Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Curr Issues Mol Biol ; 46(6): 6069-6084, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38921033

RESUMO

Candida auris was reported by the WHO as second to Cryptococcus neoformans, in the list of nineteen fungal priority pathogens, along with two species with a new nomenclature, Nakaseomyces glabrata (Candida glabrata) and Pichia kudriavzevii (Candida krusei). This novel classification was based on antifungal resistance, the number of deaths, evidence-based treatment, access to diagnostics, annual incidence, and complications and sequelae. We assessed which molecular assays have been used to diagnose Candida auris outbreaks in the last five years. Using "Candida auris; outbreak; molecular detection" as keywords, our search in PubMed revealed 32 results, from which we selected 23 original papers published in 2019-2024. The analyzed studies revealed that the detection methods were very different: from the VITEK® 2 System to MALDI TOF (Matrix-Assisted Laser Desorption Ionization-Time of Flight), NGS (Next-Generation Sequencing), WGS (Whole Genome Sequencing), and commercially available real-time PCR (Polymerase Chain Reaction) assays. Moreover, we identified studies that detected antifungal resistance genes (e.g., FKS for echinocandins and ERG11 for azoles). The analyzed outbreaks were from all continents, which confirms the capability of this yeast to spread between humans and to contaminate the environment. It is important that real-time PCR assays were developed for accurate and affordable detection by all laboratories, including the detection of antifungal resistance genes. This will allow the fast and efficient implementation of stewardship programs in hospitals.

2.
Microb Pathog ; 196: 106951, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39299555

RESUMO

Paracoccidioidomycosis (PCM) is a systemic granulomatous mycosis prevalent in individuals who carry out rural activities. Its etiological agent is a thermodimorphic fungus belonging to the genus; Paracoccidioides spp. Seven species of this fungus are known: Paracoccidioides brasiliensis, Paracoccidioides lutzii, Paracoccidioides americana, Paracoccidioides restrepiensis, Paracoccidioides venezuelensis, Paracoccidioides loboi and Paracoccidioides ceti. For a long time, Paracoccidioides brasiliensis was attributed as the only causal agent of this mycosis. What is known about adhesins, virulence, escape mechanisms and fungal involvement with the host's immune system is correlated with the species Paracoccidioides brasiliensis. Interactions between Paracoccidioides spp. and the host are complex and dynamic. The fungus needs nutrients for its needs and must adapt to a hostile environment, evading the host's immune system, thus enabling the development of the infectious process. On the other hand, the host's immune system recognizes Paracoccidioides spp. and employs all protective mechanisms to prevent fungal growth and consequently tissue invasion. Knowing this, understanding how Paracoccidioides spp. escapes the host's immune system, can help to understand the pathogenic mechanisms related to the development of the disease and, therefore, in the design of new specific treatment strategies. In this review we discuss these mechanisms and what are the adhesion molecules of Paracoccidioides spp. uses to escape the hostile environment imposed by the host's defense mechanisms; finally, we suggest how to neutralize them with new antifungal therapies.


Assuntos
Interações Hospedeiro-Patógeno , Paracoccidioides , Paracoccidioidomicose , Paracoccidioides/patogenicidade , Paracoccidioides/imunologia , Paracoccidioidomicose/microbiologia , Paracoccidioidomicose/imunologia , Humanos , Virulência , Evasão da Resposta Imune , Animais
3.
Mycopathologia ; 188(5): 603-621, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37289362

RESUMO

Aspergillus fumigatus is one the most ubiquitous airborne opportunistic human fungal pathogens. Understanding its interaction with host immune system, composed of cellular and humoral arm, is essential to explain the pathobiology of aspergillosis disease spectrum. While cellular immunity has been well studied, humoral immunity has been poorly acknowledge, although it plays a crucial role in bridging the fungus and immune cells. In this review, we have summarized available data on major players of humoral immunity against A. fumigatus and discussed how they may help to identify at-risk individuals, be used as diagnostic tools or promote alternative therapeutic strategies. Remaining challenges are highlighted and leads are given to guide future research to better grasp the complexity of humoral immune interaction with A. fumigatus.


Assuntos
Aspergilose , Aspergillus fumigatus , Humanos , Imunidade Humoral , Aspergilose/microbiologia
4.
Med Mycol ; 54(2): 177-88, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26384386

RESUMO

Paracoccidioidomycosis (PCM) is a systemic mycosis, widespread in Latin America. PCM is a granulomatous disease characterized by a polymorphism of lesions depending on the pathogen's virulence, the immune status of the host and its genetic susceptibility. The thermodimorphic fungus Paracoccidioides brasiliensis was considered the only etiologic agent of PCM, yet recent works have shown significant genetic diversity among different strains of P. brasiliensis. Therefore, it has been proposed for a new species within the Paracoccidioides genus, named Paracoccidioides lutzii. To better understand the fungus-host interactions elicited by strains Pb01 and Pb18 as key representatives of P. lutzii and P. brasiliensis, respectively, we carried out studies to investigate differences in morphology, induced immune response, virulence and pathology between these two Paracoccidioides species. Our results demonstrate distinct patterns of host-parasite interaction and pathology caused by Pb18 and Pb01. These results open up new fronts for NEW: clinical studies, which may result in significant consequences for the diagnosis and treatment of PCM. Considering that our results cannot be extended to all strains of both species, more studies about the virulence among Paracoccioides must be explored in the future.


Assuntos
Interações Hospedeiro-Patógeno , Paracoccidioides/citologia , Paracoccidioides/imunologia , Paracoccidioidomicose/microbiologia , Paracoccidioidomicose/patologia , Animais , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos BALB C , Paracoccidioides/patogenicidade , Paracoccidioidomicose/imunologia , Virulência
5.
Heliyon ; 9(9): e19954, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37810154

RESUMO

Objective: Elucidating the concurrence and interdependence of three precipitating factors as contributors of a subset of secondary burning mouth syndrome (BMS), which is defined having detectable precipitating factors. Design: 47 secondary BMS and 15 non-BMS cases were sourced from medical records of an Oral Pathology Specialty Clinic in Canada (2017-2021). Each case had Cytology, Hematology, and Sialometry tests to detail the state of three precipitating factors (the presence of fungal hyphae, hypovitaminosis D, and objective oral dryness). Three factors were compared between secondary BMS and non-BMS groups independently, in pairs, and as a triple-factor by Fisher's exact tests, Contingency Coefficients, and Logistic Regressions. Results: Rates of objective oral dryness (89.36%) and hypovitaminosis D (74.47%) in the secondary BMS group significantly differ from the non-BMS group (p = 0.0013, p = 0.0016). No difference was found in the incidence of fungal hyphae between BMS (91.49%) and non-BMS groups (p = 0.0881). Rates of three precipitating factors in pairs and as a triple-factor within the secondary BMS group significantly differ from the non-BMS group (p-values from 0.0011 to <0.0001). Their significant correlations with secondary BMS are found independently (excluding fungal hyphae), in pairs, and as a triple-factor (C-values from 0.371 to 0.461, p-values from 0.002 to <0.001). The highest C-value belongs to the triple-factor. Objective oral dryness (p = 0.009) and hypovitaminosis D (p = 0.008) are confirmed as significant predictors for secondary BMS. Conclusions: The presence of fungal hyphae contribute to a subset of secondary BMS only when coinciding with objective oral dryness, hypovitaminosis D, or both. This interdependent relationship leads to a hypothesis that hypovitaminosis D, which is commonly called "a low value of vitamin D", and objective oral dryness make an oral environment conducive to insidious Candida invasion, which is an intermediate status of the host-fungal interaction staying between healthy oral mucosa (non-infection) and oral candidiasis (infection).

6.
Pest Manag Sci ; 78(7): 2828-2837, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35394109

RESUMO

BACKGROUND: Metarhizium rileyi is an entomopathogenic fungus with promising potential for controlling agricultural pests, including Spodoptera frugiperda. Following penetration of the host through the cuticle, M. rileyi cells transform into in vivo blastospores or hyphal bodies, propagating within the hemocoel. However, the strategies and molecular mechanisms by which M. rileyi survives upon exposure to the powerful insect immune system remain unclear. RESULTS: We determined the pathogenicity of M. rileyi and found that either conidial immersion or blastospore injection significantly decreased S. frugiperda survival in a dose-dependent manner. Injection of M. rileyi blastospores decreased the number of S. frugiperda hemocytes and impaired host cellular reactions such as nodulation, encapsulation and phagocytosis. Blastospore injection led to increased antibacterial activity in plasma at 48 h post-injection (hpi). RNA-sequencing analyses identified a large number of antimicrobial peptide genes upregulated in the fat body of M. rileyi-infected larvae at 48 hpi, which may be attributable to the activation of Toll and IMD signaling pathway. CONCLUSION: This study demonstrates that the compromised cellular immunity of the insect host is due to the marked decrease in hemocytes and impaired cellular cytoskeletons, which may facilitate early infection by M. rileyi. Late in the course of infection, the enhanced antibacterial activity of plasma, which may be in response to intestinal evading bacteria, cannot inhibit hyphal growth in hemolymph. Our data provide a comprehensive resource for exploring the molecular mechanism employed by M. rileyi to overcome S. frugiperda immunity. © 2022 Society of Chemical Industry.


Assuntos
Metarhizium , Animais , Antibacterianos , Imunidade Celular , Insetos , Spodoptera
7.
J Fungi (Basel) ; 6(3)2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32859091

RESUMO

Immune inertness of Aspergillus fumigatus conidia is attributed to its surface rodlet-layer made up of RodAp, characterized by eight conserved cysteine residues forming four disulfide bonds. Earlier, we showed that the conserved cysteine residue point (ccrp) mutations result in conidia devoid of the rodlet layer. Here, we extended our study comparing the surface organization and immunoreactivity of conidia carrying ccrp-mutations with the RODA deletion mutant (∆rodA). Western blot analysis using anti-RodAp antibodies indicated the absence of RodAp in the cytoplasm of ccrp-mutant conidia. Immunolabeling revealed differential reactivity to conidial surface glucans, the ccrp-mutant conidia preferentially binding to α-(1,3)-glucan, ∆rodA conidia selectively bound to ß-(1,3)-glucan; the parental strain conidia showed negative labeling. However, permeability of ccrp-mutants and ∆rodA was similar to the parental strain conidia. Proteomic analyses of the conidial surface exposed proteins of the ccrp-mutants showed more similarities with the parental strain, but were significantly different from the ∆rodA. Ccrp-mutant conidia were less immunostimulatory compared to ∆rodA conidia. Our data suggest that (i) the conserved cysteine residues are essential for the trafficking of RodAp and the organization of the rodlet layer on the conidial surface, and (ii) targeted point mutation could be an alternative approach to study the role of fungal cell-wall genes in host-fungal interaction.

8.
Front Immunol ; 8: 1359, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29163469

RESUMO

Cryptococcosis is a fungal disease caused by multiple Cryptococcus serotypes; particularly C. neoformans (serotypes A and D) and C. gattii (serotypes B and C). To date, there is no clinically available vaccine to prevent cryptococcosis. Mice given an experimental pulmonary vaccination with a C. neoformans serotype A strain engineered to produce interferon-γ, denoted H99γ, are protected against a subsequent otherwise lethal experimental infection with C. neoformans serotype A. Thus, we determined the efficacy of immunization with C. neoformans strain H99γ to elicit broad-spectrum protection in BALB/c mice against multiple disparate Cryptococcus serotypes. We observed significantly increased survival rates and significantly decreased pulmonary fungal burden in H99γ immunized mice challenged with Cryptococcus serotypes A, B, or D compared to heat-killed H99γ (HKH99γ) immunized mice. Results indicated that prolonged protection against Cryptococcus serotypes B or D in H99γ immunized mice was CD4+ T cell dependent and associated with the induction of predominantly Th1-type cytokine responses. Interestingly, immunization with H99γ did not elicit greater protection against challenge with the Cryptococcus serotype C tested either due to low overall virulence of this strain or enhanced capacity of this strain to evade host immunity. Altogether, these studies provide "proof-of-concept" for the development of a cryptococcal vaccine that provides cross-protection against multiple disparate serotypes of Cryptococcus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA