes, including acute lung injury (ALI). However, the relationship between STING and ferroptosis in lipopolysaccharide (LPS)-induced ALI is unclear. We found that LPS stimulation activated STING and ferroptosis. Furthermore, STING knockout and ferroptosis inhibitor alleviated lung inflammation and epithelial cell damage. Also, STING knockout reduced inflammation injury and ferroptosis. Notably, the ferroptosis inducer reversed the alleviation of inflammation caused by STING knockout. These results show that STING participates in the inflammation injury of ALI by regulating ferroptosis. Results also showed that p-STAT3 levels increased after STING knockout, suggesting that STING negatively regulates STAT3 activation. Besides, STAT3 inhibitor aggravated ferroptosis after STING knockout, indicating that STING regulates ferroptosis through STAT3 signaling. In conclusion, STING mediates LPS-induced ALI by regulating ferroptosis, indicating that STING and ferroptosis may be new targets for ALI treatment.


Assuntos
Lesão Pulmonar Aguda , Ferroptose , Lipopolissacarídeos , Proteínas de Membrana , Fator de Transcrição STAT3 , Animais , Humanos , Masculino , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Inflamação/metabolismo , Inflamação/patologia , Lipopolissacarídeos/farmacologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética
8.
Exp Cell Res ; 437(2): 114013, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38555014

RESUMO

Mesenchymal stem cells (MSCs) have been widely used to treat various inflammatory and immune-related diseases in preclinical and clinical settings. Intravital microscopy (IVM) is considered the gold standard for investigating pathophysiological conditions in living animals. However, the potential for real-time monitoring of MSCs in the pulmonary microenvironment remains underexplored. In this study, we first constructed a lung window and captured changes in the lung at the cellular level under both inflammatory and noninflammatory conditions with a microscope. We further investigated the dynamics and effects of MSCs under two different conditions. Meanwhile, we assessed the alterations in the adhesive capacity of vascular endothelial cells in vitro to investigate the underlying mechanisms of MSC retention in an inflammatory environment. This study emphasizes the importance of the "lung window" for live imaging of the cellular behavior of MSCs by vein injection. Moreover, our results revealed that the upregulation of vascular cell adhesion molecule 1 (VCAM1) in endothelial cells post-inflammatory injury could enhance MSC retention in the lung, further ameliorating acute lung injury. In summary, intravital microscopy imaging provides a practical method to investigate the therapeutic effects of MSCs in acute lung injury.


Assuntos
Lesão Pulmonar Aguda , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Lipopolissacarídeos/farmacologia , Células Endoteliais/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Pulmão/metabolismo , Células-Tronco Mesenquimais/metabolismo
9.
Cell Mol Life Sci ; 81(1): 120, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38456906

RESUMO

Reputable evidence from multiple studies suggests that excessive and uncontrolled inflammation plays an indispensable role in mediating, amplifying, and protracting acute lung injury (ALI). Traditionally, immunity and energy metabolism are regarded as separate functions regulated by distinct mechanisms, but recently, more and more evidence show that immunity and energy metabolism exhibit a strong interaction which has given rise to an emerging field of immunometabolism. Mammalian lungs are organs with active fatty acid metabolism, however, during ALI, inflammation and oxidative stress lead to a series metabolic reprogramming such as impaired fatty acid oxidation, increased expression of proteins involved in fatty acid uptake and transport, enhanced synthesis of fatty acids, and accumulation of lipid droplets. In addition, obesity represents a significant risk factor for ALI/ARDS. Thus, we have further elucidated the mechanisms of obesity exacerbating ALI from the perspective of fatty acid metabolism. To sum up, this paper presents a systematical review of the relationship between extensive fatty acid metabolic pathways and acute lung injury and summarizes recent advances in understanding the involvement of fatty acid metabolism-related pathways in ALI. We hold an optimistic believe that targeting fatty acid metabolism pathway is a promising lung protection strategy, but the specific regulatory mechanisms are way too complex, necessitating further extensive and in-depth investigations in future studies.


Assuntos
Lesão Pulmonar Aguda , Ácidos Graxos , Animais , Ácidos Graxos/metabolismo , Inflamação , Lipopolissacarídeos , Pulmão/metabolismo , Obesidade/metabolismo , Humanos
10.
Cell Mol Life Sci ; 81(1): 124, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466420

RESUMO

Acute lung injury (ALI) is an inflammatory disease associated with alveolar injury, subsequent macrophage activation, inflammatory cell infiltration, and cytokine production. Mesenchymal stem cells (MSCs) are beneficial for application in the treatment of inflammatory diseases due to their immunomodulatory effects. However, the mechanisms of regulatory effects by MSCs on macrophages in ALI need more in-depth study. Lung tissues were collected from mice for mouse lung organoid construction. Alveolar macrophages (AMs) derived from bronchoalveolar lavage and interstitial macrophages (IMs) derived from lung tissue were co-cultured, with novel matrigel-spreading lung organoids to construct an in vitro model of lung organoids-immune cells. Mouse compact bone-derived MSCs were co-cultured with organoids-macrophages to confirm their therapeutic effect on acute lung injury. Changes in transcriptome expression profile were analyzed by RNA sequencing. Well-established lung organoids expressed various lung cell type-specific markers. Lung organoids grown on spreading matrigel had the property of functional cells growing outside the lumen. Lipopolysaccharide (LPS)-induced injury promoted macrophage chemotaxis toward lung organoids and enhanced the expression of inflammation-associated genes in inflammation-injured lung organoids-macrophages compared with controls. Treatment with MSCs inhibited the injury progress and reduced the levels of inflammatory components. Furthermore, through the nuclear factor-κB pathway, MSC treatment inhibited inflammatory and phenotypic transformation of AMs and modulated the antigen-presenting function of IMs, thereby affecting the inflammatory phenotype of lung organoids. Lung organoids grown by spreading matrigel facilitate the reception of external stimuli and the construction of in vitro models containing immune cells, which is a potential novel model for disease research. MSCs exert protective effects against lung injury by regulating different functions of AMs and IMs in the lung, indicating a potential mechanism for therapeutic intervention.


Assuntos
Lesão Pulmonar Aguda , Células-Tronco Mesenquimais , Pneumonia , Camundongos , Animais , Macrófagos Alveolares/metabolismo , Lipopolissacarídeos/farmacologia , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/terapia , Pulmão/metabolismo , Macrófagos/metabolismo , Modelos Animais de Doenças , Inflamação/terapia , Inflamação/metabolismo , Organoides/metabolismo
11.
Cell Mol Life Sci ; 81(1): 240, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806818

RESUMO

The pulmonary endothelium is a dynamic and metabolically active monolayer of endothelial cells. Dysfunction of the pulmonary endothelial barrier plays a crucial role in the acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), frequently observed in the context of viral pneumonia. Dysregulation of tight junction proteins can lead to the disruption of the endothelial barrier and subsequent leakage. Here, the highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) served as an ideal model for studying ALI and ARDS. The alveolar lavage fluid of pigs infected with HP-PRRSV, and the supernatant of HP-PRRSV infected pulmonary alveolar macrophages were respectively collected to treat the pulmonary microvascular endothelial cells (PMVECs) in Transwell culture system to explore the mechanism of pulmonary microvascular endothelial barrier leakage caused by viral infection. Cytokine screening, addition and blocking experiments revealed that proinflammatory cytokines IL-1ß and TNF-α, secreted by HP-PRRSV-infected macrophages, disrupt the pulmonary microvascular endothelial barrier by downregulating claudin-8 and upregulating claudin-4 synergistically. Additionally, three transcription factors interleukin enhancer binding factor 2 (ILF2), general transcription factor III C subunit 2 (GTF3C2), and thyroid hormone receptor-associated protein 3 (THRAP3), were identified to accumulate in the nucleus of PMVECs, regulating the transcription of claudin-8 and claudin-4. Meanwhile, the upregulation of ssc-miR-185 was found to suppress claudin-8 expression via post-transcriptional inhibition. This study not only reveals the molecular mechanisms by which HP-PRRSV infection causes endothelial barrier leakage in acute lung injury, but also provides novel insights into the function and regulation of tight junctions in vascular homeostasis.


Assuntos
Claudinas , Células Endoteliais , Pulmão , Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , Suínos , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Pulmão/metabolismo , Pulmão/virologia , Pulmão/patologia , Pulmão/irrigação sanguínea , Células Endoteliais/metabolismo , Células Endoteliais/virologia , Claudinas/metabolismo , Claudinas/genética , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Síndrome Respiratória e Reprodutiva Suína/virologia , Síndrome Respiratória e Reprodutiva Suína/patologia , Claudina-4/metabolismo , Claudina-4/genética , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/virologia , Endotélio Vascular/metabolismo , Endotélio Vascular/virologia , Endotélio Vascular/patologia , Células Cultivadas , Permeabilidade Capilar , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/virologia , Lesão Pulmonar Aguda/patologia , Citocinas/metabolismo
12.
Cell Mol Life Sci ; 81(1): 133, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38472560

RESUMO

Acute lung injury (ALI) is a common clinical syndrome, which often results in pulmonary edema and respiratory distress. It has been recently reported that phosphatidylethanolamine binding protein 4 (PEBP4), a basic cytoplasmic protein, has anti-inflammatory and hepatoprotective effects, but its relationship with ALI remains undefined so far. In this study, we generated PEBP4 knockout (KO) mice to investigate the potential function of PEBP4, as well as to evaluate the capacity of alveolar fluid clearance (AFC) and the activity of phosphatidylinositide 3-kinases (PI3K)/serine-theronine protein kinase B (PKB, also known as AKT) signaling pathway in lipopolysaccharide (LPS)-induced ALI mice models. We found that PEBP4 deficiency exacerbated lung pathological damage and edema, and increased the wet/dry weight ratio and total protein concentration of bronchoalveolar lavage fluid (BALF) in LPS-treated mice. Meanwhile, PEBP4 KO promoted an LPS-induced rise in the pulmonary myeloperoxidase (MPO) activity, serum interleuin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α levels, and pulmonary cyclooxygenase-2 (COX-2) expression. Mechanically, PEBP4 deletion further reduced the protein expression of Na+ transport markers, including epithelial sodium channel (ENaC)-α, ENaC-γ, Na,K-ATPase α1, and Na,K-ATPase ß1, and strengthened the inhibition of PI3K/AKT signaling in LPS-challenged mice. Furthermore, we demonstrated that selective activation of PI3K/AKT with 740YP or SC79 partially reversed all of the above effects caused by PEBP4 KO in LPS-treated mice. Altogether, our results indicated the PEBP4 deletion has a deterioration effect on LPS-induced ALI by impairing the capacity of AFC, which may be achieved through modulating the PI3K/AKT pathway.


Assuntos
Lesão Pulmonar Aguda , Lipopolissacarídeos , Animais , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Lipopolissacarídeos/farmacologia , Pulmão/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , ATPase Trocadora de Sódio-Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/farmacologia , ATPase Trocadora de Sódio-Potássio/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo
13.
Am J Respir Crit Care Med ; 209(1): 37-47, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37487152

RESUMO

Background: Since publication of the 2012 Berlin definition of acute respiratory distress syndrome (ARDS), several developments have supported the need for an expansion of the definition, including the use of high-flow nasal oxygen, the expansion of the use of pulse oximetry in place of arterial blood gases, the use of ultrasound for chest imaging, and the need for applicability in resource-limited settings. Methods: A consensus conference of 32 critical care ARDS experts was convened, had six virtual meetings (June 2021 to March 2022), and subsequently obtained input from members of several critical care societies. The goal was to develop a definition that would 1) identify patients with the currently accepted conceptual framework for ARDS, 2) facilitate rapid ARDS diagnosis for clinical care and research, 3) be applicable in resource-limited settings, 4) be useful for testing specific therapies, and 5) be practical for communication to patients and caregivers. Results: The committee made four main recommendations: 1) include high-flow nasal oxygen with a minimum flow rate of ⩾30 L/min; 2) use PaO2:FiO2 ⩽ 300 mm Hg or oxygen saturation as measured by pulse oximetry SpO2:FiO2 ⩽ 315 (if oxygen saturation as measured by pulse oximetry is ⩽97%) to identify hypoxemia; 3) retain bilateral opacities for imaging criteria but add ultrasound as an imaging modality, especially in resource-limited areas; and 4) in resource-limited settings, do not require positive end-expiratory pressure, oxygen flow rate, or specific respiratory support devices. Conclusions: We propose a new global definition of ARDS that builds on the Berlin definition. The recommendations also identify areas for future research, including the need for prospective assessments of the feasibility, reliability, and prognostic validity of the proposed global definition.


Assuntos
Síndrome do Desconforto Respiratório , Humanos , Estudos Prospectivos , Reprodutibilidade dos Testes , Síndrome do Desconforto Respiratório/diagnóstico , Síndrome do Desconforto Respiratório/terapia , Oximetria , Oxigênio
14.
Am J Respir Crit Care Med ; 209(7): 829-839, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38099833

RESUMO

Rationale: Pneumonia is a frequent and feared complication in intubated critically ill patients. Tissue concentrations of antimicrobial drugs need to be sufficiently high to treat the infection and also prevent development of bacterial resistance. It is uncertain whether pulmonary inflammation and injury affect antimicrobial drug penetration into lung tissue.Objectives: To determine and compare tissue and BAL fluid concentrations of ceftaroline fosamil and linezolid in a model of unilateral acute lung injury in pigs and to evaluate whether dose adjustment is necessary to reach sufficient antimicrobial concentrations in injured lung tissue.Methods: After induction of unilateral acute lung injury, ceftaroline fosamil and linezolid were administered intravenously. Drug concentrations were measured in lung tissue through microdialysis and in blood and BAL fluid samples during the following 8 hours. The primary endpoint was the tissue concentration area under the concentration curve in the first 8 hours (AUC0-8 h) of the two antimicrobial drugs.Measurements and Main Results: In 10 pigs, antimicrobial drug concentrations were higher in inflamed and injured lung tissue compared with those in uninflamed and uninjured lung tissue (median ceftaroline fosamil AUC0-8 h [and interquartile range] = 26.7 mg ⋅ h ⋅ L-1 [19.7-39.0] vs. 16.0 mg ⋅ h ⋅ L-1 [13.6-19.9], P = 0.02; median linezolid AUC0-8 h 76.0 mg ⋅ h ⋅ L-1 [68.1-96.0] vs. 54.6 mg ⋅ h ⋅ L-1 [42.7-60.9], P = 0.01), resulting in a longer time above the minimal inhibitory concentration and in higher peak concentrations and dialysate/plasma ratios. Penetration into BAL fluid was excellent for both antimicrobials, but without left-to-right differences (ceftaroline fosamil, P = 0.78; linezolid, P = 1.00).Conclusions: Tissue penetration of two commonly used antimicrobial drugs for pneumonia is enhanced by early lung tissue inflammation and injury, resulting in longer times above the minimal inhibitory concentration. Thus, lung tissue inflammation ameliorates antimicrobial drug penetration during the acute phase.


Assuntos
Lesão Pulmonar Aguda , Anti-Infecciosos , Pneumonia , Humanos , Animais , Suínos , Linezolida/uso terapêutico , Antibacterianos/efeitos adversos , Anti-Infecciosos/uso terapêutico , Ceftarolina , Pneumonia/tratamento farmacológico , Pneumonia/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/induzido quimicamente , Pulmão , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/induzido quimicamente
15.
Am J Respir Crit Care Med ; 209(1): 70-82, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37878820

RESUMO

Rationale: Acute lung injury (ALI) carries a high risk of mortality but has no established pharmacologic therapy. We previously found that experimental ALI occurs through natural killer (NK) cell NKG2D receptor activation and that the cognate human ligand, MICB, was associated with ALI after transplantation. Objectives: To investigate the association of a common missense variant, MICBG406A, with ALI. Methods: We assessed MICBG406A genotypes within two multicenter observational study cohorts at risk for ALI: primary graft dysfunction (N = 619) and acute respiratory distress syndrome (N = 1,376). Variant protein functional effects were determined in cultured and ex vivo human samples. Measurements and Main Results: Recipients of MICBG406A-homozygous allografts had an 11.1% absolute risk reduction (95% confidence interval [CI], 3.2-19.4%) for severe primary graft dysfunction after lung transplantation and reduced risk for allograft failure (hazard ratio, 0.36; 95% CI, 0.13-0.98). In participants with sepsis, we observed 39% reduced odds of moderately or severely impaired oxygenation among MICBG406A-homozygous individuals (95% CI, 0.43-0.86). BAL NK cells were less frequent and less mature in participants with MICBG406A. Expression of missense variant protein MICBD136N in cultured cells resulted in reduced surface MICB and reduced NKG2D ligation relative to wild-type MICB. Coculture of variant MICBD136N cells with NK cells resulted in less NKG2D activation and less susceptibility to NK cell killing relative to the wild-type cells. Conclusions: These data support a role for MICB signaling through the NKG2D receptor in mediating ALI, suggesting a novel therapeutic approach.


Assuntos
Lesão Pulmonar Aguda , Disfunção Primária do Enxerto , Humanos , Lesão Pulmonar Aguda/genética , Genômica , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo
16.
Genomics ; 116(1): 110755, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38061481

RESUMO

Acute lung injury (ALI) is a serious illness that develops suddenly, progresses rapidly, has a poor treatment response and a high mortality rate. Studies have found that circular RNAs (circRNA) play a critical role in several diseases, but their role in ALI remains unclear. The aim of this study was to identify circRNAs that are associated with ALI and investigate their potential molecular mechanisms. A comparison of lung circRNA and microRNA expression profiles in mice with ALI and controls was performed by RNA-sequencing. A bioinformatic analysis was conducted to identify differentially expressed (DE) RNAs, to construct competitive endogenous RNA (ceRNA) networks, and to analyze their function and pathways. Then, a protein-protein interaction (PPI) network was generated by the Search Tool for the Retrieval of Interacting Genes database, and hub genes were identified using Cytoscape. Furthermore, a key ceRNA subnetwork was constructed based on these hub genes. Overall, we found 239 DE circRNAs and 42 DE microRNAs in ALI mice compared to controls. Additionally, the molecular mechanism of ALI was further understood by building ceRNA networks based on these DE genes. ALI-induced circRNAs are mostly function in the inflammatory response and metabolic processes. Moreover, DE circRNAs are primarily involved in the nuclear factor (NF)-kappa B and PI3K-Akt signaling pathways. Seven hub genes were derived from the PPI network of 191 genes, followed by the construction of circRNA-miRNA-hub gene subnetworks. In this study, circRNA profiles are remarkably changed in mice with LPS-triggered ALI, and their potential contribution to the disease is revealed.


Assuntos
Lesão Pulmonar Aguda , MicroRNAs , Camundongos , Animais , RNA Circular/genética , Lipopolissacarídeos/toxicidade , RNA-Seq , RNA Mensageiro/metabolismo , Fosfatidilinositol 3-Quinases/genética , Perfilação da Expressão Gênica , MicroRNAs/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Redes Reguladoras de Genes
17.
Nano Lett ; 24(20): 6102-6111, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38739578

RESUMO

Acute lung injury (ALI) is a severe inflammatory lung disease, with high mortality rates. Early intervention by reactive oxygen species (ROS) scavengers could reduce ROS accumulation, break the inflammation expansion chain in alveolar macrophages (AMs), and avoid irreversible damage to alveolar epithelial and endothelial cells. Here, we reported cell-penetrating R9 peptide-modified triangular DNA origami nanostructures (tDONs-R9) as a novel nebulizable drug that could reach the deep alveolar regions and exhibit an enhanced uptake preference of macrophages. tDONs-R9 suppressed the expression of pro-inflammatory cytokines and drove polarization toward the anti-inflammatory M2 phenotype in macrophages. In the LPS-induced ALI mouse model, treatment with nebulized tDONs-R9 alleviated the overwhelming ROS, pro-inflammatory cytokines, and neutrophil infiltration in the lungs. Our study demonstrates that tDONs-R9 has the potential for ALI treatment, and the programmable DNA origami nanostructures provide a new drug delivery platform for pulmonary disease treatment with high delivery efficiency and biosecurity.


Assuntos
Lesão Pulmonar Aguda , DNA , Nanoestruturas , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/induzido quimicamente , Animais , Camundongos , DNA/química , Administração por Inalação , Nanoestruturas/química , Espécies Reativas de Oxigênio/metabolismo , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Citocinas/metabolismo , Peptídeos/química , Nebulizadores e Vaporizadores , Peptídeos Penetradores de Células/química , Modelos Animais de Doenças , Lipopolissacarídeos , Sistemas de Liberação de Medicamentos , Células RAW 264.7
18.
Nano Lett ; 24(7): 2131-2141, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38227823

RESUMO

Ischemia/reperfusion (IR)-induced acute lung injury (ALI) has a high mortality rate. Reactive oxygen species (ROS) play a crucial role in causing cellular damage and death in IR-induced ALI. In this work, we developed a biomimetic lung-targeting nanoparticle (PC@MB) as an antioxidative lung protector for treating IR-induced ALI. PC@MBs showed excellent ROS scavenging and Nrf2 activation properties, along with a lung-targeting function through autologous cell membrane coating. The PC@MBs exhibited an impressive antioxidative and pulmonary protective role via redox homeostasis recovery through Nrf2 and heme oxygenase-1 activation. PC@MBs could maintain cell viability by effectively scavenging the intracellular ROS and restoring the redox equilibrium in the lesion. In the IR mouse model, the PC@MBs preferentially accumulated in the lung and distinctly repaired the pneumonic damage. Our strategy has the potential to offer a promising therapeutic paradigm for treating IR-induced ALI through the incorporation of different therapeutic mechanisms.


Assuntos
Lesão Pulmonar Aguda , Traumatismo por Reperfusão , Camundongos , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/farmacologia , Fator 2 Relacionado a NF-E2/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Biomimética , Lesão Pulmonar Aguda/tratamento farmacológico , Pulmão/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Isquemia , Reperfusão/efeitos adversos , Estresse Oxidativo
19.
J Infect Dis ; 229(2): 522-534, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-37647879

RESUMO

BACKGROUND: Patients with sepsis resulting in acute lung injury (ALI) usually have increased mortality. Ferroptosis is a vital regulator in sepsis-induced ALI. Exploring the association of ferroptosis and sepsis-induced ALI is crucial for the management of sepsis-induced ALI. METHODS: Whole blood was collected from sepsis patients. Mice were treated with cecal ligation and puncture (CLP) to model sepsis. Primary murine pulmonary microvascular endothelial cells were treated with lipopolysaccharide as a cell model. Ferroptosis was evaluated by analyzing levels of iron, malonaldehyde, glutathione, nonheme iron, ferroportin, ferritin, and GPX4. Hematoxylin and eosin and Masson's trichrome staining were applied to examine lung injury and collagen deposition. Cell apoptosis was analyzed by caspase-3 activity and TUNEL assays. Gene regulatory relationship was verified using RNA pull-down and immunoprecipitation assays. RESULTS: CircEXOC5 was highly expressed in sepsis patients and CLP-treated mice, in which knockdown alleviated CLP-induced pulmonary inflammation and injury, and ferroptosis. CircEXOC5 recruited IGF2BP2 to degrade ATF3 mRNA. The demethylase ALKBH5 was responsible for circEXOC5 upregulation through demethylation. CircEXOC5 silencing significantly improved sepsis-induced ALI and survival rate of mice by downregulating ATF3. CONCLUSIONS: ALKBH5-mediated upregulation of circEXOC5 exacerbates sepsis-induced ALI by facilitating ferroptosis through IGF2BP2 recruitment to degrade ATF3 mRNA.


Assuntos
Lesão Pulmonar Aguda , Ferroptose , Sepse , Humanos , Camundongos , Animais , Células Endoteliais/metabolismo , Lesão Pulmonar Aguda/etiologia , Pulmão/metabolismo , Sepse/metabolismo , Ferro/metabolismo , RNA Mensageiro/metabolismo , Lipopolissacarídeos , Proteínas de Ligação a RNA/metabolismo , Fator 3 Ativador da Transcrição/metabolismo
20.
Am J Respir Cell Mol Biol ; 71(1): 110-120, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38574279

RESUMO

Immune activation is essential for lung control of viral and bacterial infection, but an overwhelming inflammatory response often leads to the onset of acute respiratory distress syndrome. IL-10 plays a crucial role in regulating the balance between antimicrobial immunity and immunopathology. In the present study, we investigated the role of IL-10 in acute lung injury induced by influenza A virus and methicillin-resistant Staphylococcus aureus coinfection. This unique coinfection model resembles patients with acute pneumonia undergoing appropriate antibiotic therapies. Using global IL-10 and IL-10 receptor gene-deficient mice, as well as in vivo neutralizing antibodies, we show that IL-10 deficiency promotes IFN-γ-dominant cytokine responses and triggers acute animal death. Interestingly, this extreme susceptibility is fully preventable by IFN-γ neutralization during coinfection. Further studies using mice with Il10ra deletion in selective myeloid subsets reveal that IL-10 primarily acts on mononuclear phagocytes to prevent IFN-γ/TNF-α hyperproduction and acute mortality. Importantly, this antiinflammatory IL-10 signaling is independent of its inhibitory effect on antiviral and antibacterial defense. Collectively, our results demonstrate a key mechanism of IL-10 in preventing hypercytokinemia and acute respiratory distress syndrome pathogenesis by counteracting the IFN-γ response.


Assuntos
Lesão Pulmonar Aguda , Modelos Animais de Doenças , Interferon gama , Interleucina-10 , Superinfecção , Animais , Interleucina-10/metabolismo , Interleucina-10/imunologia , Lesão Pulmonar Aguda/virologia , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/microbiologia , Interferon gama/metabolismo , Superinfecção/imunologia , Superinfecção/virologia , Camundongos , Camundongos Endogâmicos C57BL , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Coinfecção/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/complicações , Infecções por Orthomyxoviridae/virologia , Infecções Estafilocócicas/imunologia , Camundongos Knockout , Vírus da Influenza A/imunologia , Pulmão/virologia , Pulmão/patologia , Pulmão/imunologia , Pulmão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA