Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.516
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Cell Mol Med ; 28(12): e18489, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38899522

RESUMO

This study explores the impact of senescence on autocrine C-C motif chemokine ligand 5 (CCL5) in human endothelial progenitor cell (EPCs), addressing the poorly understood decline in number and function of EPCs during ageing. We examined the effects of replication-induced senescence on CCL5/CCL5 receptor (CCR5) signalling and angiogenic activity of EPCs in vitro and in vivo. We also explored microRNAs controlling CCL5 secretion in senescent EPCs, its impact on EPC angiogenic activity, and validated our findings in humans. CCL5 secretion and CCR5 levels in senescent EPCs were reduced, leading to attenuated angiogenic activity. CCL5 enhanced EPC proliferation via the CCR5/AKT/P70S6K axis and increased vascular endothelial growth factor (VEGF) secretion. Up-regulation of miR-409 in senescent EPCs resulted in decreased CCL5 secretion, inhibiting the angiogenic activity, though these negative effects were counteracted by the addition of CCL5 and VEGF. In a mouse hind limb ischemia model, CCL5 improved the angiogenic activity of senescent EPCs. Analysis involving 62 healthy donors revealed a negative association between CCL5 levels, age and Framingham Risk Score. These findings propose CCL5 as a potential biomarker for detection of EPC senescence and cardiovascular risk assessment, suggesting its therapeutic potential for age-related cardiovascular disorders.


Assuntos
Senescência Celular , Quimiocina CCL5 , Células Progenitoras Endoteliais , MicroRNAs , Neovascularização Fisiológica , Animais , Humanos , Masculino , Camundongos , Angiogênese , Proliferação de Células , Quimiocina CCL5/metabolismo , Quimiocina CCL5/genética , Regulação para Baixo/genética , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/citologia , Isquemia/metabolismo , Isquemia/patologia , Isquemia/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Neovascularização Fisiológica/genética , Receptores CCR5/metabolismo , Receptores CCR5/genética , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética
2.
J Cell Mol Med ; 28(13): e18523, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38957039

RESUMO

This research explores the role of microRNA in senescence of human endothelial progenitor cells (EPCs) induced by replication. Hsa-miR-134-5p was found up-regulated in senescent EPCs where overexpression improved angiogenic activity. Hsa-miR-134-5p, which targeted transforming growth factor ß-activated kinase 1-binding protein 1 (TAB1) gene, down-regulated TAB1 protein, and inhibited phosphorylation of p38 mitogen-activated protein kinase (p38) in hsa-miR-134-5p-overexpressed senescent EPCs. Treatment with siRNA specific to TAB1 (TAB1si) down-regulated TAB1 protein and subsequently inhibited p38 activation in senescent EPCs. Treatment with TAB1si and p38 inhibitor, respectively, showed angiogenic improvement. In parallel, transforming growth factor Beta 1 (TGF-ß1) was down-regulated in hsa-miR-134-5p-overexpressed senescent EPCs and addition of TGF-ß1 suppressed the angiogenic improvement. Analysis of peripheral blood mononuclear cells (PBMCs) disclosed expression levels of hsa-miR-134-5p altered in adult life, reaching a peak before 65 years, and then falling in advanced age. Calculation of the Framingham risk score showed the score inversely correlates with the hsa-miR-134-5p expression level. In summary, hsa-miR-134-5p is involved in the regulation of senescence-related change of angiogenic activity via TAB1-p38 signalling and via TGF-ß1 reduction. Hsa-miR-134-5p has a potential cellular rejuvenation effect in human senescent EPCs. Detection of human PBMC-derived hsa-miR-134-5p predicts cardiovascular risk.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Doenças Cardiovasculares , Senescência Celular , Células Progenitoras Endoteliais , Leucócitos Mononucleares , MicroRNAs , Proteínas Quinases p38 Ativadas por Mitógeno , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Células Progenitoras Endoteliais/metabolismo , Senescência Celular/genética , Leucócitos Mononucleares/metabolismo , Pessoa de Meia-Idade , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Masculino , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Feminino , Idoso , Neovascularização Fisiológica/genética , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/genética , Adulto , Fatores de Risco
3.
Mol Med ; 30(1): 84, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867168

RESUMO

BACKGROUND: Deep vein thrombosis (DVT) is a common vascular surgical disease caused by the coagulation of blood in the deep veins, and predominantly occur in the lower limbs. Endothelial progenitor cells (EPCs) are multi-functional stem cells, which are precursors of vascular endothelial cells. EPCs have gradually evolved into a promising treatment strategy for promoting deep vein thrombus dissolution and recanalization through the stimulation of various physical and chemical factors. METHODS: In this study, we utilized a mouse DVT model and performed several experiments including qRT-PCR, Western blot, tube formation, wound healing, Transwell assay, immunofluorescence, flow cytometry analysis, and immunoprecipitation to investigate the role of HOXD9 in the function of EPCs cells. The therapeutic effect of EPCs overexpressing HOXD9 on the DVT model and its mechanism were also explored. RESULTS: Overexpression of HOXD9 significantly enhanced the angiogenesis and migration abilities of EPCs, while inhibiting cell apoptosis. Additionally, results indicated that HOXD9 specifically targeted the HRD1 promoter region and regulated the downstream PINK1-mediated mitophagy. Interestingly, intravenous injection of EPCs overexpressing HOXD9 into mice promoted thrombus dissolution and recanalization, significantly decreasing venous thrombosis. CONCLUSIONS: The findings of this study reveal that HOXD9 plays a pivotal role in stimulating vascular formation in endothelial progenitor cells, indicating its potential as a therapeutic target for DVT management.


Assuntos
Modelos Animais de Doenças , Células Progenitoras Endoteliais , Proteínas de Homeodomínio , Mitofagia , Neovascularização Fisiológica , Trombose Venosa , Animais , Células Progenitoras Endoteliais/metabolismo , Camundongos , Trombose Venosa/metabolismo , Trombose Venosa/genética , Trombose Venosa/terapia , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Mitofagia/genética , Neovascularização Fisiológica/genética , Movimento Celular , Masculino , Apoptose , Humanos , Angiogênese
4.
Br J Haematol ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39189039

RESUMO

Bone marrow endothelial progenitor cells (BM EPCs) are crucial in supporting haematopoietic regeneration, while the BM EPCs of haematological patients with chemotherapy-induced thrombocytopenia (CIT) are unavoidably damaged. Therefore, the present study aimed to examine the effect of thrombopoietin (TPO) on the recovery of BM EPCs of CIT patients and to identify the underlying mechanisms. The cell functions were determined by 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (Dil)-acetylated low-density lipoprotein (Dil-Ac-LDL) uptake and fluorescein isothiocyanate (FITC)-labeled Ulex europaeus agglutinin-I (FITC-UEA-I) binding assay, as well as proliferation, migration and tube formation experiments. Endothelial cells were transfected with METTL16 lentivirus, followed by methylated RNA immunoprecipitation sequencing. Zebrafish with vascular defect was used as the in vivo model. TPO significantly improved the quantity and functions of BM EPCs from CIT patients in vitro and restored the subintestinal vein area of zebrafish with vascular defect in vivo. Mechanically, TPO enhanced the BM EPC functions through Akt signal mediated by METTL16, which was downregulated in BM EPCs of CIT patients and involved in the regulation of endothelial functions. The present study demonstrates that TPO improves the recovery of BM EPCs from CIT patients with haematological malignancies via METTL16/Akt signalling, which provides new insights into the role of TPO in treating CIT in addition to direct megakaryopoiesis.

5.
Biochem Biophys Res Commun ; 709: 149853, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38555838

RESUMO

BACKGROUND: Tibial transverse transport (TTT) can promote the healing of chronic foot ulcers, but the specific cellular and molecular mechanisms by which TTT promotes wound healing remain unclear. METHODS: New Zealand White rabbits were selected to induce foot ulcer models. The treatment included unilateral TTT surgery and bilateral TTT surgery. Observation of tissue neovascularization structure by HE staining and CD31 immunofluorescence detection. Collagen fiber formation was detected through the Masson staining. The mobilization of endothelial progenitor cell (EPCs) were analyzed by VEGFR2 immunofluorescence detection and flow cytometry detection of the number of VEGFR2/Tie-2-positive cells in peripheral blood. ELISA and qPCR assay were performed to detect VEGFA and CXCL12 levels. RESULTS: The complete healing time of ulcer surfaces in sham, unilateral and bilateral TTT groups was about 22 days, 17 days and 13 days, respectively. TTT treatment significantly increased the deposition of granulation tissue and epithelialization of wounds. It also led to an increase in collagen fiber content and the level of the microvascular marker CD31. Furthermore, TTT treatment upregulated the levels of VEGFA and CXCL12 in peripheral blood and wound tissues, as well as increased the expression of VEGFR2 in wound tissues and the proportion of VEGFR2/Tie-2 in peripheral blood. Moreover, these effects of TTT treatment in the bilateral group was more significant than that in the unilateral group. CONCLUSIONS: TTT may facilitate wound fibroblasts to release VEGFA and CXCL12, causing EPC mobilization, thus promoting angiogenesis and ulcer wound healing.


Assuntos
Angiogênese , Células Progenitoras Endoteliais , Úlcera , Cicatrização , Animais , Coelhos , Colágeno
6.
FASEB J ; 37(9): e23118, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37531296

RESUMO

Renal cancer stem cells (RCSCs) derived from clear cell renal cell carcinoma (ccRCC) tissues with higher microvessel density (MVD) have strong stemness and endothelial progenitor cells-like (EPCs-like) characteristics. A high level of lncRNA PVT1 expression is essential for simultaneously retaining strong RCSC stemness and EPCs-like characteristics. PVT1 binds with TAZ protein and prevents its phosphorylation, which promotes RCSC stemness. Moreover, RCSCs support endothelial differentiation and angiogenesis, which are mediated via the PVT1/miR-15b/KDR axis. This report provides insight into the determinants of RCSC impact on stemness and highlights the critical role of RCSC in angiogenesis. The presented findings suggest that targeting RCSC through PVT1 expression may be a new treatment strategy for ccRCC.


Assuntos
Carcinoma de Células Renais , Células Progenitoras Endoteliais , Neoplasias Renais , MicroRNAs , RNA Longo não Codificante , Humanos , Carcinoma de Células Renais/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Células Progenitoras Endoteliais/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais/genética , MicroRNAs/genética , Células-Tronco Neoplásicas/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
7.
Cell Biol Int ; 48(3): 290-299, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38100125

RESUMO

Oxidized low-density lipoprotein (ox-LDL) causes dysfunction of endothelial progenitor cells (EPCs), and we recently reported that 14-3-3-η can attenuate the damage triggered by ox-LDL in EPCs. However, the molecular mechanisms by which 14-3-3-η protects EPCs from the damage caused by ox-LDL are not fully understood. In this study, we observed that the expression of 14-3-3-η and BCL-2 were downregulated in ox-LDL-treated EPCs. Overexpression of 14-3-3-η in ox-LDL-treated EPC significantly increased BCL-2 level, while knockdown of BCL-2 reduced 14-3-3-η expression and mitigated the protective effect of 14-3-3-η on EPCs. In addition, we discovered that 14-3-3-η colocalizes and interacts with BCL-2 in EPCs. Taken together, these data suggest that 14-3-3-η protects EPCs from ox-LDL-induced damage by its interaction with BCL-2.


Assuntos
Células Progenitoras Endoteliais , Humanos , Apoptose , Células Cultivadas , Células Progenitoras Endoteliais/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Lipoproteínas LDL/farmacologia , Lipoproteínas LDL/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
8.
Arterioscler Thromb Vasc Biol ; 43(10): 1935-1951, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37589139

RESUMO

BACKGROUND: We examined the role of Panxs (pannexins) in human endothelial progenitor cell (EPC) senescence. METHODS: Young and replication-induced senescent endothelial colony-forming cells (ECFCs) derived from human circulating EPCs were used to examine cellular activities and senescence-associated indicators after transfection of short interference RNA specific to Panx1 or lentivirus-mediated Panx1 overexpression. Hind limb ischemia mice were used as in vivo angiogenesis model. Protein and phospho-kinase arrays were used to determine underlying mechanisms. RESULTS: Panx1 was the predominant Panx isoform in human ECFCs and upregulated in both replication-induced senescent ECFCs and circulating EPCs from aged mice and humans. Cellular activities of the young ECFCs were enhanced by Panx1 downregulation but attenuated by its upregulation. In addition, reduction of Panx1 in the senescent ECFCs could rejuvenate cellular activities with reduced senescence-associated indicators, including senescence-associated ß-galactosidase activity, p16INK4a (cyclin-dependent kinase inhibitor 2A), p21 (cyclin-dependent kinase inhibitor 1), acetyl-p53 (tumor protein P53), and phospho-histone H2A.X (histone family member X). In mouse ischemic hind limbs injected senescent ECFCs, blood perfusion ratio, salvaged limb outcome, and capillary density were all improved by Panx1 knockdown. IGF-1 (insulin-like growth factor 1) was significantly increased in the supernatant from senescent ECFCs after Panx1 knockdown. The enhanced activities and paracrine effects of Panx1 knockdown senescent ECFCs were completely inhibited by anti-IGF-1 antibodies. FAK (focal adhesion kinase), ERK (extracellular signal-regulated kinase), and STAT3 (signal transducer and activator of transcription 3) were activated in senescent ECFCs with Panx1 knockdown, in which the intracellular calcium level was reduced, and the activation was inhibited by supplemented calcium. The increased IGF-1 in Panx1-knockdown ECFCs was abrogated, respectively, by inhibitors of FAK (PF562271), ERK (U0126), and STAT3 (NSC74859) and supplemented calcium. CONCLUSIONS: Panx1 expression is upregulated in human ECFCs/EPCs with replication-induced senescence and during aging. Angiogenic potential of senescent ECFCs is improved by Panx1 reduction through increased IGF-1 production via activation of the FAK-ERK axis following calcium influx reduction. Our findings provide new strategies to evaluate EPC activities and rejuvenate senescent EPCs for therapeutic angiogenesis.


Assuntos
Fator de Crescimento Insulin-Like I , Proteína Supressora de Tumor p53 , Animais , Humanos , Camundongos , Cálcio/metabolismo , Células Cultivadas , Senescência Celular , Conexinas/genética , Conexinas/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/farmacologia , Isquemia/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteína Supressora de Tumor p53/genética
9.
Acta Pharmacol Sin ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060522

RESUMO

Delta like non-canonical Notch ligand 1 (DLK1), as a member of epidermal growth factor-like family, plays a critical role in somatic growth, tissue development and possibly tissue renewal. Though previous studies had indicated that DLK1 contributed to adipogenesis and myogenesis, it's still controversial whether DLK1 affects angiogenesis and how it interacts with Notch signaling with numerous conflicting reports from different models. Based on our preliminary finding that DLK1 expression was up-regulated in mice ischemic gastrocnemius and in the border zone of infarcted myocardium, we administered either recombinant DLK1 (rDLK1) or PBS in C57BL/6 mice after establishment of hindlimb ischemia (HLI) and myocardial infarction (MI), respectively. Exogenous rDLK1 administration significantly improved both blood perfusion of mice ischemic hindlimbs and muscle motor function on the 3rd, 7th day after HLI, by promoting neovascularization. Similar effect on neovascularization was verified in mice on the 28th day after MI as well as improvement of cardiac failure. Correspondingly, the number of CD34+KDR+ cells, indicated as endothelial progenitor cells (EPCs), was significantly in mice ischemic gastrocnemius by rDLK1 administration, which was abrogated by DAPT as the specific inhibitor of Notch intracellular domain (NICD). Furthermore, bone marrow mononuclear cells were obtained from C57BL/6 mice and differentiated to EPCs ex vivo. Incubation with rDLK1 triggered Notch1 mRNA and NICD protein expressions in EPCs as exposed to hypoxia and serum deprivation, promoting EPCs proliferation, migration, anti-apoptosis and tube formation. Otherwise, rDLK1 incubation significantly decreased intracellular and mitochondrial reactive oxygen species, increased ATP content and mitochondrial membrane potential, downregulated short isoform of OPA-1 expression whereas upregulated mitofusin (-1, -2) expression in EPCs by Notch1 signaling, which were all abrogated by DAPT. In summary, the present study unveils the pro-angiogenesis and its mechanism of rDLK1 through activation of Notch1 signaling in endothelial progenitor cells.

10.
Biotechnol Appl Biochem ; 71(4): 835-848, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38515313

RESUMO

Sepsis is a potentially fatal syndrome related to severe systemic inflammation developed by infection. Despite different antimicrobial therapies, morbidity and mortality rates remain high. Herbs along with cell therapy have been introduced as a promising option to improve the symptoms of sepsis. The present study aimed to evaluate the therapeutic effect of simultaneous administration of thyme essential oil (TEO) and endothelial progenitor stem cells (EPCs) on lipopolysaccharide (LPS)-induced sepsis in C57BL/6 mice. Sepsis was induced in C57Bl/6J mice by intraperitoneal injection of LPS, followed 2 h later by an intravenous injection of EPCs or oral administration of TEO or simultaneous administration of TEO and EPCs. After 10 days, the complete blood cell, renal and liver factors, serum levels of inflammatory cytokines, and angiogenic factors were measured. Simultaneous treatment with EPCs and TEO significantly increased the survival of mice with sepsis and modulated the inflammatory response by reducing the serum levels of pro-inflammatory cytokines. Moreover, this treatment significantly reduced the level of white blood cells and neutrophils and increased the number of red blood cells, the percentage of hematocrit, and hemoglobin. The combination of TEO with EPCs decreased organ injuries and was assessed by lower levels of the liver enzymes alanine aminotransferase and aspartate aminotransferase compared to the sepsis group. Administration of EPCs and TEO also significantly improved angiogenic factors, lung function, and toll-like receptor 4 expression. EPCs in combination with TEO increase survival in the LPS-induced sepsis mice model by acting on several targets. Thus, the combination of TEO with EPCs can be a feasible approach for the future clinical treatment and control of sepsis.


Assuntos
Células Progenitoras Endoteliais , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Óleos Voláteis , Sepse , Thymus (Planta) , Animais , Lipopolissacarídeos/farmacologia , Óleos Voláteis/farmacologia , Sepse/induzido quimicamente , Sepse/tratamento farmacológico , Camundongos , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/efeitos dos fármacos , Thymus (Planta)/química , Masculino
11.
Brain Inj ; 38(10): 835-847, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-38716911

RESUMO

BACKGROUND: Hyperlipidemia is a risk factor for stroke, and worsens neurological outcome after stroke. Endothelial progenitor cells (EPCs), which become dysfunctional in cerebral ischemia, hold capacity to promote revascularization. OBJECTIVE: We investigated the role of dyslipidemia in impairment of EPC-mediated angiogenesis in cerebral ischemic mice. METHODS AND RESULTS: The high fat diet (HFD)-fed mice following by ischemic stroke exhibited increased infarct volumes and neurological severity scores, and poorer angiogenesis. Bone marrow-EPCs treated with palmitic acid (PA) showed impaired functions and inhibited activity of AMP-activated protein kinase (AMPK). Notably, AMPK deficiency aggravated EPC dysfunction, further decreased mitochondrial membrane potential, and increased reactive oxygen species level in EPCs with PA treatment. Furthermore, the expression of fatty acid oxidation (FAO)-related genes was remarkably reduced, and carnitine palmitoyltransferase 1A (CPT1A) protein expression was downregulated in AMPK-deficient EPCs. AMPK deficiency aggravated neurological severity scores and angiogenesis in ischemic brain of HFD-fed mice, accompanied by suppressed protein level of CPT1A. EPC transplantation corrected impaired neurological severity scores and angiogenesis in AMPK-deficient mice. CONCLUSION: Our findings suggest that AMPK deficiency aggravates poor angiogenesis in ischemic brain by mediating FAO and oxidative stress thereby inducing EPC dysfunction in hyperlipidemic mice.


Assuntos
Células Progenitoras Endoteliais , Ácidos Graxos , Hiperlipidemias , AVC Isquêmico , Camundongos Endogâmicos C57BL , Animais , Células Progenitoras Endoteliais/metabolismo , Hiperlipidemias/metabolismo , Hiperlipidemias/complicações , Camundongos , Masculino , Ácidos Graxos/metabolismo , AVC Isquêmico/metabolismo , Dieta Hiperlipídica/efeitos adversos , Proteínas Quinases Ativadas por AMP/metabolismo , Modelos Animais de Doenças , Oxirredução , Carnitina O-Palmitoiltransferase/metabolismo , Neovascularização Fisiológica/fisiologia , Camundongos Knockout , Angiogênese
12.
J Immunoassay Immunochem ; 45(5): 481-491, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39135454

RESUMO

Multiple myeloma (MM) is a prevalent yet incurable hematologic malignancy. Despite the proven efficacy of proteasome inhibitors in treating MM, resistance to Bortezomib-based treatments persists in a subset of patients. This case control study explores the potential of circulating endothelial progenitor cells (EPCs) as biomarkers for predicting response to Proteasome Inhibitor based therapy combined with Dexamethasone in MM patients. This study was conducted on 105 MM patients receiving bortezomib plus dexamethasone therapy and 90 healthy individuals as a control group. Utilizing 8-color multi-parameter flow cytometry, we assessed the levels of circulating EPCs, identified through CD34 FITC and CD309 PE markers at diagnosis and after one treatment cycle (4 weeks). Our findings revealed that patients exhibiting poor response to therapy showed significantly higher CD34/CD309 values than those with a good response (p < 0.001). The delineation of response based on CD34/CD309 expression was established with a cutoff ≤ 0.9 for percentage (yielding 100% sensitivity and 94.1% specificity) and ≤ 12.5 for absolute value (also with 100% sensitivity and 94.1% specificity). These results underscore the potential of EPC population levels, as quantified by CD34/CD309, to serve as a predictive biomarker for immunomodulatory treatment in MM patients undergoing Proteasome Inhibitor and Dexamethasone therapy.


Assuntos
Antígenos CD34 , Bortezomib , Células Progenitoras Endoteliais , Mieloma Múltiplo , Humanos , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Mieloma Múltiplo/diagnóstico , Masculino , Feminino , Pessoa de Meia-Idade , Antígenos CD34/sangue , Células Progenitoras Endoteliais/efeitos dos fármacos , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/patologia , Idoso , Prognóstico , Adulto , Dexametasona/farmacologia , Dexametasona/uso terapêutico , Estudos de Casos e Controles , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
13.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732080

RESUMO

Endothelial progenitor cells (EPCs) play a critical role in cardiovascular regeneration. Enhancement of their native properties would be highly beneficial to ensuring the proper functioning of the cardiovascular system. As androgens have a positive effect on the cardiovascular system, we hypothesized that dihydrotestosterone (DHT) could also influence EPC-mediated repair processes. To evaluate this hypothesis, we investigated the effects of DHT on cultured human EPCs' proliferation, viability, morphology, migration, angiogenesis, gene and protein expression, and ability to integrate into cardiac tissue. The results showed that DHT at different concentrations had no cytotoxic effect on EPCs, significantly enhanced the cell proliferation and viability and induces fast, androgen-receptor-dependent formation of capillary-like structures. DHT treatment of EPCs regulated gene expression of androgen receptors and the genes and proteins involved in cell migration and angiogenesis. Importantly, DHT stimulation promoted EPC migration and the cells' ability to adhere and integrate into murine cardiac slices, suggesting it has a role in promoting tissue regeneration. Mass spectrometry analysis further highlighted the impact of DHT on EPCs' functioning. In conclusion, DHT increases the proliferation, migration, and androgen-receptor-dependent angiogenesis of EPCs; enhances the cells' secretion of key factors involved in angiogenesis; and significantly potentiates cellular integration into heart tissue. The data offer support for potential therapeutic applications of DHT in cardiovascular regeneration and repair processes.


Assuntos
Movimento Celular , Di-Hidrotestosterona , Células Progenitoras Endoteliais , Sangue Fetal , Receptores Androgênicos , Sangue Fetal/citologia , Di-Hidrotestosterona/farmacologia , Humanos , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Células Progenitoras Endoteliais/citologia , Células Progenitoras Endoteliais/metabolismo , Proliferação de Células , Sobrevivência Celular , Expressão Gênica , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Proteínas de Membrana/genética , Metaloproteinase 9 da Matriz/genética , Basigina/genética , Animais , Camundongos , Ventrículos do Coração/citologia , Movimento Celular/efeitos dos fármacos
14.
Int J Mol Sci ; 25(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38674031

RESUMO

Hemangioblasts give rise to endothelial progenitor cells (EPCs), which also express the cell surface markers CD133 and c-kit. They may differentiate into the outgrowth endothelial cells (OECs) that control neovascularization in the developing embryo. According to numerous studies, reduced levels of EPCs in circulation have been linked to human cardiovascular disorders. Furthermore, preeclampsia and senescence have been linked to levels of EPCs produced from cord blood. Uncertainties surround how preeclampsia affects the way EPCs function. It is reasonable to speculate that preeclampsia may have an impact on the function of fetal EPCs during the in utero period; however, the present literature suggests that maternal vasculopathies, including preeclampsia, damage fetal circulation. Additionally, the differentiation potential and general activity of EPCs may serve as an indicator of the health of the fetal vascular system as they promote neovascularization and repair during pregnancy. Thus, the purpose of this review is to compare-through the assessment of their quantity, differentiation potency, angiogenic activity, and senescence-the angiogenic function of fetal EPCs obtained from cord blood for normal and pregnancy problems (preeclampsia, gestational diabetes mellitus, and fetal growth restriction). This will shed light on the relationship between the angiogenic function of fetal EPCs and pregnancy complications, which could have an effect on the management of long-term health issues like metabolic and cardiovascular disorders in offspring with abnormal vasculature development.


Assuntos
Diabetes Gestacional , Células Progenitoras Endoteliais , Sangue Fetal , Retardo do Crescimento Fetal , Pré-Eclâmpsia , Humanos , Gravidez , Feminino , Diabetes Gestacional/metabolismo , Diabetes Gestacional/sangue , Pré-Eclâmpsia/sangue , Células Progenitoras Endoteliais/metabolismo , Sangue Fetal/citologia , Sangue Fetal/metabolismo , Retardo do Crescimento Fetal/patologia , Diferenciação Celular
15.
Int J Mol Sci ; 25(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38892471

RESUMO

Ovarian cancer (OC) remains the most fatal disease of gynaecologic malignant tumours. The neovasculature in the tumour microenvironment principally comprises endothelial cells. Haematogenous cancer metastases are significantly impacted by tumour neovascularisation, which predominantly depends on the tumour-derived endothelial vasculogenesis. There is an urgent need for biomarkers for the diagnosis, prognosis and prediction of drug response. Endothelial cells play a key role in angiogenesis and other forms of tumour vascularisation. Subtypes of circulating endothelial cells may provide interesting non-invasive biomarkers of advanced OC that might have the potential to be included in clinical analysis for patients' stratification and therapeutic management. In this review, we summarise the reported studies on circulating endothelial subtypes in OC, detailing their isolation methods as well as their potential diagnostic, prognostic, predictive and therapeutic utility for clinical application. We highlight key biomarkers for the identification of circulating endothelial cell subtypes and their targets for therapies and critically point out future challenges.


Assuntos
Biomarcadores Tumorais , Células Endoteliais , Neovascularização Patológica , Neoplasias Ovarianas , Humanos , Feminino , Neovascularização Patológica/patologia , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/sangue , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/metabolismo , Microambiente Tumoral , Prognóstico , Angiogênese
16.
Int J Mol Sci ; 25(16)2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39201580

RESUMO

Congenital heart disease (CHD) can be complicated by pulmonary arterial hypertension (PAH). Cardiopulmonary bypass (CPB) for corrective surgery may cause endothelial dysfunction, involving endothelin-1 (ET-1), circulating endothelial cells (CECs), and endothelial progenitor cells (EPCs). These markers can gauge disease severity, but their levels in children's peripheral blood still lack consensus for prognostic value. The aim of our study was to investigate changes in ET-1, cytokines, and the absolute numbers (Ɲ) of CECs and EPCs in children 24 h before and 48 h after CPB surgery to identify high-risk patients of complications. A cohort of 56 children was included: 41 cases with CHD-PAH (22 with high pulmonary flow and 19 with low pulmonary flow) and 15 control cases. We observed that Ɲ-CECs increased in both CHD groups and that Ɲ-EPCs decreased in the immediate post-surgical period, and there was a strong negative correlation between ET-1 and CEC before surgery, along with significant changes in ET-1, IL8, IL6, and CEC levels. Our findings support the understanding of endothelial cell precursors' role in endogenous repair and contribute to knowledge about endothelial dysfunction in CHD.


Assuntos
Ponte Cardiopulmonar , Citocinas , Células Endoteliais , Células Progenitoras Endoteliais , Endotelina-1 , Cardiopatias Congênitas , Humanos , Endotelina-1/sangue , Endotelina-1/metabolismo , Células Progenitoras Endoteliais/metabolismo , Cardiopatias Congênitas/cirurgia , Cardiopatias Congênitas/sangue , Cardiopatias Congênitas/metabolismo , Cardiopatias Congênitas/patologia , Masculino , Feminino , Ponte Cardiopulmonar/efeitos adversos , Células Endoteliais/metabolismo , Citocinas/sangue , Citocinas/metabolismo , Criança , Pré-Escolar , Lactente , Biomarcadores/sangue , Estudos de Casos e Controles
17.
Acta Neuropsychiatr ; 36(3): 153-161, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38178721

RESUMO

OBJECTIVES: Despite mounting evidence demonstrates circulating endothelial progenitor cells (cEPCs) quantitative changes in depression, no study has investigated cEPC functions in major depressive disorder (MDD). We investigated the role of cEPC adhesive and apoptotic functions in MDD. METHODS: We recruited 68 patients with MDD and 56 healthy controls (HCs). The depression symptoms, anxiety, psychosomatic symptoms, subjective cognitive dysfunction, quality of life, and functional disability were evaluated using the Hamilton Depression Rating Scale and Montgomery-Åsberg Depression Rating Scale, Hamilton Anxiety Rating Scale, Depression and Somatic Symptoms Scale (DSSS), Perceived Deficits Questionnaire-Depression, 12-Item Short Form Health Survey (SF-12), and Sheehan Disability Scale (SDS), respectively. Working memory and executive function were assessed using a 2-back task and Wisconsin Card Sorting Test (WCST). Inflammatory marker (soluble interleukin-6 receptor, C-reactive protein, and tumor necrosis factor-α receptor-1), cEPC adhesive, and apoptotic levels were measured using in vitro assays. RESULTS: The MDD patients showed significantly lower cEPC adhesive levels than the HCs, and this difference in adhesive function remained statistically significant even after adjusting for inflammatory marker levels. The cEPC adhesion levels were in inverse correlations with commission and omission errors in 2-back task, the percent perseverative response and percent perseverative errors in WCST, and the DSSS and SDS scores, but in positive correlations with SF-12 physical and mental component scores. cEPC apoptotic levels did not differ significantly between the groups. CONCLUSION: The findings indicate that cEPC adhesive function is diminished in MDD and impacts various aspects of cognitive and psychosocial functions associated with the disorder.


Assuntos
Transtorno Depressivo Maior , Células Progenitoras Endoteliais , Humanos , Transtorno Depressivo Maior/sangue , Transtorno Depressivo Maior/psicologia , Feminino , Masculino , Células Progenitoras Endoteliais/metabolismo , Adulto , Pessoa de Meia-Idade , Apoptose/fisiologia , Função Executiva/fisiologia , Adesão Celular , Estudos de Casos e Controles , Escalas de Graduação Psiquiátrica , Testes Neuropsicológicos
18.
Am J Respir Cell Mol Biol ; 68(2): 161-175, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36287629

RESUMO

Acute respiratory distress syndrome/acute lung injury (ARDS/ALI) involves acute respiratory failure characterized by vascular endothelial and lung alveolar epithelial injury. Endothelial progenitor cells (EPCs) can mediate vasculogenesis. However, the limitations of EPCs, such as low survival and differentiation, are believed to inhibit the effectiveness of autologous cell therapies. This study demonstrated that lysophosphatidic acid (LPA), a bioactive small molecule without immunogenicity, is involved in the survival and antiapoptotic effects in human umbilical cord mesenchymal stem cells. This study aimed to explore whether LPA improves the survival of EPCs, enhancing the cellular therapeutic efficacy in ARDS, and these results will expand the application of LPA in stem cells and regenerative medicine. LPA promoted the colony formation, proliferation, and migration of EPCs and upregulated the expression of vascular endothelial-derived growth factor (VEGF) in EPCs. LPA pretreatment of transplanted EPCs improved the therapeutic effect by increasing EPC numbers in the rat lungs. LPA enhanced EPC proliferation and migration through Lpar1 coupled to Gi/o and Gq/11, respectively. Activation of extracellular signal-related kinase 1/2, or ERK1/2, was related to LPA-induced EPC proliferation but not migration. LPA/Lpar1-mediated Gi/o protein was also shown to be involved in promoting VEGF expression and inhibiting IL-1α expression in EPCs. Low LPA concentrations are present after lung injury; thus, the restoration of LPA may promote endothelial cell homeostasis and lung repair in ARDS. Inhalation of LPA significantly promoted the homing of endogenous EPCs to the lung and reduced lung injury in both rats with LPS-induced ALI and Streptococcus pneumoniae-infected mice. Taken together, these data indicated that LPA/Lpar1-mediated effects in EPCs are involved in maintaining endothelial cell homeostasis and lung tissue repair under physiological conditions.


Assuntos
Lesão Pulmonar Aguda , Células Progenitoras Endoteliais , Síndrome do Desconforto Respiratório , Humanos , Ratos , Camundongos , Animais , Células Progenitoras Endoteliais/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Pulmão/metabolismo , Síndrome do Desconforto Respiratório/terapia , Síndrome do Desconforto Respiratório/metabolismo , Lesão Pulmonar Aguda/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo
19.
Am J Respir Cell Mol Biol ; 68(4): 381-394, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36252184

RESUMO

The identification and role of endothelial progenitor cells in pulmonary arterial hypertension (PAH) remain controversial. Single-cell omics analysis can shed light on endothelial progenitor cells and their potential contribution to PAH pathobiology. We aim to identify endothelial cells that may have stem/progenitor potential in rat lungs and assess their relevance to PAH. Differential expression, gene set enrichment, cell-cell communication, and trajectory reconstruction analyses were performed on lung endothelial cells from single-cell RNA sequencing of Sugen-hypoxia, monocrotaline, and control rats. Relevance to human PAH was assessed in multiple independent blood and lung transcriptomic data sets. Rat lung endothelial cells were visualized by immunofluorescence in situ, analyzed by flow cytometry, and assessed for tubulogenesis in vitro. A subpopulation of endothelial cells (endothelial arterial type 2 [EA2]) marked by Tm4sf1 (transmembrane 4 L six family member 1), a gene strongly implicated in cancer, harbored a distinct transcriptomic signature enriched for angiogenesis and CXCL12 signaling. Trajectory analysis predicted that EA2 has a less differentiated state compared with other endothelial subpopulations. Analysis of independent data sets revealed that TM4SF1 is downregulated in lungs and endothelial cells from patients and PAH models, is a marker for hematopoietic stem cells, and is upregulated in PAH circulation. TM4SF1+CD31+ rat lung endothelial cells were visualized in distal pulmonary arteries, expressed hematopoietic marker CD45, and formed tubules in coculture with lung fibroblasts. Our study uncovered a novel Tm4sf1-marked subpopulation of rat lung endothelial cells that may have stem/progenitor potential and demonstrated its relevance to PAH. Future studies are warranted to further elucidate the role of EA2 and Tm4sf1 in PAH.


Assuntos
Células Progenitoras Endoteliais , Hipertensão Arterial Pulmonar , Animais , Humanos , Ratos , Antígenos de Superfície/metabolismo , Modelos Animais de Doenças , Endotélio , Hipertensão Pulmonar Primária Familiar/metabolismo , Monocrotalina , Proteínas de Neoplasias/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , Artéria Pulmonar/metabolismo
20.
J Cell Mol Med ; 27(5): 687-700, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36756741

RESUMO

We explored the roles of hsa-microRNA (miR)-409-3p in senescence and signalling mechanism of human endothelial progenitor cells (EPCs). Hsa-miR-409-3p was found upregulated in senescent EPCs. Overexpression of miRNA mimics in young EPCs inhibited angiogenesis. In senescent EPCs, compared to young EPCs, protein phosphatase 2A (PP2A) was downregulated, with activation of p38/JNK by phosphorylation. Young EPCs treated with siPP2A caused inhibited angiogenesis with activation of p38/JNK, similar to findings in senescent EPCs. Time series analysis showed, in young EPCs treated with hsa-miR-409-3p mimics, PP2A was steadily downregulated for 72 h, while p38/JNK was activated with a peak at 48 hours. The inhibited angiogenesis of young EPCs after miRNA-409-3p mimics treatment was reversed by the p38 inhibitor. The effect of hsa-miR-409-3p on PP2A signalling was attenuated by exogenous VEGF. Analysis of human peripheral blood mononuclear cells (PBMCs) obtained from healthy people revealed hsa-miR-409-3p expression was higher in those older than 65 years, compared to those younger than 30 years, regardless of gender. In summary, hsa-miR-409-3p was upregulated in senescent EPCs and acted as a negative modulator of angiogenesis via targeting protein phosphatase 2 catalytic subunit alpha (PPP2CA) gene and regulating PP2A/p38 signalling. Data from human PBMCs suggested hsa-miR-409-3p a potential biomarker for human ageing.


Assuntos
Células Progenitoras Endoteliais , MicroRNAs , Humanos , Envelhecimento/genética , Células Progenitoras Endoteliais/metabolismo , Leucócitos Mononucleares/metabolismo , MicroRNAs/metabolismo , Proteína Fosfatase 2/genética , Proteínas Quinases p38 Ativadas por Mitógeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA