Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 35(8)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-37816334

RESUMO

Electrodeposited polyaniline over the carbon nanotubes fiber (CNTF) has been investigated as potential candidate to substitutes the Pt based auxiliary electrodes in unidimensional fibrous solar cells. CNTF, with excellent electrical and mechanical properties, modified with conducting polymer (polyaniline) via facile electrodeposition process which employed as cathodic materials showed efficient electrochemical reduction of triiodide ions in the fiber shaped dye-sensitized solar cells. Scanning electron microscopic analysis showed the efficacious integration of conducting polymer over the CNTF surface. The admirable electrocatalytic behavior of the fabricated electrode has investigated by electrochemical impedance spectroscopy and cyclic voltammetry. Current density and voltage (J-V) curves are used to quantify the photovoltaic performance of devices with different counter electrodes with fixed photoanode. With lower peak to peak separation, improved current density and better fill factor, exhibited the superior efficiency of modified electrode (PANI@CNTF). As compared to pristine fiber, polyaniline modification showed the outstanding performance with improved photovoltaics and electrochemical parameters measured by theJ-Vand CV curves, respectively.

2.
Molecules ; 26(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34500618

RESUMO

Since Prof. Grätzel and co-workers achieved breakthrough progress on dye-sensitized solar cells (DSSCs) in 1991, DSSCs have been extensively investigated and wildly developed as a potential renewable power source in the last two decades due to their low cost, low energy-intensive processing, and high roll-to-roll compatibility. During this period, the highest efficiency recorded for DSSC under ideal solar light (AM 1.5G, 100 mW cm-2) has increased from ~7% to ~14.3%. For the practical use of solar cells, the performance of photovoltaic devices in several conditions with weak light irradiation (e.g., indoor) or various light incident angles are also an important item. Accordingly, DSSCs exhibit high competitiveness in solar cell markets because their performances are less affected by the light intensity and are less sensitive to the light incident angle. However, the most used catalyst in the counter electrode (CE) of a typical DSSC is platinum (Pt), which is an expensive noble metal and is rare on earth. To further reduce the cost of the fabrication of DSSCs on the industrial scale, it is better to develop Pt-free electro-catalysts for the CEs of DSSCs, such as transition metallic compounds, conducting polymers, carbonaceous materials, and their composites. In this article, we will provide a short review on the Pt-free electro-catalyst CEs of DSSCs with superior cell compared to Pt CEs; additionally, those selected reports were published within the past 5 years.

3.
Chemphyschem ; 20(24): 3336-3345, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31800979

RESUMO

We describe the preparation and properties of bilayers of graphene- and multi-walled carbon nanotubes (MWCNTs) as an alternative to conventionally used platinum-based counter electrode for dye-sensitized solar cells (DSSC). The counter electrodes were prepared by a simple and easy-to-implement double self-assembly process. The preparation allows for controlling the surface roughness of electrode in a layer-by-layer deposition. Annealing under N2 atmosphere improves the electrode's conductivity and the catalytic activity of graphene and MWCNTs to reduce the I3- species within the electrolyte of the DSSC. The performance of different counter-electrodes is compared for ZnO photoanode-based DSSCs. Bilayer electrodes show higher power conversion efficiencies than monolayer graphene electrodes or monolayer MWCNTs electrodes. The bilayer graphene (bottom)/MWCNTs (top) counter electrode-based DSSC exhibits a maximum power conversion efficiency of 4.1 % exceeding the efficiency of a reference DSSC with a thin film platinum counter electrode (efficiency of 3.4 %). In addition, the double self-assembled counter electrodes are mechanically stable, which enables their recycling for DSSCs fabrication without significant loss of the solar cell performance.

4.
Chemistry ; 23(68): 17311-17317, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-28901028

RESUMO

The design and development of efficient and stable nonprecious-metal-based catalysts for counter electrodes (CEs) in dye-sensitized solar cells (DSSCs) has received a great deal of attention. In this work, molybdenum carbide nanoparticles homogeneously distributed in a nitrogen-rich carbon matrix (Mo2 C@NC) have been synthesized from inexpensive raw materials (polyoxometalate and dicyandiamide) by a facile one-step solid-phase synthesis method. The novel Mo2 C@NC hybrid was not only used as a CE in a DSSC, but also showed superior catalytic activity towards I3- /I- as a redox electrolyte. The power conversion efficiency of a DSSC with Mo2 C@NC as the CE was as high as 6.49 %, comparable to that with Pt (6.38 %). The CE was prepared by a drop-coating method, without the addition of another conductive polymer. Most importantly, the method circumvents the problem of the sample falling off from the fluorine-doped tin oxide (FTO), and the CE could be repeatedly reused with unchanged efficiency. Therefore, it opens the way for the development of platinum-free catalysts with low cost, simple processing, good stability, and high efficiency.

5.
J Nanosci Nanotechnol ; 17(1): 398-404, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-29620841

RESUMO

One-dimensional graphitized carbon nanofibers (G-CNFs) were prepared by employing facile electrospinning technique using 10 wt% of polyacrylonitrile (PAN) solution in N,N-dimethyl formamide (DMF) as precursor followed by successive stabilization, carbonization and purification processes. Cobalt sulfide (CoS) nanoparticles were grown onto G-CNFs by hydrothermal method using cobalt chloride and L-cysteine as precursors. The results of X-ray diffraction (XRD) and Raman spectroscopy confirmed the phase formation and degree of graphitization, respectively. Field-emission scanning electron microscope (FE-SEM) and transmission electron microscope (TEM) images confirmed the morphology, growth and distribution of CoS nanoparticles over G-CNFs (CoS/G-CNFs). The electrochemical studies such as cyclic voltammetry (CV), electrochemical impedance and Tafel polarization revealed that CoS/G-CNFs have lower overpotential, low charge transfer resistance and higher exchange current density for triiodide (I− 3 reduction reaction. The superior electrocat- alytic activity of CoS/G-CNFs than std. Pt is due to combined contribution of interconnected pore structure with high surface area of G-CNFs and excellent electrocatalytic activity of CoS. In addition, the dye sensitized solar cell (DSSC) based on platinum-free CoS/G-CNFs has exhibited higher photo-conversion efficiency (PCE) under a simulated solar light irradiation of 100 mW cm−2 when compared to standard platinum (std. Pt) which is attributed to the synergistic effect of CoS with G-CNFs.

6.
Angew Chem Int Ed Engl ; 55(23): 6708-12, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27089044

RESUMO

The design of catalysts that are both highly active and stable is always challenging. Herein, we report that the incorporation of single metal active sites attached to the nitrogen atoms in the basal plane of graphene leads to composite materials with superior activity and stability when used as counter electrodes in dye-sensitized solar cells (DSSCs). A series of composite materials based on different metals (Mn, Fe, Co, Ni, and Cu) were synthesized and characterized. Electrochemical measurements revealed that CoN4 /GN is a highly active and stable counter electrode for the interconversion of the redox couple I(-) /I3 (-) . DFT calculations revealed that the superior properties of CoN4 /GN are due to the appropriate adsorption energy of iodine on the confined Co sites, leading to a good balance between adsorption and desorption processes. Its superior electrochemical performance was further confirmed by fabricating DSSCs with CoN4 /GN electrodes, which displayed a better power conversion efficiency than the Pt counterpart.

7.
Chemistry ; 21(43): 15153-7, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26338374

RESUMO

It is generally believed that silver or silver-based compounds are not suitable counter electrode (CE) materials for dye-sensitized solar cells (DSSCs) due to the corrosion of the I(-) /I3 (-) redox couple in electrolytes. However, Ag2 S has potential applications in DSSCs for catalyzing I3 (-) reduction reactions because of its high carrier concentration and tiny solubility product constant. In the present work, CE manufactured from Ag2 S nanocrystals ink exhibited efficient electrocatalytic activity in the reduction of I3 (-) to I(-) in DSSCs. The DSSC consisting of Ag2 S CE displayed a higher power conversion efficiency of 8.40 % than that of Pt CE (8.11 %). Moreover, the devices also showed the characteristics of fast activity onset, high multiple start/stop capability and good irradiated stability. The simple composition, easy preparation, stable chemical property, and good catalytic performance make the developed Ag2 S CE as a promising alternative to Pt CE in DSSCs.

8.
Chemistry ; 20(2): 474-82, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24307511

RESUMO

With a facile electrophoretic deposition and chemical bath process, CoS nanoparticles have been uniformly dispersed on the surface of the functionalized graphene nanosheets (FGNS). The composite was employed as a counter electrode of dye-sensitized solar cells (DSSCs), which yielded a power conversion efficiency of 5.54 %. It is found that this efficiency is higher than those of DSSCs based on the non-uniform CoS nanoparticles on FGNS (4.45 %) and built on the naked CoS nanoparticles (4.79 %). The achieved efficiency of our cost-effective DSSC is also comparable to that of noble metal Pt-based DSSC (5.90 %). Our studies have revealed that both the exceptional electrical conductivity of the FGNS and the excellent catalytic activity of the CoS nanoparticles improve the conversion efficiency of the uniformly FGNS-CoS composite counter electrode. The electrochemical impedance spectra, cyclic voltammetry, and Tafel polarization have evidenced the best catalytic activity and the fastest electron transport. Additionally, the dispersion condition of CoS nanoparticles on FGNS plays an important role for catalytic reduction of I3 (-) .

9.
Chemistry ; 20(28): 8670-6, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24924927

RESUMO

A new type of semitransparent SnS2 nanosheet (NS) films were synthesized using a simple and environmentally friendly solution-processed approach, which were subsequently used as a counter electrode (CE) alternative to the noble metal Pt for triiodide reduction in dye-sensitized solar cells (DSSCs). The resultant SnS2 -based CE with a thickness of about 300 nm exhibited excellent electrochemical catalytic activity for catalyzing the reduction of triiodide and demonstrated comparable power conversion efficiency of 7.64 % with that of expensive Pt-based CE in DSSCs (7.71 %). When functionalized with a small amount of carbon nanoparticles, the SnS2 NS-based CE showed even better performance of 8.06 % than Pt under the same conditions. Considering the facile fabrication method, optical transparency, low cost, and remarkable catalytic property, this study on SnS2 NSs may shed light on the large-scale production of electrocatalytic electrode materials for low-cost photovoltaic devices.

10.
Chemphyschem ; 15(6): 1175-81, 2014 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-24596310

RESUMO

Highly conductive reduced graphene oxide (rGO) with good electrocatalytic ability for reducing triiodide ions (I3(-)) is a promising catalyst for the counter electrode (CE) of dye-sensitized solar cells (DSSCs). However, hazardous chemical reducing agents or energy-consuming thermal treatments are required for preparing rGO from graphene oxide (GO). Therefore, it is necessary to find other effective and green reduction processes for the preparation of rGO and to fabricate rGO-based DSSCs. In this study, GO was prepared using a modified Hummers method from graphite powder, and further reduced to rGO through a photothermal reduction process (to give P-rGO). P-rGO shows better electrocatalytic ability due mainly to its high standard heterogeneous rate constant for I3(-) reduction and in part to its considerable electrochemical surface area. The corresponding DSSC shows a higher cell efficiency (η) of 7.62% than that of the cell with a GO-based CE (η=0.03%). When the low-temperature photothermal reduction process is applied to all-flexible plastic DSSCs, the DSSC with a P-rGO CE shows an η of 4.16%.

11.
Beilstein J Org Chem ; 10: 2484-500, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25383120

RESUMO

The near-unlimited availability of CO2 has stimulated a growing research effort in creating value-added products from this greenhouse gas. This paper presents the trends on the most important methods used in the electrochemical synthesis of carboxylic acids from carbon dioxide. An overview is given of different substrate groups which form carboxylic acids upon CO2 fixation, including mechanistic considerations. While most work focuses on the electrocarboxylation of substrates with sacrificial anodes, this review considers the possibilities and challenges of implementing other synthetic methodologies. In view of potential industrial application, the choice of reactor setup, electrode type and reaction pathway has a large influence on the sustainability and efficiency of the process.

12.
ACS Appl Mater Interfaces ; 16(27): 35474-35483, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38926902

RESUMO

With the rapid development in information, communication, energy, medical care, and other fields, the demand for light, strong, flexible, and stable materials continues to grow. Carbon nanotube (CNT) films possess outstanding properties, such as flexibility, good tensile properties, low density, and high electrical conductivity, making them promising materials for a wide range of applications. This paper reports an effective strategy that combines stretching treatment, laser etching, and electron beam deposition to fabricate an iron-deposited CNT film, which can serve as a counter electrode (CE) of quantum-dot-sensitized solar cells. The study also investigates the influences of processing parameters, such as stretching ratio and iron-depositing thickness on the film's stacking structure, electrical conductivity, and catalytic activity. Under optimized stretching ratios and depositing thicknesses, the catalytic activity of the reacted deposited layer and the high electrical conductivity of the flexible film basis can be fully utilized, allowing the photoelectric conversion efficiency (PCE) of the solar cells to reach approximately 4.58%. Additionally, the CE exhibits flexibility, light transmission, and good stability, with its primary properties remaining above 97% after nearly 50 days. Thus, this research provides innovative material options and development strategies for the development of electrode materials.

13.
Micromachines (Basel) ; 15(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38675275

RESUMO

In dye-sensitized solar cells (DSSCs), the counter electrode (CE) plays a crucial role as an electron transfer agent and regenerator of the redox couple. Unlike conventional CEs that are generally made of glass-based substrates (e.g., FTO/glass), polymer substrates appear to be emerging candidates, owing to their intrinsic properties of lightweight, high durability, and low cost. Despite great promise, current manufacturing methods of CEs on polymeric substrates suffer from serious limitations, including low conductivity, scalability, process complexity, and the need for dedicated vacuum equipment. In the present study, we employ and evaluate a fully additive manufacturing route that can enable the fabrication of CEs for DSSCs in a high-throughput and eco-friendly manner with improved performance. The proposed approach sequentially comprises: (1) material extrusion 3-D printing of polymer substrate; (2) conductive surface metallization through cold spray particle deposition; and (3) over-coating of a thin-layer catalyzer with a graphite pencil. The fabricated electrodes are characterized in terms of microstructure, electrical conductivity, and photo-conversion efficiency. Owing to its promising electrical conductivity (8.5 × 104 S·m-1) and micro-rough surface structure (Ra ≈ 6.32 µm), the DSSCs with the additively manufactured CEs led to ≈2.5-times-higher photo-conversion efficiency than that of traditional CEs made of FTO/glass. The results of the study suggest that the proposed additive manufacturing approach can advance the field of DSSCs by addressing the limitations of conventional CE manufacturing platforms.

14.
Macromol Rapid Commun ; 34(18): 1487-92, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23926029

RESUMO

Hybrid Pt(platinum)/carbon nanopatterns with an extremely low loading level of Pt catalysts derived from block copolymer templates as an alternative type of counter electrodes (CEs) in dye-sensitized solar cells (DSSCs) are proposed. DSSCs employing hybrid Pt/carbon with tailored configuration as CEs exhibit higher short-circuit current and conversion efficiencies as well as stability with a lapse of time compared with conventional cells on the basis of sputtered Pt thin films, evidencing that the new class of hybrid nanostructures possess high potential for cost-effective electrodes in energy conversion devices.


Assuntos
Carbono/química , Nanopartículas/química , Platina/química , Energia Solar , Catálise , Corantes , Eletrodos , Polímeros/química
15.
Nanomaterials (Basel) ; 13(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36678066

RESUMO

Perovskite solar cells (PSCs) and modules are driving the energy revolution in the coming photovoltaic field. In the last 10 years, PSCs reached efficiency close to the silicon photovoltaic technology by adopting low-cost solution processes. Despite this, the noble metal (such as gold and silver) used in PSCs as a counter electrode made these devices costly in terms of energy, CO2 footprint, and materials. Carbon-based perovskite solar cells (C-PSCs) and modules use graphite/carbon-black-based material as the counter electrode. The formulation of low-cost carbon-based inks and pastes makes them suitable for large area coating techniques and hence a solid technology for imminent industrialization. Here, we want to present the upscaling routes of carbon-counter-electrode-based module devices in terms of materials formulation, architectures, and manufacturing processes in order to give a clear vision of the scaling route and encourage the research in this green and sustainable direction.

16.
Chem Asian J ; 18(6): e202201142, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36710260

RESUMO

A combustion-assisted polyol reduction (CPR) method has been developed to deposit electrocatalytically efficient and transparent Pt counter electrodes (CEs) for bifacial dye-sensitized solar cells (DSSCs). Compared with conventional thermal decomposition of Pt precursors, CPR allows for a decrease in reduction temperature to 150 °C. The low-temperature processing is attributed to adding an organic fuel, acetylacetone (Hacac), which provides extra heat to lower reduction energy. In addition, the stable Pt complexes can simultaneously be formed in ethylene glycol (EG) and Hacac system, which leads to Pt nanoparticle size regulation. A ratio of Hacac to EG is optimized to achieve excellent electrocatalytic activity and high visible light transmittance for CEs. The bifacial DSSCs fabricated with CPR-Pt CEs (EG : Hacac=1 : 16) reach efficiencies of 6.71±0.16% and 6.41±0.15% in front and back irradiations, respectively.

17.
Polymers (Basel) ; 15(12)2023 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-37376370

RESUMO

Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) has been mostly used as a counter electrode to give a high performance of dye-sensitized solar cell (DSSC). Recently, PEDOT doped by carrageenan, namely PEDOT:Carrageenan, was introduced as a new material to be applied on DSSC as an electrolyte. PEDOT:Carrageenan has a similar synthesis process as PEDOT:PSS, owing to their similar ester sulphate (-SO3H) groups in both PSS and carrageenan. This review provides an overview of the different roles between PEDOT:PSS as a counter electrode and PEDOT:Carrageenan as an electrolyte for DSSC applications. The synthesis process and characteristics of PEDOT:PSS and PEDOT:Carrageenan were also described in this review. In conclusion, we found that the primary role of PEDOT:PSS as a counter electrode is to transfer electrons back to cell and accelerate redox reaction with its superior electrical conductivity and high electrocatalytic activity. PEDOT:Carrageenan as an electrolyte has not shown the main role for regenerating the dye sensitized at the oxidized state, probably due to its low ionic conductivity. Therefore, PEDOT:Carrageenan still obtained a low performance of DSSC. Additionally, the future perspective and challenges of using PEDOT:Carrageenan as both electrolyte and counter electrode are described in detail.

18.
Chempluschem ; 88(7): e202300191, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37283445

RESUMO

Developing a cost-saving, high-efficiency, and simple synthesis of counter electrode (CE) material to replace pricy Pt for dye-sensitized solar cells (DSSCs) has become a research hotspot. Owing to the electronic coupling effects between various components, semiconductor heterostructures can significantly enhance the catalytic performance and endurance of counter electrodes. However, the strategy to controllably synthesize the same element in several phase heterostructures used as the CE in DSSCs is still absent. Here, we fabricate well-defined CoS2 /CoS heterostructures and use them as CE catalysts in DSSCs. The as-designed CoS2 /CoS heterostructures display high catalytic performance and endurance for the triiodide reduction in DSSCs thanks to the combined and synergistic effects. As a result, a DSSC with CoS2 /CoS achieves a high energy conversion with an efficiency of 9.47 % under standard simulated solar radiation, surpassing that of pristine Pt-based CE (9.20 %). Besides, the CoS2 /CoS heterostructures possess a quick activity initiation process and extended stability, broadening their potential applications in various areas. Therefore, our proposed synthetic approach could offer new insights for synthesizing functional heterostructure materials with improved catalytic activities in DSSCs.


Assuntos
Energia Solar , Catálise , Eletrodos , Eletrônica
19.
Environ Sci Pollut Res Int ; 30(47): 103367-103389, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37700126

RESUMO

Organic waste-derived solar cells (OWSC) are a classification of third-generation photovoltaic cells in which one or more constituents are fabricated from organic waste material. They are an inspirational complement to the conventional third-generation solar cell with the potential of revolutionizing our future approach to solar cell manufacture. This article provides a study and summary of solar cells that fall under the category of OWSC. OWSC own their merit to low cost of manufacturing and environmental friendliness. This review article reveals different organic waste raw materials, preparation-to-assembly methodologies, and novel approaches to solar cell manufacturing. Ideas for the optimization of the performance of OWSC are presented. The assembly configurations and photovoltaic parameters of reported OWSC are compared in detail. An overview of the trends in the research regarding OWSC in the past decade is given. Also, the advantages and disadvantages of the different solar cell technologies are discussed, and possible trends are proposed. Industrial organic waste raw materials such as paper, coal, and plastics are among the least explored and yet most attractive for solar cell fabrication. The power conversion efficiencies for the cited works are mentioned while emphasizing the products and functions of the organic waste raw materials used.


Assuntos
Plásticos , Luz Solar , Resíduos Industriais , Reciclagem , Carvão Mineral
20.
Heliyon ; 9(11): e22403, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38045216

RESUMO

The Low utilization and high cost of platinum counter electrode (CE) in the application of dye-sensitized solar cells has limited its large-scale manufacturing in the industry. Herein, a facile pyrolysis combination of Pt and SBA-15 molecular sieve (MS) formed 1.6-1.9 times higher amount and 2-3 times reduced dimension of Pt distributed within porous structure of SBA-15. The composite CE with 20 % of SBA-15 exhibited an enhanced power conversion efficiency of 9.31 %, exceeding that of absolute Pt CE (7.57 %). This superior performance owed to the promoted oxidation-reduction rate of I3-/I- pairs at the CE interface and the increased conductivity of CE materials attributed from well distributed Pt particles. This work has demonstrated the significance of utilizing porous molecular sieves for dispersing catalytic sites when designing a novel type of counter electrode and their application in DSSCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA