Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.779
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Eur J Immunol ; : e2451053, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39072707

RESUMO

Cigarette smoke (CS) is a major risk factor for chronic lung diseases and promotes activation of pattern recognition receptors in the bronchial epithelium. NOD-like receptor family, pyrin domain-containing 3 (NLRP3) is a pattern recognition receptor whose activation leads to caspase-1 cleavage, maturation/release of IL-1ß and IL-18, and eventually pyroptosis. Whether the NLRP3 inflammasome participates in CS-induced inflammation in bronchial epithelial cells is still unclear. Herein, we evaluated the involvement of NLRP3 in CS-induced inflammatory responses in human primary bronchial epithelial cells. To this purpose, human primary bronchial epithelial cells were stimulated with CS extracts (CSE) and lytic cell death, caspase activation (-1, -8, -3/7), cytokine release (IL-1ß, IL-18, and IL-8), NLRP3, pro-IL-1ß/pro-IL-18 mRNA, and protein expression were measured. The impact of inhibitors of NLRP3 (MCC950), caspases, and the effect of the antioxidant N-acetyl cysteine were evaluated. We found that CSE increased pro-IL-1ß expression and induced activation of caspase-1 and release of IL-1ß and IL-18. These events were independent of NLRP3 and we found that NLRP3 was not expressed. N-acetyl cysteine reverted CSE-induced caspase-1 activation. Overall, our findings support that the bronchial epithelium may play a central role in the release of IL-1 family cytokines independently of NLRP3 in the lungs of smokers.

2.
Am J Respir Crit Care Med ; 209(2): 153-163, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37931077

RESUMO

Rationale: Multiciliated cell (MCC) loss and/or dysfunction is common in the small airways of patients with chronic obstructive pulmonary disease (COPD), but it is unclear if this contributes to COPD lung pathology. Objectives: To determine if loss of p73 causes a COPD-like phenotype in mice and explore whether smoking or COPD impact p73 expression. Methods: p73floxE7-E9 mice were crossed with Shh-Cre mice to generate mice lacking MCCs in the airway epithelium. The resulting p73Δairway mice were analyzed using electron microscopy, flow cytometry, morphometry, forced oscillation technique, and single-cell RNA sequencing. Furthermore, the effects of cigarette smoke on p73 transcript and protein expression were examined using in vitro and in vivo models and in studies including airway epithelium from smokers and patients with COPD. Measurements and Main Results: Loss of functional p73 in the respiratory epithelium resulted in a near-complete absence of MCCs in p73Δairway mice. In adulthood, these mice spontaneously developed neutrophilic inflammation and emphysema-like lung remodeling and had progressive loss of secretory cells. Exposure of normal airway epithelium cells to cigarette smoke rapidly and durably suppressed p73 expression in vitro and in vivo. Furthermore, tumor protein 73 mRNA expression was reduced in the airways of current smokers (n = 82) compared with former smokers (n = 69), and p73-expressing MCCs were reduced in the small airways of patients with COPD (n = 11) compared with control subjects without COPD (n = 12). Conclusions: Loss of functional p73 in murine airway epithelium results in the absence of MCCs and promotes COPD-like lung pathology. In smokers and patients with COPD, loss of p73 may contribute to MCC loss or dysfunction.


Assuntos
Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Animais , Humanos , Camundongos , Epitélio/metabolismo , Pulmão , Doença Pulmonar Obstrutiva Crônica/patologia
3.
Am J Respir Cell Mol Biol ; 70(6): 482-492, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38377392

RESUMO

Cigarette smoking is known to be the leading cause of chronic obstructive pulmonary disease (COPD). However, the detailed mechanisms have not been elucidated. PAF (platelet-activating factor), a potent inflammatory mediator, is involved in the pathogenesis of various respiratory diseases such as bronchial asthma and COPD. We focused on LPLAT9 (lysophospholipid acyltransferase 9), a biosynthetic enzyme of PAF, in the pathogenesis of COPD. LPLAT9 gene expression was observed in excised COPD lungs and single-cell RNA sequencing data of alveolar macrophages (AMs). LPLAT9 was predominant and upregulated in AMs, particularly monocyte-derived AMs, in patients with COPD. To identify the function of LPLAT9/PAF in AMs in the pathogenesis of COPD, we exposed systemic LPLAT9-knockout (LPALT9-/-) mice to cigarette smoke (CS). CS increased the number of AMs, especially the monocyte-derived fraction, which secreted MMP12 (matrix metalloprotease 12). Also, CS augmented LPLAT9 phosphorylation/activation on macrophages and, subsequently, PAF synthesis in the lung. The LPLAT9-/- mouse lung showed reduced PAF production after CS exposure. Intratracheal PAF administration accumulated AMs by increasing MCP1 (monocyte chemoattractant protein-1). After CS exposure, AM accumulation and subsequent pulmonary emphysema, a primary pathologic change of COPD, were reduced in LPALT9-/- mice compared with LPLAT9+/+ mice. Notably, these phenotypes were again worsened by LPLAT9+/+ bone marrow transplantation in LPALT9-/- mice. Thus, CS-induced LPLAT9 activation in monocyte-derived AMs aggravated pulmonary emphysema via PAF-induced further accumulation of AMs. These results suggest that PAF synthesized by LPLAT9 has an important role in the pathogenesis of COPD.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase , Macrófagos Alveolares , Camundongos Knockout , Fator de Ativação de Plaquetas , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Animais , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patologia , Humanos , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/patologia , Enfisema Pulmonar/genética , Fator de Ativação de Plaquetas/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferase/genética , Camundongos , Masculino , Camundongos Endogâmicos C57BL , Metaloproteinase 12 da Matriz/metabolismo , Metaloproteinase 12 da Matriz/genética , Pulmão/metabolismo , Pulmão/patologia , Fumar Cigarros/efeitos adversos , Fumar Cigarros/metabolismo , Feminino
4.
Carcinogenesis ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39046986

RESUMO

Notch-1 signaling plays a crucial role in stem cell maintenance and in repair mechanisms in various mucosal surfaces, including airway mucosa. Persistent injury can induce an aberrant activation of Notch-1 signaling in stem cells leading to an increased risk of cancer initiation and progression. Chronic inflammatory respiratory disorders, including Chronic Obstructive Pulmonary Disease (COPD) is associated to both over-activation of Notch-1 signaling and increased lung cancer risk. Increased oxidative stress, also due to cigarette smoke, can further contribute to promote cancer initiation and progression by amplifying inflammatory responses, by activating the Notch-1 signaling and by blocking regulatory mechanisms that inhibit the growth capacity of stem cells. This review offers a comprehensive overview on the effects of aberrant Notch-1 signaling activation in stem cells and of increased oxidative stress in the lung cancer. The putative role of natural compounds with anti-oxidant properties is also described.

5.
Pflugers Arch ; 476(1): 59-74, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37910205

RESUMO

The formation of foam cells, lipid-loaded macrophages, is the hallmark event of atherosclerosis. Since cigarette smoking is a risk factor for developing atherosclerosis, the current study investigated the effects of cigarette smoke extract (CSE) on different events like expressions of genes involved in lipid influx and efflux, lipophagy, etc., that play vital roles in foam cell formation. The accumulation of lipids after CSE treatment U937 macrophage cells was examined by staining lipids with specific dyes: Oil red O and BODIPY493/503. Results showed an accumulation of lipids in CSE-treated cells, confirming foam cell formation by CSE treatment. To decipher the mechanism, the levels of CD36, an ox-LDL receptor, and ABCA1, an exporter of lipids, were examined in CSE-treated and -untreated U937 cells by real-time PCR and immunofluorescence analysis. Consistent with lipid accumulation, an increased level of CD36 and a reduction in ABCA1 were observed in CSE-treated cells. Moreover, CSE treatment caused inhibition of lipophagy-mediated lipid degradation by blocking lipid droplets (LDs)-lysosome fusion and increasing the lysosomal pH. CSE also impaired mitochondrial lipid oxidation. Thus, the present study demonstrates that CSE treatment affects lipid homeostasis by altering its influx and efflux, lysosomal degradation, and mitochondrial utilization, leading to the formation of lipid-loaded foam cells. Moreover, the current study also showed that the leucine supplement caused a significant reduction of CSE-induced foam cell formation in vitro. Thus, the current study provides insight into CS-induced atherosclerosis and an agent to combat the disease.


Assuntos
Aterosclerose , Fumar Cigarros , Humanos , Células Espumosas/metabolismo , Lipoproteínas LDL/metabolismo , Lipoproteínas LDL/farmacologia , Gotículas Lipídicas/metabolismo , Células U937 , Aterosclerose/metabolismo
6.
BMC Biotechnol ; 24(1): 13, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459479

RESUMO

OBJECTIVE: Smoking was a major risk factor for chronic obstructive pulmonary disease (COPD). This study plan to explore the mechanism of Polyphyllin B in lung injury induced by cigarette smoke (CSE) in COPD. METHODS: Network pharmacology and molecular docking were applied to analyze the potential binding targets for Polyphyllin B and COPD. Commercial unfiltered CSE and LPS were used to construct BEAS-2B cell injury in vitro and COPD mouse models in vivo, respectively, which were treated with Polyphyllin B or fecal microbiota transplantation (FMT). CCK8, LDH and calcein-AM were used to detect the cell proliferation, LDH level and labile iron pool. Lung histopathology, Fe3+ deposition and mitochondrial morphology were observed by hematoxylin-eosin, Prussian blue staining and transmission electron microscope, respectively. ELISA was used to measure inflammation and oxidative stress levels in cells and lung tissues. Immunohistochemistry and immunofluorescence were applied to analyze the 4-HNE, LC3 and Ferritin expression. RT-qPCR was used to detect the expression of FcRn, pIgR, STAT3 and NCOA4. Western blot was used to detect the expression of Ferritin, p-STAT3/STAT3, NCOA4, GPX4, TLR2, TLR4 and P65 proteins. 16S rRNA gene sequencing was applied to detect the gut microbiota. RESULTS: Polyphyllin B had a good binding affinity with STAT3 protein, which as a target gene in COPD. Polyphyllin B inhibited CS-induced oxidative stress, inflammation, mitochondrial damage, and ferritinophagy in COPD mice. 16S rRNA sequencing and FMT confirmed that Akkermansia and Escherichia_Shigella might be the potential microbiota for Polyphyllin B and FMT to improve CSE and LPS-induced COPD, which were exhausted by the antibiotics in C + L and C + L + P mice. CSE and LPS induced the decrease of cell viability and the ferritin and LC3 expression, and the increase of NCOA4 and p-STAT3 expression in BEAS-2B cells, which were inhibited by Polyphyllin B. Polyphyllin B promoted ferritin and LC3II/I expression, and inhibited p-STAT3 and NCOA4 expression in CSE + LPS-induced BEAS-2B cells. CONCLUSION: Polyphyllin B improved gut microbiota disorder and inhibited STAT3/NCOA4 pathway to ameliorate lung tissue injury in CSE and LPS-induced mice.


Assuntos
Fumar Cigarros , Microbioma Gastrointestinal , Lesão Pulmonar , Doença Pulmonar Obstrutiva Crônica , Animais , Camundongos , Linhagem Celular , Fumar Cigarros/efeitos adversos , Ferritinas/metabolismo , Inflamação/patologia , Lipopolissacarídeos/efeitos adversos , Pulmão , Lesão Pulmonar/complicações , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Simulação de Acoplamento Molecular , Doença Pulmonar Obstrutiva Crônica/terapia , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , RNA Ribossômico 16S , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
7.
J Transl Med ; 22(1): 253, 2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459561

RESUMO

Tobacco pollutants are prevalent in the environment, leading to inadvertent exposure of pregnant females. Studies of these pollutants' toxic effects on embryonic development have not fully elucidated the potential underlying mechanisms. Therefore, in this study, we aimed to investigate the developmental toxicity induced by cigarette smoke extract (CSE) at concentrations of 0.25, 1, and 2.5% using a zebrafish embryo toxicity test and integrated transcriptomic analysis of microRNA (miRNA) and messenger RNA (mRNA). The findings revealed that CSE caused developmental toxicity, including increased mortality and decreased incubation rate, in a dose-dependent manner. Moreover, CSE induced malformations and apoptosis, specifically in the head and heart of zebrafish larvae. We used mRNA and miRNA sequencing analyses to compare changes in the expression of genes and miRNAs in zebrafish larvae. The bioinformatics analysis indicates that the mechanism underlying CSE-induced developmental toxicity was associated with compromised genetic material damage repair, deregulated apoptosis, and disturbed lipid metabolism. The enrichment analysis and RT-qPCR show that the ctsba gene plays a crucial function in embryo developmental apoptosis, and the fads2 gene mainly regulates lipid metabolic toxicity. The results of this study improve the understanding of CSE-induced developmental toxicity in zebrafish embryos and contribute insights into the formulation of novel preventive strategies against tobacco pollutants during early embryonic development.


Assuntos
Poluentes Ambientais , MicroRNAs , Animais , Feminino , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Embrião não Mamífero/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Poluentes Ambientais/metabolismo , Poluentes Ambientais/farmacologia
8.
Respir Res ; 25(1): 322, 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39182076

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is an inflammatory airway disease characterized by emphysema and chronic bronchitis and a leading cause of mortality worldwide. COPD is commonly associated with several comorbid diseases which contribute to exacerbated patient outcomes. Cigarette smoke (CS) is the most prominent risk factor for COPD development and progression and is known to be detrimental to numerous effector functions of lung resident immune cells, including phagocytosis and cytokine production. However, how CS mediates the various pathologies distant from the lung in COPD, and whether CS has a similar biological effect on systemic immune cells remains unknown. METHODS: C57BL/6 mice were exposed to 8 weeks of CS as an experimental model of COPD. Bone marrow cells were isolated from both CS-exposed and room air (RA) control mice and differentiated to bone marrow-derived macrophages (BMDMs). Airspace macrophages (AMs) were isolated from the same CS-exposed and RA mice and bulk RNA-Seq performed. The functional role of differentially expressed genes was assessed through gene ontology analyses. Ingenuity Pathway Analysis was used to determine the activation states of canonical pathways and upstream regulators enriched in differentially expressed genes in both cell types, and to compare the differences between the two cell types. RESULTS: CS induced transcriptomic changes in BMDMs, including an upregulation of genes in sirtuin signalling and oxidative phosphorylation pathways and a downregulation of genes involved in histone and lysine methylation. In contrast, CS induced decreased expression of genes involved in pathogen response, phagosome formation, and immune cell trafficking in AMs. Little overlap was observed in differentially expressed protein-coding genes in BMDMs compared to AMs and their associated pathways, highlighting the distinct effects of CS on immune cells in different compartments. CONCLUSIONS: CS exposure can induce transcriptomic remodelling in BMDMs which is distinct to that of AMs. Our study highlights the ability of CS exposure to affect immune cell populations distal to the lung and warrants further investigation into the functional effects of these changes and the ensuing role in driving multimorbid disease.


Assuntos
Perfilação da Expressão Gênica , Camundongos Endogâmicos C57BL , Animais , Camundongos , Perfilação da Expressão Gênica/métodos , Transcriptoma , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/patologia , Células Cultivadas , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Masculino , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/efeitos dos fármacos , Fumaça/efeitos adversos
9.
Respir Res ; 25(1): 204, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730440

RESUMO

BACKGROUND: The impact of cigarette smoke (CS) on lung diseases and the role of microbiome dysbiosis in chronic obstructive pulmonary disease (COPD) have been previously reported; however, the relationships remain unclear. METHODS: Our research examined the effects of 20-week cigarette smoke (CS) exposure on the lung and intestinal microbiomes in C57BL/6JNarl mice, alongside a comparison with COPD patients' intestinal microbiome data from a public dataset. RESULTS: The study found that CS exposure significantly decreased forced vital capacity (FVC), thickened airway walls, and induced emphysema. Increased lung damage was observed along with higher lung keratinocyte chemoattractant (KC) levels by CS exposure. Lung microbiome analysis revealed a rise in Actinobacteriota, while intestinal microbiome showed significant diversity changes, indicating dysbiosis. Principal coordinate analysis highlighted distinct intestinal microbiome compositions between control and CS-exposed groups. In the intestinal microbiome, notable decreases in Patescibacteria, Campilobacterota, Defferibacterota, Actinobacteriota, and Desulfobacterota were observed. We also identified correlations between lung function and dysbiosis in both lung and intestinal microbiomes. Lung interleukins, interferon-É£, KC, and 8-isoprostane levels were linked to lung microbiome dysbiosis. Notably, dysbiosis patterns in CS-exposed mice were similar to those in COPD patients, particularly of Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage 4 patients. This suggests a systemic impact of CS exposure. CONCLUSION: In summary, CS exposure induces significant dysbiosis in lung and intestinal microbiomes, correlating with lung function decline and injury. These results align with changes in COPD patients, underscoring the important role of microbiome in smoke-related lung diseases.


Assuntos
Disbiose , Microbioma Gastrointestinal , Pulmão , Camundongos Endogâmicos C57BL , Doença Pulmonar Obstrutiva Crônica , Animais , Doença Pulmonar Obstrutiva Crônica/microbiologia , Microbioma Gastrointestinal/fisiologia , Camundongos , Humanos , Masculino , Pulmão/microbiologia , Feminino , Pessoa de Meia-Idade , Idoso , Fumaça/efeitos adversos
10.
Respir Res ; 25(1): 66, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317159

RESUMO

BACKGROUND: Small airway remodelling is a vital characteristic of chronic obstructive pulmonary disease (COPD), which is mainly caused by epithelial barrier dysfunction and epithelial-mesenchymal transition (EMT). Recent studies have indicated that histone deacetylase 6 (HDAC6) plays an important role in the dysregulation of epithelial function. In this study, we investigated the therapeutic effects and underlying mechanisms of an inhibitor with high selectivity for HDAC6 in COPD. METHODS: Cigarette smoke (CS) exposure was used to establish a CS-induced COPD mouse model. CAY10603 at doses of 2.5 and 10 mg/kg was injected intraperitoneally on alternate days. The protective effects of CAY10603 against CS-induced emphysema, epithelial barrier function and small airway remodeling were evaluated using hematoxylin and eosin (H&E) staining, Masson's trichrome staining, immunohistochemical staining, and western blot. The human lung bronchial epithelial cell line (HBE) was used to elucidate the underlying molecular mechanism of action of CAY10603. RESULTS: HDAC6 levels in the lung homogenates of CS-exposed mice were higher than that those in control mice. Compared to the CS group, the mean linear intercept (MLI) of the CAY10603 treatment group decreased and the mean alveolar number (MAN)increased. Collagen deposition was reduced in groups treated with CAY10603. The expression of α-SMA was markedly upregulated in the CS group, which was reversed by CAY10603 treatment. Conversely, E-cadherin expression in the CS group was further downregulated, which was reversed by CAY10603 treatment. CAY10603 affects the tight junction protein expression of ZO-1 and occludin. ZO-1 and occludin expression were markedly downregulated in the CS group. After CAY10603treatment, the protein expression level of ZO-1 and occludin increased significantly. In HBE cells, Cigarette smoke extract (CSE) increased HDAC6 levels. CAY10603 significantly attenuated the release of TGF-ß1 induced by CSE. CAY10603 significantly increased the E-cadherin levels in TGF-ß1 treated HBE cells, while concurrently attenuated α-SMA expression. This effect was achieved through the suppression of Smad2 and Smad3 phosphorylation. CAY10603 also inhibited TGF-ß1 induced cell migration. CONCLUSIONS: These findings suggested that CAY10603 inhibited CS induced small airway remodelling by regulating epithelial barrier dysfunction and reversing EMT via the TGF-ß1/Smad2/3 signalling pathway.


Assuntos
Carbamatos , Fumar Cigarros , Oxazóis , Doença Pulmonar Obstrutiva Crônica , Animais , Humanos , Camundongos , Remodelação das Vias Aéreas , Caderinas/metabolismo , Fumar Cigarros/efeitos adversos , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Desacetilase 6 de Histona/metabolismo , Ocludina , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/metabolismo , Produtos do Tabaco , Fator de Crescimento Transformador beta1/metabolismo
11.
Respir Res ; 25(1): 93, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378600

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a common respiratory disease and represents the third leading cause of death worldwide. This study aimed to investigate miRNA regulation of Receptor for Advanced Glycation End-products (RAGE), a causal receptor in the pathogenesis of cigarette smoke (CS)-related COPD, to guide development of therapeutic strategies. METHODS: RAGE expression was quantified in lung tissue of COPD patients and healthy controls, and in mice with CS-induced COPD. RNA-sequencing of peripheral blood from COPD patients with binding site prediction was used to screen differentially expressed miRNAs that may interact with RAGE. Investigation of miR-23a-5p as a potential regulator of COPD progression was conducted with miR-23a-5p agomir in COPD mice in vivo using histology and SCIREQ functional assays, while miR-23a-5p mimics or RAGE inhibitor were applied in 16-HBE human bronchial epithelial cells in vitro. RNA-sequencing, ELISA, and standard molecular techniques were used to characterize downstream signaling pathways in COPD mice and 16-HBE cells treated with cigarette smoke extract (CSE). RESULTS: RAGE expression is significantly increased in lung tissue of COPD patients, COPD model mice, and CSE-treated 16-HBE cells, while inhibiting RAGE expression significantly reduces COPD severity in mice. RNA-seq analysis of peripheral blood from COPD patients identified miR-23a-5p as the most significant candidate miRNA interaction partner of RAGE, and miR-23a-5p is significantly downregulated in mice and cells treated with CS or CSE, respectively. Injection of miR-23a-5p agomir leads to significantly reduced airway inflammation and alleviation of symptoms in COPD mice, while overexpressing miR-23a-5p leads to improved lung function. RNA-seq with validation confirmed that reactive oxygen species (ROS) signaling is increased under CSE-induced aberrant upregulation of RAGE, and suppressed in CSE-stimulated cells treated with miR-23a-5p mimics or overexpression. ERK phosphorylation and subsequent cytokine production was also increased under RAGE activation, but inhibited by increasing miR-23a-5p levels, implying that the miR-23a-5p/RAGE/ROS axis mediates COPD pathogenesis via ERK activation. CONCLUSIONS: This study identifies a miR-23a-5p/RAGE/ROS signaling axis required for pathogenesis of COPD. MiR-23a-5p functions as a negative regulator of RAGE and downstream activation of ROS signaling, and can inhibit COPD progression in vitro and in vivo, suggesting therapeutic targets to improve COPD treatment.


Assuntos
MicroRNAs , Doença Pulmonar Obstrutiva Crônica , Animais , Humanos , Camundongos , Pulmão/metabolismo , MicroRNAs/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptor para Produtos Finais de Glicação Avançada/genética , Receptor para Produtos Finais de Glicação Avançada/metabolismo
12.
Prostaglandins Other Lipid Mediat ; 172: 106833, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38460760

RESUMO

Smoking causes several diseases such as chronic obstructive pulmonary disease (COPD). Aspirin-triggered-resolvin D1 (AT-RvD1) is a lipid mediator produced during the resolution of inflammation and demonstrates anti-inflammatory and pro-resolution effects in several inflammatory experimental models including in the airways. Here we evaluated the role of AT-RvD1 (100 nM) in bronchial epithelial cells (BEAS-2B) stimulated by cigarette smoke extract (CSE; 1%; 1 cigarette) for 24 h. CSE induced the productions of IL-1ß, TNF-α, IL-10, IL-4 and IFN-γ as well as the activations of NF-κB and STAT3 and the expression of ALX/FPR2 receptor. AT-RvD1 reduced the IL-1ß and TNF-α production and increased the production of IFN-γ. These effects were reversed BOC2, an antagonist of ALX/FPR2 receptor for AT-RvD1. The production of IL-4 and IL-10 were not altered by AT-RvD1. In addition, AT-RvD1 reduced the phosphorylation of NF-κB and STAT3 when compared to CSE-stimulated BEAS-2B cells. No alteration of ALX/FPR2 expression was observed by AT-RvD1 when compared to CSE group. In the human monocytic leukemia cell line, the relative number of copies of IL-1ß and IL-4 was significantly higher in CSE + AT-RvD1 group compared CSE group, however, the expression of M1 cytokine was more pronounced than M2 profile. AT-RvD1 could be an important target for the reduction of inflammation in the airways associated with smoking.


Assuntos
Anti-Inflamatórios , Aspirina , Brônquios , Ácidos Docosa-Hexaenoicos , Células Epiteliais , Humanos , Ácidos Docosa-Hexaenoicos/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Brônquios/efeitos dos fármacos , Brônquios/citologia , Brônquios/metabolismo , Aspirina/farmacologia , Anti-Inflamatórios/farmacologia , NF-kappa B/metabolismo , Fator de Transcrição STAT3/metabolismo , Linhagem Celular , Fumaça/efeitos adversos , Citocinas/metabolismo , Nicotiana , Receptores de Lipoxinas/metabolismo
13.
J Pharmacol Sci ; 154(2): 86-96, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38246732

RESUMO

Heated tobacco products (HTPs) are marketed worldwide as less harmful alternatives to combustible cigarettes; however, their cytotoxic mechanisms in vascular smooth muscle cells are poorly understood. Ferroptosis is defined as iron-dependent cell death caused by the accumulation of lipid peroxidation products. In this study, the cytotoxic effects of nicotine- and tar-free cigarette smoke extracts (CSE) derived from three types of HTPs and the ferroptosis inducer, erastin, on vascular smooth muscle A7r5 cells were compared. Cigarette smoke from all HTPs was generated according to the following puffing regime: 55 mL, puff volume; 30 s, puff interval; 2 s, puff duration; bell-shaped, puff profile; and no blocking of the ventilation holes. Erastin and CSE decreased mitochondrial metabolic activity and increased lactate dehydrogenase leakage. The cytotoxic effects of erastin were almost completely inhibited by the radical-trapping antioxidant, UAMC-3203; iron chelator, deferoxamine mesylate (DFO); 12/15-lipoxygenase (12/15-LOX) inhibitor, baicalein; and selective 15-LOX inhibitor, ML351. In contrast, CSE-induced cell damage was partially attenuated by UAMC-3203, baicalein, and ML351 but not by DFO. These results suggest that erastin induces ferroptosis via 15-LOX-mediated iron-dependent lipid peroxidation, whereas CSE causes iron-independent cell damage via 15-LOX-mediated lipid peroxidation-dependent and -independent mechanisms.


Assuntos
Antineoplásicos , Fumar Cigarros , Ferroptose , Piperazinas , Produtos do Tabaco , Músculo Liso Vascular , Ferro
14.
J Pharmacol Sci ; 154(2): 127-135, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38246726

RESUMO

Smoking is one of the most serious risk factors for cardiovascular diseases. Although cigarette mainstream and sidestream smoke are significant contributors to increased cardiovascular mortality and morbidity, the underlying mechanism is still unclear. Here, we report that exposure of rat neonatal cardiomyocytes to cigarette smoke extract (CSE) induces mitochondrial hyperfission-mediated myocardial senescence. CSE leads to mitochondrial fission and reactive oxygen species (ROS) production through the complex formation between mitochondrial fission factor Drp1 and actin-binding protein, filamin A. Pharmacological perturbation of interaction between Drp1 and filamin A by cilnidipine and gene knockdown of Drp1 or filamin A inhibited CSE-induced mitochondrial hyperfission and ROS production as well as myocardial senescence. We previously reported that Drp1 activity is controlled by supersulfide-induced Cys644 polysulfidation. The redox-sensitive Cys644 was critical for CSE-mediated interaction with filamin A. The administration of supersulfide donor, Na2S3 also improved mitochondrial hyperfission-mediated myocardial senescence induced by CSE. Our results suggest the important role of Drp1-filamin A complex formation on cigarette smoke-mediated cardiac risk and the contribution of supersulfide to mitochondrial fission-associated myocardial senescence.


Assuntos
Fumar Cigarros , Miócitos Cardíacos , Animais , Ratos , Filaminas , Mitocôndrias , Espécies Reativas de Oxigênio
15.
Anal Bioanal Chem ; 416(6): 1349-1361, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38217698

RESUMO

Smoking-related diseases remain a significant public health concern, and heated tobacco products (HTPs) have emerged as a potential alternative to cigarettes. While several studies have confirmed that HTP aerosols contain lower levels of harmful and potentially harmful constituents (HPHCs) than cigarette smoke, less is known about constituents that are intrinsically higher in HTP aerosols. This study provides a comprehensive comparative assessment of an HTP aerosol produced with Tobacco Heating System 2.2 (THS) and comparator cigarette (CC) smoke aiming at identifying all unique or increased compounds in THS aerosol by applying a broad set of LC-MS and GC × GC-MS methods. To focus on differences due to heating versus burning tobacco, confounding factors were minimized by using the same tobacco in both test items and not adding flavorants. Of all analytical features, only 3.5%-corresponding to 31 distinctive compounds-were significantly more abundant in THS aerosol than in CC smoke. A notable subset of these compounds was identified as reaction products of glycerol. The only compound unique to THS aerosol was traced back to its presence in a non-tobacco material in the test item and not a direct product of heating tobacco. Our results demonstrate that heating a glycerol-containing tobacco substrate to the temperatures applied in THS does not introduce new compounds in the resulting aerosol compared to CC smoke which are detectable with the method portfolio applied in this study. Overall, this study contributes to a better understanding of the chemical composition of HTP aerosols and their potential impact on human health.


Assuntos
Fumar Cigarros , Produtos do Tabaco , Humanos , Calefação , Glicerol , Aerossóis/química
16.
Arch Toxicol ; 98(5): 1297-1310, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38498160

RESUMO

Lung injury has been a serious medical problem that requires new therapeutic approaches and biomarkers. Circular RNAs (circRNAs) are non-coding RNAs (ncRNAs) that exist widely in eukaryotes. CircRNAs are single-stranded RNAs that form covalently closed loops. CircRNAs are significant gene regulators that have a role in the development, progression, and therapy of lung injury by controlling transcription, translating into protein, and sponging microRNAs (miRNAs) and proteins. Although the study of circRNAs in lung injury caused by pulmonary toxicants is just beginning, several studies have revealed their expression patterns. The function that circRNAs perform in relation to pulmonary toxicants (severe acute respiratory distress syndrome coronavirus-2 (SARS-CoV-2), drug abuse, PM2.5, and cigarette smoke) is the main topic of this review. A variety of circRNAs can serve as potential biomarkers of lung injury. In this review, the biogenesis, properties, and biological functions of circRNAs were concluded, and the relationship between circRNAs and pulmonary toxicants was discussed. It is expected that the new ideas and potential treatment targets that circRNAs provide would be beneficial to research into the molecular mechanisms behind lung injury.


Assuntos
Lesão Pulmonar , MicroRNAs , Humanos , RNA Circular/genética , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/genética , Lesão Pulmonar/terapia , Pulmão/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Biomarcadores/metabolismo
17.
Respiration ; 103(8): 461-479, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38663359

RESUMO

INTRODUCTION: Although long-term macrolide antibiotics could reduce the recurrent exacerbation of chronic obstructive pulmonary disease (COPD), the side effect of bacterial resistance and the impact on the microbiota remain concerning. We investigated the influence of long-term erythromycin treatment on the airway and gut microbiota in mice with emphysema and patients with COPD. METHODS: We conducted 16S rRNA gene sequencing to explore the effect of erythromycin treatment on the lung and gut microbiota in mice with emphysema. Liquid chromatography-mass spectrometry was used for lung metabolomics. A randomized controlled trial was performed to investigate the effect of 48-week erythromycin treatment on the airway and gut microbiota in COPD patients. RESULTS: The mouse lung and gut microbiota were disrupted after cigarette smoke exposure. Erythromycin treatment depleted harmful bacteria and altered lung metabolism. Erythromycin treatment did not alter airway or gut microbial diversity in COPD patients. It reduced the abundance of pathogens, such as Burkholderia, in the airway of COPD patients and increased levels of symbiotic bacteria, such as Prevotella and Veillonella. The proportions of Blautia, Ruminococcus, and Lachnospiraceae in the gut were increased in COPD patients after erythromycin treatment. The time to the first exacerbation following treatment was significantly longer in the erythromycin treatment group than in the COPD group. CONCLUSION: Long-term erythromycin treatment reduces airway and gut microbe abundance in COPD patients but does not affect microbial diversity and restores microbiota balance in COPD patients by reducing the abundance of pathogenic bacteria.


Assuntos
Antibacterianos , Eritromicina , Microbioma Gastrointestinal , Doença Pulmonar Obstrutiva Crônica , Eritromicina/administração & dosagem , Eritromicina/farmacologia , Animais , Doença Pulmonar Obstrutiva Crônica/microbiologia , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Masculino , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Humanos , Idoso , Pessoa de Meia-Idade , Feminino , Pulmão/microbiologia , Pulmão/efeitos dos fármacos , Enfisema Pulmonar/microbiologia , Enfisema Pulmonar/tratamento farmacológico , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S
18.
Am J Respir Crit Care Med ; 207(12): 1576-1590, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37219322

RESUMO

Rationale: Tobacco smoking and air pollution are primary causes of chronic obstructive pulmonary disease (COPD). However, only a minority of smokers develop COPD. The mechanisms underlying the defense against nitrosative/oxidative stress in nonsusceptible smokers to COPD remain largely unresolved. Objectives: To investigate the defense mechanisms against nitrosative/oxidative stress that possibly prevent COPD development or progression. Methods: Four cohorts were investigated: 1) sputum samples (healthy, n = 4; COPD, n = 37), 2) lung tissue samples (healthy, n = 13; smokers without COPD, n = 10; smoker+COPD, n = 17), 3) pulmonary lobectomy tissue samples (no/mild emphysema, n = 6), and 4) blood samples (healthy, n = 6; COPD, n = 18). We screened 3-nitrotyrosine (3-NT) levels, as indication of nitrosative/oxidative stress, in human samples. We established a novel in vitro model of a cigarette smoke extract (CSE)-resistant cell line and studied 3-NT formation, antioxidant capacity, and transcriptomic profiles. Results were validated in lung tissue, isolated primary cells, and an ex vivo model using adeno-associated virus-mediated gene transduction and human precision-cut lung slices. Measurements and Main Results: 3-NT levels correlate with COPD severity of patients. In CSE-resistant cells, nitrosative/oxidative stress upon CSE treatment was attenuated, paralleled by profound upregulation of heme oxygenase-1 (HO-1). We identified carcinoembryonic antigen cell adhesion molecule 6 (CEACAM6) as a negative regulator of HO-1-mediated nitrosative/oxidative stress defense in human alveolar type 2 epithelial cells (hAEC2s). Consistently, inhibition of HO-1 activity in hAEC2s increased the susceptibility toward CSE-induced damage. Epithelium-specific CEACAM6 overexpression increased nitrosative/oxidative stress and cell death in human precision-cut lung slices on CSE treatment. Conclusions: CEACAM6 expression determines the hAEC2 sensitivity to nitrosative/oxidative stress triggering emphysema development/progression in susceptible smokers.


Assuntos
Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Antígenos CD/metabolismo , Antioxidantes , Moléculas de Adesão Celular/metabolismo , Proteínas Ligadas por GPI/efeitos adversos , Proteínas Ligadas por GPI/metabolismo , Heme Oxigenase-1/metabolismo , Estresse Oxidativo , Nicotiana
19.
Am J Respir Crit Care Med ; 208(10): 1075-1087, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37708400

RESUMO

Rationale: IL-33 is a proinflammatory cytokine thought to play a role in the pathogenesis of asthma and chronic obstructive pulmonary disease (COPD). A recent clinical trial using an anti-IL-33 antibody showed a reduction in exacerbation and improved lung function in ex-smokers but not current smokers with COPD. Objectives: This study aimed to understand the effects of smoking status on IL-33. Methods: We investigated the association of smoking status with the level of gene expression of IL-33 in the airways in eight independent transcriptomic studies of lung airways. Additionally, we performed Western blot analysis and immunohistochemistry for IL-33 in lung tissue to assess protein levels. Measurements and Main Results: Across the bulk RNA-sequencing datasets, IL-33 gene expression and its signaling pathway were significantly lower in current versus former or never-smokers and increased upon smoking cessation (P < 0.05). Single-cell sequencing showed that IL-33 is predominantly expressed in resting basal epithelial cells and decreases during the differentiation process triggered by smoke exposure. We also found a higher transitioning of this cellular subpopulation into a more differentiated cell type during chronic smoking, potentially driving the reduction of IL-33. Protein analysis demonstrated lower IL-33 levels in lung tissue from current versus former smokers with COPD and a lower proportion of IL-33-positive basal cells in current versus ex-smoking controls. Conclusions: We provide strong evidence that cigarette smoke leads to an overall reduction in IL-33 expression in transcriptomic and protein level, and this may be due to the decrease in resting basal cells. Together, these findings may explain the clinical observation that a recent antibody-based anti-IL-33 treatment is more effective in former than current smokers with COPD.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Fumantes , Humanos , Interleucina-33/genética , Fumar/genética , Doença Pulmonar Obstrutiva Crônica/patologia , Perfilação da Expressão Gênica
20.
Inhal Toxicol ; 36(6): 378-390, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38909354

RESUMO

OBJECTIVE: Cigarette smoking can lead to a host of adverse health effects such as lung and heart disease. Increased lung cancer risk is associated with inhalation of carcinogens present in a puff of smoke. These carcinogenic compounds deposit in the lung at different sites and trigger a cascade of events leading to adverse outcomes. Understanding the site-specific deposition of various smoke constituents will inform the study of respiratory diseases from cigarette smoking. We previously developed a deposition model for inhalation of aerosol from electronic nicotine delivery systems. In this study, the model was modified to simulate inhalation of cigarette smoke consisting of soluble and insoluble tar, nicotine, and cigarette-specific constituents that are known or possible human carcinogens. MATERIALS AND METHODS: The deposition model was further modified to account for nicotine protonation and other cigarette-specific physics-based mechanisms that affect smoke deposition. Model predictions showed a total respiratory tract uptake in the lung for formaldehyde (99%), nicotine (80%), and benzo[a]pyrene (60%). RESULTS: The site of deposition and uptake depended primarily on the constituent's saturation vapor pressure. High vapor pressure constituents such as formaldehyde were preferentially absorbed in the oral cavity and proximal lung regions, while low vapor pressure constituents such as benzo[a]pyrene were deposited in the deep lung regions. Model predictions of exhaled droplet size, droplet retention, nicotine retention, and uptake of aldehydes compared favorably with experimental data. CONCLUSION: The deposition model can be integrated into exposure assessments and other studies that evaluate potential adverse health effects from cigarette smoking.


Assuntos
Nicotina , Humanos , Nicotina/administração & dosagem , Nicotina/farmacocinética , Modelos Biológicos , Fumaça/análise , Fumaça/efeitos adversos , Formaldeído/análise , Formaldeído/toxicidade , Produtos do Tabaco/análise , Benzo(a)pireno/farmacocinética , Benzo(a)pireno/análise , Sistema Respiratório/efeitos dos fármacos , Sistema Respiratório/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Aerossóis , Administração por Inalação , Exposição por Inalação/efeitos adversos , Fumar Cigarros , Sistemas Eletrônicos de Liberação de Nicotina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA