Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Biochem ; 479(2): 431-444, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37084167

RESUMO

Ulcerative colitis (UC) is an inflammatory bowel disease that affects the mucosa of the colon, resulting in severe inflammation and ulcers. Genistein is a polyphenolic isoflavone present in several vegetables, such as soybeans and fava beans. Therefore, we conducted the following study to determine the therapeutic effects of genistein on UC in rats by influencing antioxidant activity and mitochondrial biogenesis and the subsequent effects on the apoptotic pathway. UC was induced in rats by single intracolonic administration of 2 ml of 4% acetic acid. Then, UC rats were treated with 25-mg/kg genistein. Colon samples were obtained to assess the gene and protein expression of nuclear factor erythroid 2-related factor-2 (Nrf2), heme oxygenase-1 (HO-1), peroxisome proliferator-activated receptor-gamma coactivator (PGC-1), mitochondrial transcription factor A (TFAM), B-cell lymphoma 2 (BCL2), BCL2-associated X (BAX), caspase-3, caspase-8, and caspase-9. In addition, colon sections were stained with hematoxylin/eosin to investigate the cell structure. The microimages of UC rats revealed inflammatory cell infiltration, hemorrhage, and the destruction of intestinal glands, and these effects were improved by treatment with genistein. Finally, treatment with genistein significantly increased the expression of PGC-1, TFAM, Nrf2, HO-1, and BCL2 and reduced the expression of BAX, caspase-3, caspase-8, and caspase-9. In conclusion, genistein exerted therapeutic effects against UC in rats. This therapeutic activity involved enhancing antioxidant activity and increasing mitochondrial biogenesis, which reduced cell apoptosis.


Assuntos
Colite Ulcerativa , Genisteína , Animais , Ratos , Genisteína/farmacologia , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Caspase 3 , Caspase 9 , Caspase 8 , Antioxidantes/farmacologia , Fator 2 Relacionado a NF-E2 , Biogênese de Organelas , Proteína X Associada a bcl-2
2.
Fish Shellfish Immunol ; 151: 109703, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38878912

RESUMO

Heme oxygenase-1 (HO-1), an inducible rate-limiting metabolic enzyme, exerts critical immunomodulatory functions by potential anti-oxidant, anti-inflammatory, and anti-apoptotic activities. Although accumulative studies have focused on the immune functions of HO-1 in mammals, the roles in fish are poorly understood, and the reports on involvement in the defensive and immune response are very limited. In this study, On-HO-1 gene from Oreochromis niloticus was successfully cloned and identified, which contained an open reading frame (ORF) of 816 bp and coded for a protein of 271 amino acids. The On-HO-1 protein phylogenetically shared a high homology with HO-1 in other teleost fish (76.10%-98.89 %) and a lowly homology with HO-1 in mammals (38.98%-41.55 %). The expression levels of On-HO-1 were highest in the liver of healthy tilapias and sharply induced by Streptococcus agalactiae or Aeromonas hydrophila. Besides, On-HO-1 overexpression significantly increased non-specific immunological parameters in serum during bacterial infection, including LZM, SOD, CAT, ACP, and AKP. It also exerted anti-inflammatory and anti-apoptotic effects in response to the immune response of the infection with S. agalactiae or A. hydrophila by upregulating anti-inflammatory factors (IL-10, TGF-ß), autophagy factors (ATG6, ATG8) and immune-related pathway factors (P65, P38), and down-regulating pro-inflammatory factors (IL-1ß, IL-6, TNF-α), apoptotic factors (Caspase3, Caspase9), pyroptosis factor (Caspase1), and inflammasome (NLRP3). These results suggested that On-HO-1 involved in immunomodulatory functions and host defense in Nile tilapia.


Assuntos
Aeromonas hydrophila , Ciclídeos , Doenças dos Peixes , Proteínas de Peixes , Infecções por Bactérias Gram-Negativas , Heme Oxigenase-1 , Imunidade Inata , Filogenia , Animais , Ciclídeos/imunologia , Ciclídeos/genética , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/química , Aeromonas hydrophila/fisiologia , Imunidade Inata/genética , Heme Oxigenase-1/genética , Heme Oxigenase-1/imunologia , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/veterinária , Streptococcus agalactiae/fisiologia , Regulação da Expressão Gênica/imunologia , Perfilação da Expressão Gênica/veterinária , Alinhamento de Sequência/veterinária , Sequência de Aminoácidos
3.
Genes Cells ; 27(12): 719-730, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36203316

RESUMO

The induction mechanism of heme oxygenase-1 (HO-1) by heat shock (HS) is still unknown. Here, we discovered that HS activates the HO-1 expression in a mouse hepatoma cell line (Hepa 1-6). Knockdown experiments showed that the HS-induced HO-1 expression was dependent on HS factor 1 (HSF1). A chromatin immunoprecipitation (ChIP) assay demonstrated that the HS-activated HSF1 bound to the HS elements (HSEs) in the upstream enhancer 1 region (E1). Unexpectedly, HS also facilitates the BTB and CNC homology 1 (BACH1) binding to the Maf recognition elements (MAREs) in E1. We examined the effects of a catalytically inactive CRISPR-associated 9 nucleases (dCas9) with short guide RNAs (sgRNAs), and demonstrated that the HSF1 binding to HSEs in E1 was indispensable for the HS-induced HO-1 expression. Heme treatment (HA) dissociates BACH1 from MAREs and facilitated the binding of nuclear factor-erythroid-2-related factor 2 (NRF2) to MAREs. Following treatment with both HS and HA, the HO-1 induction and the HSF1 binding to HSEs in E1 were most notably observed. These results indicate that the HS-induced HO-1 expression is dependent on the HSF1 binding to HSEs in E1, although modulated by the BACH1 and NRF2 binding to MAREs within the same E1.


Assuntos
Resposta ao Choque Térmico , Heme Oxigenase-1 , Animais , Camundongos , Heme Oxigenase-1/genética , Linhagem Celular , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Choque Térmico/genética
4.
BMC Pulm Med ; 23(1): 286, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550659

RESUMO

PURPOSE: Endotoxin-induced acute lung injury (ALI) is a severe disease caused by an imbalanced host response to infection. It is necessary to explore novel mechanisms for the treatment of endotoxin-induced ALI. In endotoxin-induced ALI, tetramethylpyrazine (TMP) provides protection through anti-inflammatory, anti-apoptosis, and anti-pyroptosis effects. However, the mechanism of action of TMP in endotoxin-induced ALI remains unclear. Here, we aimed to determine whether TMP can protect the lungs by inhibiting Golgi stress via the Nrf2/HO-1 pathway. METHODS AND RESULTS: Using lipopolysaccharide (LPS)-stimulated C57BL/6J mice and MLE12 alveolar epithelial cells, we observed that TMP pretreatment attenuated endotoxin-induced ALI. LPS + TMP group showed lesser lung pathological damage and a lower rate of apoptotic lung cells than LPS group. Moreover, LPS + TMP group also showed decreased levels of inflammatory factors and oxidative stress damage than LPS group (P < 0.05). Additionally, LPS + TMP group presented reduced Golgi stress by increasing the Golgi matrix protein 130 (GM130), Golgi apparatus Ca2+/Mn2+ ATPases (ATP2C1), and Golgin97 expression while decreasing the Golgi phosphoprotein 3 (GOLPH3) expression than LPS group (P < 0.05). Furthermore, TMP pretreatment promoted Nrf2 and HO-1 expression (P < 0.05). Nrf2-knockout mice or Nrf2 siRNA-transfected MLE12 cells were pretreated with TMP to explore how the Nrf2/HO-1 pathway affected TMP-mediated Golgi stress in endotoxin-induced ALI models. We observed that Nrf2 gene silencing partially reversed the alleviating effect of Golgi stress and the pulmonary protective effect of TMP. CONCLUSION: Our findings showed that TMP therapy reduced endotoxin-induced ALI by suppressing Golgi stress via the Nrf2/HO-1 signaling pathway in vivo and in vitro.


Assuntos
Lesão Pulmonar Aguda , Pirazinas , Animais , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Antioxidantes/metabolismo , Complexo de Golgi/metabolismo , Complexo de Golgi/patologia , Heme Oxigenase-1/genética , Lipopolissacarídeos/toxicidade , Pulmão/patologia , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo , Transdução de Sinais , Pirazinas/farmacologia
5.
J Asian Nat Prod Res ; 25(8): 783-795, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36300534

RESUMO

Carnosol is a natural compound with antioxidant properties. Based on this evidence, in the present study we investigated whether this compound can protect retinal vascular endothelium from hyperglycemic insult responsible for diabetic retinopathy development. We performed in vitro study on human retinal endothelial cells (HREC) cultured both in normal and high glucose conditions to assess the effects of carnosol on cell viability, Nrf2 expression, HO-1 activity, and ERK1/2 expression. HREC exposed to high glucose insult were treated with carnosol. Data indicated that carnosol treatment is able to induce HO-1 expression via Nrf2 activation and counteracts the damage elicited by high glucose. Further, carnosol activation of Nrf2/HO-1 signaling axis involves ERK1/2 pathway. These data confirm the therapeutic value of carnosol by suggesting its use to treat diabetic retinopathy.

6.
Int J Mol Sci ; 24(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37685970

RESUMO

The careful monitoring of patients with mild/moderate COVID-19 is of particular importance because of the rapid progression of complications associated with COVID-19. For prognostic reasons and for the economic management of health care resources, additional biomarkers need to be identified, and their monitoring can conceivably be performed in the early stages of the disease. In this retrospective cross-sectional study, we found that serum concentrations of high-mobility group box 1 (HMGB1) and heme oxygenase-1 (HO-1), at the time of hospital admission, could be useful biomarkers for COVID-19 management. The study included 160 randomly selected recovered patients with mild to moderate COVID-19 on admission. Compared with healthy controls, serum HMGB1 and HO-1 levels increased by 487.6 pg/mL versus 43.1 pg/mL and 1497.7 pg/mL versus 756.1 pg/mL, respectively. Serum HO-1 correlated significantly with serum HMGB1, oxidative stress parameters (malondialdehyde (MDA), the phosphatidylcholine/lysophosphatidylcholine ratio (PC/LPC), the ratio of reduced and oxidative glutathione (GSH/GSSG)), and anti-inflammatory acute phase proteins (ferritin, haptoglobin). Increased heme catabolism/hemolysis were not detected. We hypothesize that the increase in HO-1 in the early phase of COVID-19 disease is likely to have a survival benefit by providing protection against oxidative stress and inflammation, whereas the level of HMGB1 increase reflects the activity of the innate immune system and represents levels within which the disease can be kept under control.


Assuntos
COVID-19 , Proteína HMGB1 , Humanos , Heme Oxigenase-1 , Estudos Transversais , Estudos Retrospectivos , Biomarcadores , Glutationa , Hospitais
7.
Int J Mol Sci ; 24(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37894956

RESUMO

Muscle weakness and muscle loss characterize many physio-pathological conditions, including sarcopenia and many forms of muscular dystrophy, which are often also associated with mitochondrial dysfunction. Verbascoside, a phenylethanoid glycoside of plant origin, also named acteoside, has shown strong antioxidant and anti-fatigue activity in different animal models, but the molecular mechanisms underlying these effects are not completely understood. This study aimed to investigate the influence of verbascoside on mitochondrial function and its protective role against H2O2-induced oxidative damage in murine C2C12 myoblasts and myotubes pre-treated with verbascoside for 24 h and exposed to H2O2. We examined the effects of verbascoside on cell viability, intracellular reactive oxygen species (ROS) production and mitochondrial function through high-resolution respirometry. Moreover, we verified whether verbascoside was able to stimulate nuclear factor erythroid 2-related factor (Nrf2) activity through Western blotting and confocal fluorescence microscopy, and to modulate the transcription of its target genes, such as heme oxygenase-1 (HO-1) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), by Real Time PCR. We found that verbascoside (1) improved mitochondrial function by increasing mitochondrial spare respiratory capacity; (2) mitigated the decrease in cell viability induced by H2O2 and reduced ROS levels; (3) promoted the phosphorylation of Nrf2 and its nuclear translocation; (4) increased the transcription levels of HO-1 and, in myoblasts but not in myotubes, those of PGC-1α. These findings contribute to explaining verbascoside's ability to relieve muscular fatigue and could have positive repercussions for the development of therapies aimed at counteracting muscle weakness and mitochondrial dysfunction.


Assuntos
Antioxidantes , Fator 2 Relacionado a NF-E2 , Animais , Camundongos , Antioxidantes/metabolismo , Linhagem Celular , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Peróxido de Hidrogênio/metabolismo , Mitocôndrias/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Debilidade Muscular/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
8.
Virol J ; 19(1): 23, 2022 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-35101046

RESUMO

BACKGROUND: Nuclear factor E2-related factor 2 (Nrf2) is an important transcription factor which plays a pivotal role in detoxifying reactive oxygen species (ROS) and has been more recently shown to regulate inflammatory and antiviral responses. However, the role of Nrf2 in Herpes Simplex Virus type 1 (HSV-1) infection is still unclear. In this study, the interaction between the Nrf2 and HSV-1 replication was investigated. METHODS: The levels of oxidative stress was monitored by using 8-hydroxy-2'-deoxyguanosine (8-OHdG) ELISA kits, and the dynamic changes of Nrf2-antioxidant response element (Nrf2-ARE) pathway were detected by Western Blot. The effect of Nrf2-ARE pathway on the regulation of HSV-1 proliferation was analyzed by Western Blot, Real-Time PCR and TCID50 assay. RESULTS: HSV-1 infection induced oxidative stress. Nrf2 was activated, accompanied by the increase of its down-stream antioxidant enzyme heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase 1 (NQO1) in the early stage of HSV-1 infection. The proliferation of HSV-1 was inhibited by overexpression of Nrf2 or treatment with its activator tert-Butylhydroquinone (tBHQ). On the contrary, silencing of Nrf2 promotes virus replication. HO-1 is involved in the regulation of IFN response, leading to efficient anti-HSV-1 effects. CONCLUSION: Our observations indicate that the Nrf2-ARE pathway activates a passive defensive response in the early stage of HSV-1 infection. Targeting the Nrf2 pathway demonstrates the potential for combating HSV-1 infection.


Assuntos
Herpesvirus Humano 1 , Fator 2 Relacionado a NF-E2 , Antioxidantes , Herpesvirus Humano 1/metabolismo , NAD(P)H Desidrogenase (Quinona)/genética , NAD(P)H Desidrogenase (Quinona)/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/farmacologia , Estresse Oxidativo , Regulação para Cima
9.
Bioorg Med Chem Lett ; 64: 128674, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35292342

RESUMO

Heme oxygenase-1 (HO-1) has been involved in the pathogenesis of Alzheimer's disease (AD), thus constituting a promising target for AD drug development. Positron emission tomography (PET) is a fully translational imaging technology, which will help us understand the role of HO-1 in the progression of AD, facilitating to validate promising HO-1 inhibitors in clinical trials. To our knowledge, there is no report on PET imaging probe targeting HO-1 in animals and humans. We report herein the synthesis and characterization of a 11C-labeled imidazole-based alcohol derivative ([11C]QC-33) for imaging of HO-1 in the brain. The desired product [11C]QC-33 was afforded with a radiochemical yield of 16 ± 9% (n = 3, decay corrected). The radiochemical purity was greater than 99%, and the molar radioactivity was greater than 185 GBq/µmol. In vitro autoradiography studies indicated specific binding of [11C]QC-33 in the HO-1 rich regions, showing 75%, 75%, and 69% radioactivity binding reductions in cerebellum, brain stem, and midbrain, respectively. PET/CT scanning in C57BL/6 mice showed low brain uptake and poor blood-brain barrier (BBB) penetration of [11C]QC-33. These results suggested that [11C]QC-33 can serve as a lead compound to advance the development of next generation PET tracer with the potential to monitor HO-1 in AD progression.


Assuntos
Heme Oxigenase-1 , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Heme Oxigenase-1/metabolismo , Imidazóis/metabolismo , Imidazóis/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/metabolismo
10.
BMC Neurol ; 22(1): 21, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35016629

RESUMO

BACKGROUND: Immersive virtual reality (VR)-based motor control training (VRT) is an innovative approach to improve motor function in patients with stroke. Currently, outcome measures for immersive VRT mainly focus on motor function. However, serum biomarkers help detect precise and subtle physiological changes. Therefore, this study aimed to identify the effects of immersive VRT on inflammation, oxidative stress, neuroplasticity and upper limb motor function in stroke patients. METHODS: Thirty patients with chronic stroke were randomized to the VRT or conventional occupational therapy (COT) groups. Serum biomarkers including interleukin 6 (IL-6), intracellular adhesion molecule 1 (ICAM-1), heme oxygenase 1 (HO-1), 8-hydroxy-2-deoxyguanosine (8-OHdG), and brain-derived neurotrophic factor (BDNF) were assessed to reflect inflammation, oxidative stress and neuroplasticity. Clinical assessments including active range of motion of the upper limb and the Fugl-Meyer Assessment for upper extremity (FMA-UE) were also used. Two-way mixed analyses of variance (ANOVAs) were used to examine the effects of the intervention (VRT and COT) and time on serum biomarkers and upper limb motor function. RESULTS: We found significant time effects in serum IL-6 (p = 0.010), HO-1 (p = 0.002), 8-OHdG (p = 0.045), and all items/subscales of the clinical assessments (ps < 0.05), except FMA-UE-Coordination/Speed (p = 0.055). However, significant group effects existed only in items of the AROM-Elbow Extension (p = 0.007) and AROM-Forearm Pronation (p = 0.048). Moreover, significant interactions between time and group existed in item/subscales of FMA-UE-Shoulder/Elbow/Forearm (p = 0.004), FMA-UE-Total score (p = 0.008), and AROM-Shoulder Flexion (p = 0.001). CONCLUSION: This was the first study to combine the effectiveness of immersive VRT using serum biomarkers as outcome measures. Our study demonstrated promising results that support the further application of commercial and immersive VR technologies in patients with chronic stroke.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Realidade Virtual , Humanos , Inflamação , Plasticidade Neuronal , Estresse Oxidativo , Recuperação de Função Fisiológica , Acidente Vascular Cerebral/terapia , Resultado do Tratamento , Extremidade Superior
11.
Medicina (Kaunas) ; 58(11)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36422196

RESUMO

Nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) have significant roles in the development of a hyperinflammatory state in infectious diseases. We aimed to investigate the association of the serum concentrations of Nrf2 and HO-1 with the severity of COVID-19 disease. The study included 40 subjects with mild and moderately severe forms of the disease (MEWS scoring system ≤2). Twenty of the subjects had MEWS scores of 3 or 4, which indicate a severe form of the disease, and twenty subjects had a MEWS score of ≥5, which indicates a critical form of the disease. HO-1 and Nrf2 were measured using the commercially available Enzyme-Linked Immunosorbent Assay (ELISA). Subjects with the most severe form of COVID-19 (critically ill) had a lower concentration of Nrf2 that negatively correlated with the markers of hyperinflammatory response (CRP, IL-6, ferritin). This observation was not made for HO-1, and the correlation between Nrf2 and HO-1 values was not established. In the mild/moderate form of COVID-19 disease, Nrf2 was associated with an increased 1,25 dihydroxy vitamin D concentration. The results of this study show that Nrf2 has a role in the body's anti-inflammatory response to COVID-19 disease, which makes it a potential therapeutic target.


Assuntos
COVID-19 , Heme Oxigenase-1 , Fator 2 Relacionado a NF-E2 , Humanos , COVID-19/diagnóstico , Ferritinas , Heme Oxigenase-1/sangue , Fator 2 Relacionado a NF-E2/sangue
12.
Zhongguo Zhong Yao Za Zhi ; 47(7): 1913-1920, 2022 Apr.
Artigo em Zh | MEDLINE | ID: mdl-35534262

RESUMO

This study explored whether Sagittaria sagittifolia polysaccharides(SSP) activates the nuclear factor erythroid-2-related factor2(Nrf2)/heme oxygenase-1(HO-1) signaling pathway to protect against liver damage jointly induced by multiple heavy metals. First, based on the proportion of dietary intake of six heavy metals in rice available in Beijing market, a heavy metal mixture was prepared for inducing mouse liver injury and HepG2 cell injury. Forty male Kunming mice were divided into five groups: control group, model group, glutathione positive control group, and low-and high-dose SSP groups, with eight mice in each group. After 30 days of intragastric administration, the liver injury in mice was observed by HE staining. In the in vitro experiment, MTT assay was conducted to detect the effects of SSP at 0.25, 0.5, 1, and 2 mg·mL~(-1) on HepG2 cell survival at different time points. The content of alanine transaminase(ALT) and aspartate aminotransferase(AST) in the 48-h cell culture fluid was measured using micro-plate cultivation method, followed by the detection of the change in reactive oxygen species(ROS) content by flow cytometry. The mRNA expression levels of Nrf2 and HO-1 in cells were determined by RT-PCR, and their protein expression by Western blot. HE staining results showed that compared with the model group, the SSP administration groups exhibited significantly alleviated inflammatory cell infiltration and fatty infiltration in the liver, with better outcomes observed in the high-dose SSP group. In the in vitro MTT assay, compared with the model group, SSP at four concentrations all significantly increased the cell survival rate, decreased the ALT, AST, and ROS content(P<0.05), and down-regulated Nrf2 and HO-1 mRNA and protein expression(P<0.05). SSP significantly improves inflammatory infiltration in the liver tissue of mice exposed to a variety of heavy metals and corrects the liver fat degeneration, which may be related to its regulation of the Nrf2/HO-1 signaling pathway, reduction of ROS, and alleviation of oxidative damage.


Assuntos
Metais Pesados , Sagittaria , Animais , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Fígado , Masculino , Metais Pesados/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Polissacarídeos/farmacologia , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sagittaria/genética , Sagittaria/metabolismo
13.
Biol Pharm Bull ; 44(6): 875-883, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34078820

RESUMO

Inflammation caused by the excessive secretion of inflammatory mediators in abnormally activated macrophages promotes many diseases along with oxidative stress. Loganin, a major iridoid glycoside isolated from Cornus officinalis, has recently been reported to exhibit anti-inflammatory and antioxidant effects, whereas the underlying mechanism has not yet been fully clarified. Therefore, the aim of the present study is to investigate the effect of loganin on inflammation and oxidative stress in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Our results indicated that loganin treatment markedly attenuated the LPS-mediated phagocytic activity and release of nitric oxide (NO) and prostaglandin E2, which was associated with decreased the expression of inducible NO synthase and cyclooxygenase-2. In addition, loganin suppressed the expression and their extracellular secretion of LPS-induced pro-inflammatory cytokines, such as tumor necrosis factor-α and interleukin-1ß. Furthermore, loganin abolished reactive oxygen species (ROS) generation, and promoted the activation of nuclear factor-E2-related factor 2 (Nrf2) and the expression of heme oxygenase-1 (HO-1) in LPS-stimulated macrophages. However, zinc protoporphyrin, a selective HO-1 inhibitor, reversed the loganin-mediated suppression of pro-inflammatory cytokines in LPS-treated macrophages. In conclusion, our findings suggest that the upregulation of the Nrf2/HO-1 signaling pathway is concerned at least in the protective effect of loganin against LPS-mediated inflammatory and oxidative stress, and that loganin can be a potential functional agent to prevent inflammatory and oxidative damage.


Assuntos
Anti-Inflamatórios/farmacologia , Heme Oxigenase-1/metabolismo , Inflamação/metabolismo , Iridoides/farmacologia , Proteínas de Membrana/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dinoprostona/metabolismo , Inflamação/induzido quimicamente , Lipopolissacarídeos , Camundongos , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
14.
Int J Med Sci ; 18(11): 2285-2293, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33967604

RESUMO

This study examined the effect of the Flos Lonicerae Japonicae water extract (FLJWE), chlorogenic acid, and luteolin on pseudorabies virus (PRV)-induced inflammation in RAW264.7 cells and elucidated related molecular mechanisms. The results revealed that FLJWE and luteolin, but not chlorogenic acid, inhibited the production of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and inflammatory cytokines in PRV-infected RAW 264.7 cells. We found that the FLJWE and luteolin suppressed nuclear factor (NF)-κB activation by inhibiting the phosphorylation of signal transducer and activator of transcription 1 and 3 (STAT1 and STAT3, respectively). Moreover, the FLJWE significantly upregulated the expression of pNrf2 and its downstream target gene heme oxygenase-1 (HO-1). Our data indicated that FLJWE and luteolin reduced the expression of proinflammatory mediators and inflammatory cytokines, such as COX-2 and iNOS, through the suppression of the JAK/STAT1/3-dependent NF-κB pathway and the induction of HO-1 expression in PRV-infected RAW264.7 cells. The findings indicate that the FLJWE can be used as a potential antiviral agent.


Assuntos
Anti-Inflamatórios/farmacologia , Antivirais/farmacologia , Lonicera/química , Extratos Vegetais/farmacologia , Viroses/tratamento farmacológico , Animais , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/uso terapêutico , Antivirais/isolamento & purificação , Antivirais/uso terapêutico , Modelos Animais de Doenças , Flores/química , Heme Oxigenase-1/metabolismo , Herpesvirus Suídeo 1/imunologia , Humanos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/virologia , Proteínas de Membrana/metabolismo , Camundongos , NF-kappa B/metabolismo , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/uso terapêutico , Células RAW 264.7 , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Viroses/imunologia , Viroses/virologia , Água/química
15.
Molecules ; 26(7)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917440

RESUMO

Periodontitis is a set of chronic inflammatory diseases caused by the accumulation of Gram-negative bacteria on teeth, resulting in gingivitis, pocket formation, alveolar bone loss, tissue destruction, and tooth loss. In this study, the contents of ginsenosides isolated from Panax ginseng fruit extract were quantitatively analyzed, and the anti-inflammatory effects were evaluated in human periodontal ligament cells. The major ginsenosides, Re, Ra8, and Rf, present in ginseng fruit were simultaneously analyzed by a validated method using high-performance liquid chromatography with a diode-array detector; Re, Ra8, and Rf content per 1 g of P. ginseng fruit extract was 1.01 ± 0.03, 0.33 ± 0.01, and 0.55 ± 0.04 mg, respectively. Ginsenosides-Re, -Ra8, and -Rf inhibited the production of pro-inflammatory factors and the expression of important cytokines in periodontitis by inducing the expression of heme oxygenase 1 (HO-1), promoting osteoblast differentiation of periodontal ligament cells, suppressing alveolar bone loss, and promoting the expression of osteoblast-specific genes, such as alp, opn, and runx2. An inhibitory effect of these ginsenosides on periodontitis and alveolar bone loss was observed via the regulation of HO-1 and subsequent epidermal growth factor receptor (EGFR) signaling. Silencing EGFR with EGFR siRNA confirmed that the effect of ginsenosides on HO-1 is mediated by EGFR. In conclusion, this study evaluated the contents of ginsenosides-Re, -Ra8, and -Rf isolated from P. ginseng fruit extract. Therefore, these results provide important basic data for future P. ginseng fruit component studies and suggest that ginsenosides Re, Ra8, and Rf have potential as future treatment options for periodontitis.


Assuntos
Anti-Inflamatórios/farmacologia , Receptores ErbB/metabolismo , Ginsenosídeos/isolamento & purificação , Ginsenosídeos/farmacologia , Heme Oxigenase-1/metabolismo , Osteogênese/efeitos dos fármacos , Panax/química , Ligamento Periodontal/citologia , Diferenciação Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Frutas/química , Regulação da Expressão Gênica/efeitos dos fármacos , Ginsenosídeos/química , Humanos , Mediadores da Inflamação/metabolismo , Limite de Detecção , Lipopolissacarídeos/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Extratos Vegetais/química , Porphyromonas gingivalis/química , Análise de Regressão , Transdução de Sinais/efeitos dos fármacos
16.
Acta Neuropathol ; 140(4): 549-567, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32651669

RESUMO

The proinflammatory cytokine interleukin 1 (IL-1) is crucially involved in the pathogenesis of multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). Herein, we studied the role of IL-1 signaling in blood-brain barrier (BBB) endothelial cells (ECs), astrocytes and microglia for EAE development, using mice with the conditional deletion of its signaling receptor IL-1R1. We found that IL-1 signaling in microglia and astrocytes is redundant for the development of EAE, whereas the IL-1R1 deletion in BBB-ECs markedly ameliorated disease severity. IL-1 signaling in BBB-ECs upregulated the expression of the adhesion molecules Vcam-1, Icam-1 and the chemokine receptor Darc, all of which have been previously shown to promote CNS-specific inflammation. In contrast, IL-1R1 signaling suppressed the expression of the stress-responsive heme catabolizing enzyme heme oxygenase-1 (HO-1) in BBB-ECs, promoting disease progression via a mechanism associated with deregulated expression of the IL-1-responsive genes Vcam1, Icam1 and Ackr1 (Darc). Mechanistically, our data emphasize a functional crosstalk of BBB-EC IL-1 signaling and HO-1, controlling the transcription of downstream proinflammatory genes promoting the pathogenesis of autoimmune neuroinflammation.


Assuntos
Barreira Hematoencefálica/enzimologia , Encefalomielite Autoimune Experimental/imunologia , Células Endoteliais/enzimologia , Heme Oxigenase-1/metabolismo , Inflamação/imunologia , Interleucina-1/imunologia , Animais , Barreira Hematoencefálica/imunologia , Encefalomielite Autoimune Experimental/enzimologia , Regulação da Expressão Gênica/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/imunologia
17.
Int J Mol Sci ; 21(19)2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-33023074

RESUMO

Extremely low frequency electromagnetic fields (ELF-EMFs) have been known to modulate inflammatory responses by targeting signal transduction pathways and influencing cellular redox balance through the generation of oxidants and antioxidants. Here, we studied the molecular mechanism underlying the anti-oxidative effect of ELF-EMF in THP-1 cells, particularly with respect to antioxidant enzymes, such as heme oxygenase-1 (HO-1), regulated transcriptionally through nuclear factor E2-related factor 2 (Nrf2) activation. Cells treated with lipopolysaccharides (LPS) were exposed to a 50 Hz, 1 mT extremely low frequency electromagnetic fields for 1 h, 6 h and, 24 h. Our results indicate that ELF-EMF induced HO-1 mRNA and protein expression in LPS-treated THP-1 cells, with peak expression at 6 h, accompanied with a concomitant migration to the nucleus of a truncated HO-1 protein form. The immunostaining analysis further verified a nuclear enrichment of HO-1. Moreover, ELF-EMF inhibited the protein expressions of the sirtuin1 (SIRT1) and nuclear factor kappa B (NF-kB) pathways, confirming their anti-inflammatory/antioxidative role. Pretreatment with LY294002 (Akt inhibitor) and PD980559 (ERK inhibitor) inhibited LPS-induced Nrf2 nuclear translocation and HO-1 protein expression in ELF-EMF-exposed cells. Taken together, our results suggest that short ELF-EMF exposure exerts a protective role in THP-1 cells treated with an inflammatory/oxidative insult such as LPS, via the regulation of Nrf-2/HO-1 and SIRT1 /NF-kB pathways associated with intracellular glutathione (GSH) accumulation.


Assuntos
Campos Eletromagnéticos , Heme Oxigenase-1/genética , Inflamação/terapia , Fator 2 Relacionado a NF-E2/genética , Sirtuína 1/genética , Linhagem Celular , Movimento Celular/efeitos da radiação , Cromonas/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Regulação da Expressão Gênica/efeitos da radiação , Glutationa/genética , Glutationa/metabolismo , Humanos , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/patologia , Lipopolissacarídeos/toxicidade , Morfolinas/farmacologia , Compostos Orgânicos/farmacologia , Estresse Oxidativo/efeitos da radiação , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Transdução de Sinais/efeitos da radiação
18.
Int J Mol Sci ; 21(10)2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32466215

RESUMO

Retinal ischemia-reperfusion (rI/R) generates an oxidative condition causing the death of neuronal cells. Epigallocatechin 3-gallate (EGCG) has antioxidant and anti-inflammatory properties. Nonetheless, its correlation with the pathway of nuclear factor erythroid 2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) for the protection of the retina is unknown. We aimed to evaluate the neuroprotective efficacy of single-doses of EGCG in rI/R and its association with Nrf2/Ho-1 expression. In albino rabbits, rI/R was induced and single-doses of EGCG in saline (0-30 mg/kg) were intravenously administered to select an optimal EGCG concentration that protects from retina damage. To reach this goal, retinal structural changes, gliosis by glial fibrillary acidic protein (GFAP) immunostaining, and lipid peroxidation level by TBARS (thiobarbituric acid reactive substance) assay were determined. EGCG in a dose of 15 mg/kg (E15) presented the lowest levels of histological damage, gliosis, and oxidative stress in the studied groups. To determine the neuroprotective efficacy of E15 in a timeline (6, 24, and 48 h after rI/R), and its association with the Nrf2/HO-1 pathway, the following assays were done by immunofluorescence: apoptosis (TUNEL assay), necrosis (high-mobility group box-1; HMGB1), Nrf2, and HO-1. In addition, the Ho-1 mRNA (qPCR) and lipid peroxidation levels were evaluated. E15 showed a protective effect during the first 6 h, compared to 24 and 48 h after rI/R, as revealed by a decrease in the levels of all damage markers. Nuclear translocation Nrf2 and HO-1 staining were increased, including Ho-1 mRNA levels. In conclusion, a single dose of E15 decreases the death of neuronal cells induced by oxidative stress during the first 6 h after rI/R. This protective effect is associated with the nuclear translocation of Nrf2 and with an elevation of Ho-1 expression.


Assuntos
Antioxidantes/uso terapêutico , Catequina/análogos & derivados , Fármacos Neuroprotetores/uso terapêutico , Traumatismo por Reperfusão/tratamento farmacológico , Vasos Retinianos/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Apoptose , Catequina/farmacologia , Catequina/uso terapêutico , Heme Oxigenase (Desciclizante)/genética , Heme Oxigenase (Desciclizante)/metabolismo , Peroxidação de Lipídeos , Masculino , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fármacos Neuroprotetores/farmacologia , Coelhos , Vasos Retinianos/metabolismo , Vasos Retinianos/patologia
19.
J Cell Physiol ; 234(10): 17295-17304, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30770549

RESUMO

To study the effects of curcumin on human retinal pigment epithelial (RPE) cells exposed to high glucose (HG) insult, we performed in vitro studies on RPE cells cultured both in normal and HG conditions to assess the effects of curcumin on the cell viability, nuclear factor erythroid 2-related factor 2 (Nrf2) expression, HO-1 activity, and ERK1/2 expression. RPE cells exposed to HG insult were treated with curcumin. The cell viability, apoptosis, HO-1 activity, ERK, and Nrf2 expression were evaluated. The data indicated that treatment with curcumin caused a significant decrease in terms of apoptosis. Further, curcumin was able to induce HO-1 expression via Nrf2 activation and counteracts the damage elicited by HG. The present study demonstrated that curcumin provides protection against HG-induced damage in RPE cells through the activation of Nrf2/HO-1 signaling that involves the ERK pathway, suggesting that curcumin may have therapeutic value in the treatment of diabetic retinopathy.


Assuntos
Curcumina/farmacologia , Células Epiteliais/efeitos dos fármacos , Glucose/farmacologia , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/metabolismo , Heme Oxigenase-1/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Epitélio Pigmentado da Retina/metabolismo
20.
J Cell Physiol ; 234(4): 3961-3972, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30191981

RESUMO

Heat stress can inhibit follicular development in dairy cows, and thus can affect their reproductive performance. Follicular granulosa cells can synthesize estrogen, that affects the development and differentiation of follicles by apoptosis. Heme oxygenase 1 (HO-1/heat shock protein 32) plays an antiapoptotic and cytoprotective role in various cells during stress-induced apoptosis, but little is known about its definitive function in bovine (ovarian) granulosa cells (bGCs). In our study, the roles and mechanism of HO-1 on the heat stress-induced apoptosis of bGCs were studied. Our results show that the expression of HO-1 was significantly increased under heat stress. Moreover, HO-1 silencing increased apoptosis, whereas its overexpression dampened apoptosis by regulating the expression of Bax/Bcl-2 and the levels of cleaved caspase-3. In addition, HO-1 can also play a cytoprotective role by affecting estrogen levels and decomposing heme to produce biologically active metabolite carbon monoxide (CO). Meanwhile, CO significantly increased the level of HO-1, decreased Bax/Bcl-2 levels, and inhibited the activation of extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway. The apoptosis of ovarian GCs can affect the secretion of estrogen and lead to disorder of the ovarian microenvironment, thus affecting the normal function of the ovary. Our results indicate that HO-1 acts as a cytoprotective enzyme and plays a protective role in heat-induced apoptosis of bGCs. In conclusion, HO-1 and its metabolite CO inhibit the apoptosis of bGCs induced by heat stress through the ERK1/2 pathway. The results of this study provide a valuable clue for improving the fertility of heat stressed cows in summer.


Assuntos
Apoptose , Células da Granulosa/enzimologia , Resposta ao Choque Térmico , Heme Oxigenase-1/metabolismo , Temperatura Alta/efeitos adversos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Monóxido de Carbono/metabolismo , Bovinos , Células Cultivadas , Feminino , Heme Oxigenase-1/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA