Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 956
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cereb Cortex ; 34(1)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-37997361

RESUMO

In this study, we investigated the impact of Dual specificity tyrosine-phosphorylation-regulated kinase 1A (Dyrk1A) overexpression, a gene associated with Down syndrome, on hippocampal neuronal deficits in mice. Our findings revealed that mice overexpressing Dyrk1A (TgDyrk1A; TG) exhibited impaired hippocampal recognition memory, disrupted excitation-inhibition balance, and deficits in long-term potentiation (LTP). Specifically, we observed layer-specific deficits in dendritic arborization of TG CA1 pyramidal neurons in the stratum radiatum. Through computational modeling, we determined that these alterations resulted in reduced storage capacity and compromised integration of inputs, with decreased high γ oscillations. Contrary to prevailing assumptions, our model suggests that deficits in neuronal architecture, rather than over-inhibition, primarily contribute to the reduced network. We explored the potential of environmental enrichment (EE) as a therapeutic intervention and found that it normalized the excitation-inhibition balance, restored LTP, and improved short-term recognition memory. Interestingly, we observed transient significant dendritic remodeling, leading to recovered high γ. However, these effects were not sustained after EE discontinuation. Based on our findings, we conclude that Dyrk1A overexpression-induced layer-specific neuromorphological disturbances impair the encoding of place and temporal context. These findings contribute to our understanding of the underlying mechanisms of Dyrk1A-related hippocampal deficits and highlight the challenges associated with long-term therapeutic interventions for cognitive impairments.


Assuntos
Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases , Animais , Camundongos , Modelos Animais de Doenças , Camundongos Transgênicos , Neurônios , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Células Piramidais
2.
J Neurosci ; 43(7): 1211-1224, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36596699

RESUMO

Autism spectrum disorders (ASDs) are developmental in origin; however, little is known about how they affect the early development of behavior and sensory coding. The most common inherited form of autism is Fragile X syndrome (FXS), caused by a mutation in FMR1 Mutation of fmr1 in zebrafish causes anxiety-like behavior, hyperactivity, and hypersensitivity in auditory and visual processing. Here, we show that zebrafish fmr1-/- mutant larvae of either sex also display changes in hunting behavior, tectal coding, and social interaction. During hunting, they were less successful at catching prey and displayed altered behavioral sequences. In the tectum, representations of prey-like stimuli were more diffuse and had higher dimensionality. In a social behavioral assay, they spent more time observing a conspecific but responded more slowly to social cues. However, when given a choice of rearing environment fmr1-/- larvae preferred one with reduced visual stimulation, and rearing them in this environment reduced genotype-specific effects on tectal excitability. Together, these results shed new light on how fmr1-/- changes the early development of neural systems and behavior in a vertebrate.SIGNIFICANCE STATEMENT Autism spectrum disorders (ASDs) are caused by changes in early neural development. Animal models of ASDs offer the opportunity to study these developmental processes in greater detail than in humans. Here, we found that a zebrafish mutant for a gene which in humans causes one type of ASD showed early alterations in hunting behavior, social behavior, and how visual stimuli are represented in the brain. However, we also found that mutant fish preferred reduced visual stimulation, and rearing them in this environment reduced alterations in neural activity patterns. These results suggest interesting new directions for using zebrafish as a model to study the development of brain and behavior in ASDs, and how the impact of ASDs could potentially be reduced.


Assuntos
Síndrome do Cromossomo X Frágil , Peixe-Zebra , Animais , Modelos Animais de Doenças , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Caça , Larva/metabolismo , Camundongos Knockout , Mutação/genética , Proteínas de Ligação a RNA/genética , Comportamento Social , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Camundongos
3.
Eur J Neurosci ; 59(5): 982-995, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38378276

RESUMO

Environmental enrichment (EE) has been shown to produce beneficial effects in addiction disorders; however, due to its configurational complexity, the underlying mechanisms are not yet fully elucidated. Recent evidence suggests that EE, acting as a metaplastic agent, may affect glutamatergic mechanisms underlying appetitive memory and, in turn, modulate reward-seeking behaviours: here, we have investigated such a possibility following a brief EE exposure. Adult male Sprague-Dawley rats were exposed to EE for 22 h and the expression of critical elements of the glutamate synapse was measured 2 h after the end of EE in the medial prefrontal cortex (mPFC), nucleus accumbens (NAc) and hippocampus (Hipp) brain areas, which are critical for reward and memory. We focused our investigation on the expression of NMDA and AMPA receptor subunits, their scaffolding proteins SAP102 and SAP97, vesicular and membrane glutamate transporters vGluT1 and GLT-1, and critical structural components such as proteins involved in morphology and function of glutamatergic synapses, PSD95 and Arc/Arg3.1. Our findings demonstrate that a brief EE exposure induces metaplastic changes in glutamatergic mPFC, NAc and Hipp. Such changes are area-specific and involve postsynaptic NMDA/AMPA receptor subunit composition, as well as changes in the expression of their main scaffolding proteins, thus influencing the retention of such receptors at synaptic sites. Our data indicate that brief EE exposure is sufficient to dynamically modulate the glutamatergic synapses in mPFC-NAc-Hipp circuits, which may modulate rewarding and memory processes.


Assuntos
Ácido Glutâmico , Receptores de AMPA , Ratos , Animais , Masculino , Ácido Glutâmico/metabolismo , Ratos Sprague-Dawley , Receptores de AMPA/metabolismo , N-Metilaspartato/farmacologia , Sinapses/fisiologia , Núcleo Accumbens , Receptores de N-Metil-D-Aspartato/metabolismo
4.
Neurobiol Learn Mem ; 208: 107880, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38103676

RESUMO

Environmental enrichment (EE) is a process of brain stimulation by modifying the surroundings, for example, by changing the sensory, social, or physical conditions. Rodents have been used in such experimental strategies through exposure to diverse physical, social, and exploration conditions. The present study conducted an extensive analysis of the existing literature surrounding the impact of EE on dementia rodent models. The review emphasised the two principal aspects that are very closely related to dementia: cognitive function (learning and memory) as well as psychological factors (anxiety-related behaviours such as phobias and unrealistic worries). Also highlighted were the mechanisms involved in the rodent models of dementia showing EE effects. Two search engines, PubMed and Science Direct, were used for data collection using the following keywords: environmental enrichment, dementia, rodent model, cognitive performance, and anxiety-related behaviour. Fifty-five articles were chosen depending on the criteria for inclusion and exclusion. The rodent models with dementia demonstrated improved learning and memory in the form of hampered inflammatory responses, enhanced neuronal plasticity, and sustained neuronal activity. EE housing also prevented memory impairment through the prevention of amyloid beta (Aß) seeding formation, an early stage of Aß plaque formation. The rodents subjected to EE were observed to present increased exploratory activity and exert less anxiety-related behaviour, compared to those in standard housing. However, some studies have proposed that EE intervention through exercise would be too mild to counteract the anxiety-related behaviour and risk assessment behaviour deficits in the Alzheimer's disease rodent model. Future studies should be conducted on old-aged rodents and the duration of EE exposure that would elicit the greatest benefits since the existing studies have been conducted on a range of ages and EE durations. In summary, EE had a considerable effect on dementia rodent models, with the most evident being improved cognitive function.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Animais , Roedores , Aprendizagem em Labirinto/fisiologia , Meio Ambiente , Cognição , Doença de Alzheimer/psicologia , Ansiedade
5.
Horm Behav ; 162: 105538, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38574447

RESUMO

Environmental enrichment (EE) is a paradigm that offers the animal a plethora of stimuli, including physical, cognitive, sensory, and social enrichment. Exposure to EE can modulate both anxiety responses and plasma corticosterone. In this study, our objective was to explore how chronic unpredictable stress (CUS) impacts anxiety-related behaviors in male Swiss mice raised in EE conditions. Additionally, we investigated corticosterone and adrenocorticotropic hormone (ACTH) levels to assess the involvement of the hypothalamic-pituitary-adrenal (HPA) axis in mediating these responses. Mice were housed under either EE or standard housing conditions for 21 days. Afterward, they were exposed to 11 days of CUS while still reared in their distinct housing conditions, with half of the mice receiving daily pretreatment with the vehicle and the other half receiving daily metyrapone (MET) injections, an inhibitor of steroid synthesis, 30 mins before CUS exposure. Blood samples were obtained to assess plasma corticosterone and ACTH levels. The 11-day CUS protocol induced anxiety-like phenotype and elevated ACTH levels in EE mice. Chronic MET pretreatment prevented anxiety-like behavior in the EE-CUS groups, by mechanisms involving increased plasma corticosterone levels and decreased ACTH. These results suggest a role of the HPA axis in the mechanism underlying the anxiogenic phenotype induced by CUS in EE mice and shed light on the complex interplay between environmental factors, stress, and the HPA axis in anxiety regulation.


Assuntos
Hormônio Adrenocorticotrópico , Ansiedade , Corticosterona , Meio Ambiente , Sistema Hipotálamo-Hipofisário , Sistema Hipófise-Suprarrenal , Estresse Psicológico , Animais , Masculino , Sistema Hipotálamo-Hipofisário/metabolismo , Camundongos , Sistema Hipófise-Suprarrenal/metabolismo , Estresse Psicológico/metabolismo , Hormônio Adrenocorticotrópico/sangue , Corticosterona/sangue , Metirapona/farmacologia , Comportamento Animal/fisiologia , Abrigo para Animais , Aprendizagem em Labirinto/fisiologia
6.
Horm Behav ; 157: 105452, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37977023

RESUMO

Social hierarchies are a prevalent feature of all animal groups, and an individual's rank within the group can significantly affect their overall health, typically at the greatest expense of the lowest-ranked individuals, or omegas. These subjects have been shown to exhibit various stress-related phenotypes, such as increased hypothalamic-pituitary axis activity and increased amygdalar corticotropin-releasing factor levels compared to higher-ranked subjects. However, these findings have been primarily characterized in males and in models requiring exhibition of severe aggression. The goals of the current study, therefore, were to characterize the formation and maintenance of social hierarchies using the tube test and palatable liquid competition in same-sex groups of male and female C57BL/6 J mice. We also aimed to examine the effects of tube test-determined social rank on plasma and hypothalamic oxytocin and vasopressin levels, peptides with established roles in social behaviors and the stress response. Lastly, we assessed the effects of environmental enrichment and length of testing on the measures outlined above. Overall, we demonstrated that males and females develop social hierarchies and that these hierarchies can be determined using the tube test. While we were unable to establish a consistent connection between peptide levels and social rank, we observed transient changes in these peptides reflecting complex interactions between social rank, sex, environment, and length of testing. We also found that many male and female omegas began to exhibit passive coping behavior after repeated tube test losses, demonstrating the potential of this assay to serve as a model of chronic, mild psychosocial stress.


Assuntos
Hierarquia Social , Comportamento Social , Humanos , Animais , Camundongos , Masculino , Feminino , Camundongos Endogâmicos C57BL , Agressão/fisiologia , Hipotálamo
7.
Mol Biol Rep ; 51(1): 742, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874703

RESUMO

BACKGROUND: Enrichment activities may influence the microbiomes of captive tigers', affecting their health, digestion, and behavior. Currently, there are few studies that address the impact of enrichment activity on tigers' health. This study aimed to determine the diversity of the gut microbiome in captive Malayan tigers at Zoo Melaka and Night Safari during the environmental enrichment phase using a metabarcoding approach. METHODS AND RESULTS: This study utilized different enrichment activities which catered for food, sensory, and cognitive enrichment. Eleven fresh fecal samples from captive Malayan tigers at Zoo Melaka and Night Safari were collected under different conditions. All samples were extracted and 16S rRNA V3-V4 region amplicon sequencing was used to characterize the gut microbiome of captive Malayan tigers subjected to various enrichment activities. Firmicutes, Actinobacteriota, and Fusobacteriota were the dominant phyla observed in the gut microbiome of captive Malayan tigers during enrichment activities. This study revealed ß-diversity significantly varied between normal and enrichment phase, however no significant differences were observed in α-diversity. This study demonstrates that environmental enrichment improves the gut microbiome of Malayan tigers because gut microbes such as Lachnoclostridium, which has anti-inflammatory effects and helps maintain homeostasis, and Romboutsia, which has a probiotic effect on the gut microbiome. CONCLUSIONS: This study provides valuable insights into the effects of enrichment activities on the gut microbiome of captive Malayan tigers, offering guidance for enhancing captive management practices aimed at promoting the health and well-being of Malayan tiger in captivity.


Assuntos
Animais de Zoológico , Espécies em Perigo de Extinção , Fezes , Microbioma Gastrointestinal , RNA Ribossômico 16S , Tigres , Animais , Tigres/microbiologia , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , Fezes/microbiologia , Bactérias/genética , Bactérias/classificação
8.
Cereb Cortex ; 33(10): 5863-5874, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-36795038

RESUMO

The cortical distribution and functional role of cholecystokinin (CCK) are largely unknown. Here, a CCK receptor antagonist challenge paradigm was developed to assess functional connectivity and neuronal responses. Structural-functional magnetic resonance imaging and calcium imaging were undertaken in environmental enrichment (EE) and standard environment (SE) groups (naïve adult male mice, n = 59, C57BL/B6J, P = 60). Functional connectivity network-based statistics and pseudo-demarcation Voronoi tessellations to cluster calcium signals were used to derive region of interest metrics based on calcium transients, firing rate, and location. The CCK challenge elicited robust changes to structural-functional networks, decreased neuronal calcium transients, and max firing rate (5 s) of dorsal hippocampus in SE mice. However, the functional changes were not observed in EE mice, while the decreased neuronal calcium transients and max firing rate (5 s) were similar to SE mice. Decreased gray matter alterations were observed in multiple brain regions in the SE group due to CCK challenge, while no effect was observed in the EE group. The networks most affected by CCK challenge in SE included within isocortex, isocortex to olfactory, isocortex to striatum, olfactory to midbrain, and olfactory to thalamus. The EE group did not experience network changes in functional connectivity due to CCK challenge. Interestingly, calcium imaging revealed a significant decrease in transients and max firing rate (5 s) in the dorsal CA1 hippocampus subregion after CCK challenge in EE. Overall, CCK receptor antagonists affected brain-wide structural-functional connectivity within the isocortex, in addition to eliciting decreased neuronal calcium transients and max firing rate (5 s) in CA1 of the hippocampus. Future studies should investigate the CCK functional networks and how these processes affect isocortex modulation. Significance Statement  Cholecystokinin is a neuropeptide predominately found in the gastrointestinal system. Albeit abundantly expressed in neurons, the role and distribution of cholecystokinin are largely unknown. Here, we demonstrate cholecystokinin affects brain-wide structural-functional networks within the isocortex. In the hippocampus, the cholecystokinin receptor antagonist challenge decreases neuronal calcium transients and max firing rate (5 s) in CA1. We further demonstrate that mice in environmental enrichment do not experience functional network changes to the CCK receptor antagonist challenge. Environmental enrichment may afford protection to the alterations observed in control mice due to CCK. Our results suggest that cholecystokinin is distributed throughout the brain, interacts in the isocortex, and demonstrates an unexpected functional network stability for enriched mice.


Assuntos
Colecistocinina , Conectoma , Camundongos , Masculino , Animais , Receptores da Colecistocinina , Cálcio , Camundongos Endogâmicos C57BL , Hipocampo
9.
Nutr Neurosci ; 27(2): 106-119, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36634108

RESUMO

The hypothalamus controls food intake by integrating nutrient signals, of which one of the most important is glucose. Consequently, impairments in hypothalamic glucose-sensing mechanisms are associated with hyperphagia and obesity. Environmental enrichment (EE) is an animal housing protocol that provides complex sensory, motor, and social stimulations and has been proven to reduce adiposity in laboratory mice. However, the mechanism by which EE promotes adiposity-suppressing effect remains incompletely understood. Neurotrophic factors play an important role in the development and maintenance of the nervous system, but they are also involved in the hypothalamic regulation of feeding. Brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) are expressed in the hypothalamus and their expression is stimulated by glucose. EE is associated with increased expression of Bdnf mRNA in the hypothalamus. Therefore, we hypothesized that EE potentiates the anorectic action of glucose by altering the expression of neurotrophic factor genes in the hypothalamus. Male C57BL/6 mice were maintained under standard or EE conditions to investigate the feeding response to glucose and the associated expression of feeding-related neurotrophic factor genes in the hypothalamus. Intraperitoneal glucose injection reduced food intake in both control and EE mice with a significantly greater reduction in the EE group compared to the control group. EE caused a significantly enhanced response of Gdnf mRNA expression to glucose without altering basal Gdnf mRNA expression and Bdnf mRNA response to glucose. These findings suggest that EE enhances glucose-induced feeding suppression, at least partly, by enhancing hypothalamic glucose-sensing ability that involves GDNF.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Glucose , Animais , Masculino , Camundongos , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Expressão Gênica , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Glucose/metabolismo , Hipotálamo/metabolismo , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
10.
Brain Inj ; 38(9): 742-749, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-38695288

RESUMO

BACKGROUND: The use of Environmental Enrichment (EE) has been widely studied in animal models. However, the application of the same in humans is limited to rehabilitation settings. OBJECTIVE: To investigate the feasibility of a community-based EE paradigm in adults with brain injury. METHODS: Six individuals diagnosed with traumatic brain injury enrolled in the study. The Go Baby Go Café instrumented with a body weight harness system, provided physical and social enrichment as participants performed functional tasks for 2 hours, three times a week, for 2 months. Feasibility and safety outcomes were recorded throughout sessions. Clinical measures including 10-meter walk, timed up and go, jebsen hand function, 6-minute walk, and trail making tests were obtained pre and post intervention. RESULTS: All participants completed the study. The attendance was 100% and adherence was 87%. Positive changes in clinical measures were statistically significant for the timed up and go (p = 0.0175), TUG-cognitive (p = 0.0064), 10-meter walk (p = 0.0428), six-minute walk (p = 0.0196), TMT-A (p = 0.034). Changes in JHFT were not significant (p = 0.0506), with one subject recording values counter to the trend. CONCLUSION: The Café was a comprehensive EE-based intervention that was feasible, safe, and has the potential to enhance motor and cognitive function in individuals with brain injury.


Assuntos
Lesões Encefálicas Traumáticas , Estudos de Viabilidade , Humanos , Masculino , Projetos Piloto , Feminino , Adulto , Lesões Encefálicas Traumáticas/reabilitação , Pessoa de Meia-Idade , Meio Ambiente , Resultado do Tratamento , Adulto Jovem
11.
Anim Welf ; 33: e18, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38618293

RESUMO

The complexity experienced in early life can affect trait development of individuals, including sociability and fearfulness. The modern dairy calf's rearing environment often lacks environmental and social complexity. This study examined the effects of early-life, non-maternal adult contact and access to a physically complex environment on the responses of dairy heifers to several stressors, including restraint, social isolation, and novelty at 18 months of age. From the age of 2-13 weeks, 60 dairy heifers (Bos taurus) were reared according to one of three treatments applied to 20 calves each: (1) Hand-reared at pasture in groups of ten, with three unrelated dry cows (+S); (2) Hand-reared at pasture in groups of ten (-S); or (3) Hand-reared in sheds in groups of 10-12 as a commercial control (CC). At 13 weeks, all treatment groups were mixed and managed at pasture as a single herd. At 18 months, the responses of 50 heifers to restraint in a crush, social isolation and a novel object were observed (+S = 16, -S = 17, CC = 17). Treatment did not influence responses to restraint or social isolation, but influenced some indicators of fearfulness during exposure to a novel object. Six +S heifers interacted with the novel object compared to 0 -S and one CC, and CC heifers spent around 50% more time in vigilance than +S or -S heifers. Dairy heifers provided with early-life social enrichment in the form of non-maternal adult contact may have reduced fear of novelty. The implications for lifelong ability to adapt to novel situations, such as entry into the milking herd, should be assessed.

12.
J Fish Biol ; 104(3): 758-768, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37950685

RESUMO

Environmental enrichment has the potential to improve the welfare and post-release survival of hatchery fish stocked for conservation purposes. However, the effectiveness of environmental enrichment is partly dependent on the fish species, life stage, and specific enrichment structure used. To enhance the effectiveness of environmental enrichment, it is crucial to focus on characteristic differences in enrichment structures, such as type and level. This study investigated how differences in enrichment type and level affected physiological and behavioral aspects of the welfare of pre-release juvenile rock bream Oplegnathus fasciatus by evaluating growth performance, basal and stressed cortisol levels, antioxidant enzyme activities, and exploratory behaviors regarding anxiety and flexibility. Fish were reared for 4 weeks in different enrichment treatments: barren, low-level cover structure, high-level cover structure, low-level interference structure (LI), and high-level interference structure (HI). The results revealed that fish reared with the LI treatment showed less anxiety and greater flexibility with respect to exploratory behaviors, without oxidative damage being detected. Despite exhibiting less anxiety as well, fish reared in the HI treatment had oxidative damage, indicated by lower superoxide dismutase activity, compared to those in the barren treatment. In addition, none of these enrichment structures enhanced growth performance or mitigate chronic and acute stress responses. Overall, the low-level interference structure may be more favorable in promoting the behavioral welfare of the fish. Application of this type and level of enrichment may increase the survival of the hatchery fish after release, which is critical to stocking success.


Assuntos
Doenças dos Peixes , Perciformes , Animais , Perciformes/metabolismo , Peixes/metabolismo , Estresse Oxidativo , Proteínas de Peixes/genética , Filogenia
13.
Inflammopharmacology ; 32(2): 909-915, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492182

RESUMO

The aim of the study was to investigate the effects of rat housing conditions-standard conditions, social isolation, environmental enrichment-and the subsequent reversal of these conditions on the vulnerability of the gastric mucosa to ulcerogenic stimuli, somatic pain sensitivity, and treadmill work capacity. Rats, aged 30 days, were placed in standard conditions (SC), social isolation (Is), and environmental enrichment (EE) for 4 weeks. Then half of each group underwent a reversal of housing conditions: SC rats were moved to Is, Is rats were placed in EE, EE rats were moved to Is, for 2 weeks. The other half served as a control with no change in their initial housing. Two weeks after the reversal, vulnerability of the gastric mucosa to ulcerogenic action of indomethacin (IM, 35 mg/kg, sc), somatic pain sensitivity (hot plate test), and work capacity (measured by the running distance on a treadmill) were assessed in control and reversed groups. Social isolation induced a proulcerogenic effect, increasing IM-induced gastric erosions, which was effectively reversed when rats were transferred to an environmental enrichment. Conversely, transferring rats from an environmental enrichment to social isolation exacerbated ulcerogenic action of IM. Somatic pain sensitivity and treadmill work capacity were also influenced by housing conditions, with environmental enrichment showing positive effects. The present findings show that social isolation of rats induces a proulcerogenic effect. Environmental enrichment reverses proulcerogenic action of social isolation on the gastric mucosa and increases resilience to pain stimuli and treadmill work capacity.


Assuntos
Indometacina , Dor Nociceptiva , Ratos , Animais , Ratos Sprague-Dawley , Indometacina/farmacologia , Mucosa Gástrica , Isolamento Social
14.
J Sci Food Agric ; 104(6): 3487-3497, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38133882

RESUMO

BACKGROUND: Some environmental enrichment methods, such as occupational enrichment (OE), can improve fish growth, but little is known about its effects on fillet quality. In this study, we evaluated the effects of OE using underwater currents on different aspects of fillet quality and muscle metabolism in rainbow trout (Oncorhynchus mykiss), before and after a handling procedure (fasting). The trout were placed in groups of 30 in separate tanks in three treatments for 30 days: no artificial currents (CON), randomly fired underwater currents (RFC), and continuous underwater currents (CUC). Additionally, half of the individuals in each treatment were fasted (5 days, 45.2 °C days). RESULTS: Slaughter weight, condition factor, and relative growth were lower in CON fish, indicating a positive effect of OE on growth. Rigor mortis, muscle pH, and muscle glycogen levels were similar among treatments, indicating no effect of OE on classical measures of fillet quality. However, significant differences were found regarding fillet colour and muscle enzymes. The fillets of RFC fish were more salmon-pink in colour, which is favoured by consumers. Also, activity levels of pyruvate kinase and glycogen phosphorylase in muscle were significantly higher in CUC fish, probably due to increased energy demands, as pumps were on continually in that treatment. CONCLUSION: Overall, RFC fish seemed to have received enough stimulation to improve growth while not being excessive in terms of exhausting the animals (avoiding negative effects on muscle metabolism), whereas OE may have provided a hormetic effect, allowing fish to better adjust to fasting. © 2023 Society of Chemical Industry.


Assuntos
Oncorhynchus mykiss , Animais , Oncorhynchus mykiss/metabolismo , Alimentos Marinhos/análise , Rigor Mortis
15.
Artigo em Inglês | MEDLINE | ID: mdl-38863379

RESUMO

The overall beneficial effect of live black soldier fly larvae (BSFL) on the welfare of broiler chickens, turkeys, and laying hens has already been discussed in the literature. However, scant information is available regarding the benefits of feeding live BSFL to medium-growing chicken hybrids reared under organic/free-range conditions, and whose welfare is frequently cited as being inadequate. The aim of this research was to advance our knowledge of this topic. To this end, 240 label naked neck birds (Hubbard JA57 hybrid) were assigned, at 21 days of age, to four experimental groups (6 replicates/treatment, 10 chickens/replicate), created according to sex (M/F) and the provision of a 10% live BSFL dietary supplementation (control males, control females, larvae males, and larvae females), and raised until 82 days of age. We performed behavioural observations, a tonic immobility test, and an avoidance distance (AD) test. We assessed feather damage and cleanliness, hock burn, footpad dermatitis, and skin lesion scores, and determined the concentration of excreta corticosterone metabolites (ECM) and the heterophile to lymphocyte heterophile/lymphocyte (H/L) ratio. The behavioural observations demonstrated increased physical and foraging activity (p < 0.05) in the live BSFL administered groups compared with C ones, providing valuable data on the explorative and recreational behaviour of this chicken genotype. The results also evidenced the usefulness of live BSFL as a fear reducer in females, as those receiving the BSFL supplement moved closer to the operator during the AD test (p < 0.01). No physical injuries or damage were observed on the birds, regardless of whether they received the BSFL supplementation or not. The ECM were unaffected by BSFL supplementation, while the H/L ratio was higher in the larvae groups than in the control ones (p = 0.050). In conclusion, live BSFL provision could constitute a powerful tool for improving life quality in medium-growing chickens. Further research is required to clarify the stress modulation role of live BSFL on poultry production.

16.
Fish Physiol Biochem ; 50(2): 463-475, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38060080

RESUMO

This study investigated the effects of occupational enrichment, specifically underwater currents, on the stress status of rainbow trout (Oncorhynchus mykiss). A total of 540 fish were divided into three groups: control tanks without artificial currents (CO), tanks with randomly fired underwater currents (RFC), and tanks with continuous current throughout the day (CT). After 30 days, half of the fish in each group underwent a 5-day pre-slaughter fasting (5D), while the others were fed until the day before slaughter (0D). Fish in the RFC group exhibited lower levels of plasma cortisol and acetylcholinesterase enzyme activity in hypothalamus and optic tract than other groups, suggesting an improved stress status. RFC group also showed higher levels of non-esterified fatty acids (NEFA) in 5D fish and higher liver glycogen stores, suggesting improved energy reserves. In comparison, the CT group had higher LDH levels, possibly due to their increased swimming activity. The CO group had significantly lower NEFA levels at 5D compared to the RFC group, suggesting lower energy reserves. The RFC fish had darker and yellow-reddish skin and liver color, suggesting an improved stress status and lower lipid reserves, respectively. Overall, although a significant stress response was not observed in fasted individuals, possibly due to the relatively short fasting period, the study suggests that providing occupational enrichment using randomly fired underwater currents for 1 month helped to improve stress status in rainbow trout, indicating that occupational enrichment during the grow-out phase can positively impact the welfare of rainbow trout during routine handling procedures.


Assuntos
Oncorhynchus mykiss , Animais , Oncorhynchus mykiss/fisiologia , Ácidos Graxos não Esterificados/farmacologia , Acetilcolinesterase , Fígado , Jejum/fisiologia
17.
J Headache Pain ; 25(1): 74, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38724948

RESUMO

BACKGROUND: Chronic migraine (CM) is a debilitating neurofunctional disorder primarily affecting females, characterized by central sensitization. Central sensitization refers to the enhanced response to sensory stimulation, which involves changes in neuronal excitability, synaptic plasticity, and neurotransmitter release. Environmental enrichment (EE) can increase the movement, exploration, socialization and other behaviors of mice. EE has shown promising effects in various neurological disorders, but its impact on CM and the underlying mechanism remains poorly understood. Therefore, the purpose of this study was to determine whether EE has the potential to serve as a cost-effective intervention strategy for CM. METHODS: A mouse CM model was successfully established by repeated administration of nitroglycerin (NTG). We selected adult female mice around 8 weeks old, exposed them to EE for 2 months, and then induced the CM model. Nociceptive threshold tests were measured using Von Frey filaments and a hot plate. The expression of c-Fos, calcitonin gene-related peptide (CGRP) and inflammatory response were measured using WB and immunofluorescence to evaluate central sensitization. RNA sequencing was used to find differentially expressed genes and signaling pathways. Finally, the expression of the target differential gene was investigated. RESULTS: Repeated administration of NTG can induce hyperalgesia in female mice and increase the expression of c-Fos and CGRP in the trigeminal nucleus caudalis (TNC). Early exposure of mice to EE reduced NTG-induced hyperalgesia in CM mice. WB and immunofluorescence revealed that EE inhibited the overexpression of c-Fos and CGRP in the TNC of CM mice and alleviated the inflammatory response of microglia activation. RNA sequencing analysis identified that several central sensitization-related signaling pathways were altered by EE. VGluT1, a key gene involved in behavior, internal stimulus response, and ion channel activity, was found to be downregulated in mice exposed to EE. CONCLUSION: EE can significantly ameliorate hyperalgesia in the NTG-induced CM model. The mechanisms may be to modulate central sensitization by reducing the expression of CGRP, attenuating the inflammatory response, and downregulating the expression of VGluT1, etc., suggesting that EE can serve as an effective preventive strategy for CM.


Assuntos
Sensibilização do Sistema Nervoso Central , Modelos Animais de Doenças , Hiperalgesia , Transtornos de Enxaqueca , Nitroglicerina , Animais , Nitroglicerina/toxicidade , Transtornos de Enxaqueca/induzido quimicamente , Transtornos de Enxaqueca/metabolismo , Hiperalgesia/induzido quimicamente , Feminino , Sensibilização do Sistema Nervoso Central/efeitos dos fármacos , Sensibilização do Sistema Nervoso Central/fisiologia , Camundongos , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Meio Ambiente , Camundongos Endogâmicos C57BL
18.
Zoo Biol ; 43(1): 83-91, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37909672

RESUMO

Environmental enrichment (EE) is commonly provided to animals managed under human care, being beneficial to behavioral diversity and improving animal welfare. Use of EE appears to be particularly beneficial to individual wild animals spending a short period of time in captivity, for example, as part of conservation or rehabilitation programs. This paper documents a case study on the application and relevance of EE for a group of captive mute swans housed in a rescue center. Observational data were analyzed for two groups of juvenile swans that were provided with a physical EE device to increase time spent foraging. Periods of no EE were observed and compared to data from when birds were provided with EE. Results show that EE promoted foraging time and helped to reduce long periods of inactivity in captive birds. EE helped to reduce occurrence of captive-focused (i.e., abnormal behaviors) although these was already seen at very low rates. Inactivity as a measure of welfare in captive swans specifically (and waterbirds generally) should be further investigated to understand potential impacts on bird health. Our research shows the benefits of simple and easy-to-use EE devices on captive animal behavior and how use of EE for individuals spending a short amount of time in captivity (e.g., within a rescue center) could ensure diversity of behavior patterns and promote the performance of adaptive behaviors upon release to the wild.


Assuntos
Animais de Zoológico , Comportamento Animal , Humanos , Animais , Animais Selvagens , Aves , Bem-Estar do Animal
19.
Zoo Biol ; 43(1): 100-109, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37991115

RESUMO

The implementation of environmental enrichment (EE) can be effective in promoting zoo animal welfare by enhancing the performance of natural or species-typical behaviors. Research on the effects of EE is biased towards larger mammalian species, with less charismatic species being overlooked. Armadillos are one such overlooked example. A captive environment that results in inactivity, obesity, and associated poor health can negatively affect armadillo well-being. The aim of this study was to evaluate how the implementation of four physical object-based EEs could positively affect the behaviors of three armadillo species, housed in four similar exhibits. Behavioral data were collected both before (baseline) and during (treatment) EE periods, alongside of visitor number and environmental temperatures. The EE comprised of a plastic ball or a cardboard tube or a cardboard box, or a scatter-feed, and these were rotated each week of study until each exhibit had received them in turn. Despite the presence of different EE types, activity remained low throughout the study. However, results suggest that the plastic ball and cardboard box increased exploratory behaviors in the armadillos, but no overall increase in activity was noted during the scatter feed. Visitor presence had no effect on armadillo activity, and armadillos showed reduced activity with increasing environmental temperature. Overall, the use of physical object-based EE promoted beneficial natural behaviors in zoo-housed armadillos, but environmental conditions (i.e., temperature) also impacted armadillo activity, suggesting a complicated relationship between an enclosure's environmental variable and any behavioral husbandry measures.


Assuntos
Animais de Zoológico , Tatus , Animais , Bem-Estar do Animal , Temperatura , Comportamento Animal
20.
Neurobiol Dis ; 185: 106223, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37423502

RESUMO

Obsessive-compulsive and related disorders (OCRD) is an emergent class of psychiatric illnesses that contributes substantially to the global mental health disease burden. In particular, the prototypical illness, obsessive-compulsive disorder (OCD), has a profoundly deleterious effect on the quality of life of those with lived experience. Both clinical and preclinical studies have investigated the genetic and environmental influences contributing to the pathogenesis of obsessive-compulsive and related disorders. Significant progress has been made in recent years in our understanding of the genetics of OCD, along with the critical role of common environmental triggers (e.g., stress). Some of this progress can be attributed to the sophistication of rodent models used in the field, particularly genetic mutant models, which demonstrate promising construct, face, and predictive validity. However, there is a paucity of studies investigating how these genetic and environmental influences interact to precipitate the behavioural, cellular, and molecular changes that occur in OCD. In this review, we assert that preclinical studies offer a unique opportunity to carefully manipulate environmental and genetic factors, and in turn to interrogate gene-environment interactions and relevant downstream sequelae. Such studies may serve to provide a mechanistic framework to build our understanding of the pathogenesis of complex neuropsychiatric disorders such as OCD. Furthermore, understanding gene-environment interactions and pathogenic mechanisms will facilitate precision medicine and other future approaches to enhance treatment, reduce side-effects of therapeutic interventions, and improve the lives of those suffering from these devastating disorders.


Assuntos
Transtorno Obsessivo-Compulsivo , Qualidade de Vida , Humanos , Transtorno Obsessivo-Compulsivo/genética , Transtorno Obsessivo-Compulsivo/psicologia , Interação Gene-Ambiente , Ansiedade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA