RESUMO
While the nucleophilic addition of ammonia to ketones is an archetypal reaction in classical organic chemistry, the reactivity of heavier group 14 carbonyl analogues (R2E=O; E=Si, Ge, Sn, or Pb) with NH3 remains sparsely investigated, primarily due to the synthetic difficulties in accessing heavier ketone congeners. Herein, we present a room-temperature stable boryl-substituted amidinato-silanone {(HCDippN)2B}{PhC(tBuN)2}Si=O (Dipp=2,6-iPr2C6H3) (together with its germanone analogue), formed from the corresponding silylene under a N2O atmosphere. This system reacts cleanly with ammonia in 1,2-fashion to give an isolable sila-hemiaminal complex {(HCDippN)2B}{PhC(tBuN)2}Si(OH)(NH2). Quantum chemical calculations reveal that the formation of this sila-hemiaminal is crucially dependent on the nature of the ancillary ligand scaffold. It is facilitated thermodynamically by the hemi-lability of the amidinate ligand (which allows for the formation of an energetically critical intramolecular Nâ â â HO hydrogen bond within the product) and is enabled mech-anistically by a process in which the silanone initially acts in umpolung fashion as a base (rather than an acid), due to the strongly electron-releasing and sterically bulky nature of the ancillary boryl ligand.
RESUMO
A rare three-coordinate germanone [IPrN]2 Ge=O (IPrN=bis(2,6-diisopropylphenyl)imidazolin-2-imino) was successfully isolated. The germanone has a rather high thermal stability in arene solvent, and no detectable change was observed at 80 °C for at least one week. However, high thermal stability of [IPrN]2 Ge=O does not prevent its reactivity toward small molecules. Structural analysis and initial reactivity studies revealed the highly polarized nature of the terminal Ge=O bond. Besides, the addition of phenylacetylene, as well as O-atom transfer with 2,6-dimethylphenyl isocyanide make it a mimic of nucleophilic transition-metal oxides. Mechanism for O-atom transfer reaction was investigated via DFT calculations, which revealed that the reaction proceeds via a [2+2] cycloaddition intermediate.
Assuntos
Elementos de Transição , CianetosRESUMO
Complexes of germanone containing formal Ge=OâM bonds (M=Zn, B, Ge, Sn) were isolated and characterized. The compounds were prepared through a novel synthetic route using a germanium µ-oxo dimer 3 as the starting material. This method circumvents the need to employ germanones to prepare complexes of germanones.