Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(1): e2211297120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36574664

RESUMO

WD repeat domain 5 (WDR5) is a core scaffolding component of many multiprotein complexes that perform a variety of critical chromatin-centric processes in the nucleus. WDR5 is a component of the mixed lineage leukemia MLL/SET complex and localizes MYC to chromatin at tumor-critical target genes. As a part of these complexes, WDR5 plays a role in sustaining oncogenesis in a variety of human cancers that are often associated with poor prognoses. Thus, WDR5 has been recognized as an attractive therapeutic target for treating both solid and hematological tumors. Previously, small-molecule inhibitors of the WDR5-interaction (WIN) site and WDR5 degraders have demonstrated robust in vitro cellular efficacy in cancer cell lines and established the therapeutic potential of WDR5. However, these agents have not demonstrated significant in vivo efficacy at pharmacologically relevant doses by oral administration in animal disease models. We have discovered WDR5 WIN-site inhibitors that feature bicyclic heteroaryl P7 units through structure-based design and address the limitations of our previous series of small-molecule inhibitors. Importantly, our lead compounds exhibit enhanced on-target potency, excellent oral pharmacokinetic (PK) profiles, and potent dose-dependent in vivo efficacy in a mouse MV4:11 subcutaneous xenograft model by oral dosing. Furthermore, these in vivo probes show excellent tolerability under a repeated high-dose regimen in rodents to demonstrate the safety of the WDR5 WIN-site inhibition mechanism. Collectively, our results provide strong support for WDR5 WIN-site inhibitors to be utilized as potential anticancer therapeutics.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Neoplasias , Repetições WD40 , Animais , Humanos , Camundongos , Cromatina , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Modelos Animais , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral
2.
Antimicrob Agents Chemother ; 68(10): e0103924, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39240093

RESUMO

Oral broad-spectrum antivirals are urgently needed for the treatment of many emerging and contemporary RNA viruses. We previously synthesized 1-O-octadecyl-2-O-benzyl-sn-glyceryl-P-RVn (ODBG-P-RVn, V2043), a phospholipid prodrug of GS-441524 (remdesivir nucleoside, RVn), and demonstrated its in vivo efficacy in a SARS-CoV-2 mouse model. Structure-activity relationship studies focusing on the prodrug scaffold identified two modifications, 3-fluoro-4-methoxy-benzyl (V2053) and 4-cyano-benzyl (V2067), that significantly enhanced the in vitro broad-spectrum antiviral activity against multiple RNA viruses when compared to V2043. Here, we demonstrate that V2043, V2053, and V2067 are all orally bioavailable, well-tolerated, and achieve high sustained plasma levels after single oral daily dosing. All three phospholipid prodrugs are significantly more active than RVn in vitro and significantly reduce SARS-CoV-2 lung titers in prophylaxis and treatment mouse models of SARS-CoV-2 B.1.351 infection. On a molar basis, V2043 and V2067 are substantially more active than obeldesivir/GS-5245 and molnupiravir in vivo. Together, these data support the continued development of phospholipid RVn prodrugs for the treatment of SARS-CoV-2 and other RNA viruses of clinical concern.


Assuntos
Monofosfato de Adenosina , Alanina , Antivirais , Tratamento Farmacológico da COVID-19 , Pró-Fármacos , SARS-CoV-2 , Animais , Pró-Fármacos/farmacologia , Pró-Fármacos/farmacocinética , Camundongos , Antivirais/farmacocinética , Antivirais/farmacologia , SARS-CoV-2/efeitos dos fármacos , Administração Oral , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacocinética , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Alanina/farmacocinética , Alanina/farmacologia , Feminino , Humanos , Fosfolipídeos , Chlorocebus aethiops , Células Vero , COVID-19/virologia , Modelos Animais de Doenças , Pulmão/virologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Relação Estrutura-Atividade , Adenosina/análogos & derivados
3.
Antimicrob Agents Chemother ; 68(10): e0084224, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39194209

RESUMO

UCT594 is a 2-aminopyrazine carboxylic acid Plasmodium phosphatidylinositol 4-kinase inhibitor with potent asexual blood-stage activity, the potential for interrupting transmission, as well as liver-stage activities. Herein, we investigated pharmacokinetic/pharmacodynamic (PK/PD) relationships relative to blood-stage activity toward predicting the human dose. Dose-fractionation studies were conducted in the Plasmodium falciparum NSG mouse model to determine the PK/PD indices of UCT594, using the in vivo minimum parasiticidal concentration as a threshold. UCT594 demonstrated concentration-dependent killing in the P. falciparum-infected NSG mouse model. Using this data and the preclinical pharmacokinetic data led to a low predicted human dose of <50 mg. This makes UCT594 an attractive potential antimalarial drug.


Assuntos
1-Fosfatidilinositol 4-Quinase , Antimaláricos , Modelos Animais de Doenças , Malária Falciparum , Plasmodium falciparum , Animais , Camundongos , Antimaláricos/farmacologia , Antimaláricos/farmacocinética , Antimaláricos/uso terapêutico , Plasmodium falciparum/efeitos dos fármacos , Humanos , 1-Fosfatidilinositol 4-Quinase/antagonistas & inibidores , 1-Fosfatidilinositol 4-Quinase/metabolismo , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Relação Dose-Resposta a Droga , Feminino , Testes de Sensibilidade Parasitária
4.
Skin Res Technol ; 30(3): e13647, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38465749

RESUMO

BACKGROUND: Current methods for evaluating efficacy of cosmetics have limitations because they cannot accurately measure changes in the dermis. Skin sampling using microneedles allows identification of skin-type biomarkers, monitoring treatment for skin inflammatory diseases, and evaluating efficacy of anti-aging and anti-pigmentation products. MATERIALS AND METHODS: Two studies were conducted: First, 20 participants received anti-aging treatment; second, 20 participants received anti-pigmentation treatment. Non-invasive devices measured skin aging (using high-resolution 3D-imaging in the anti-aging study) or pigmentation (using spectrophotometry in the anti-pigmentation study) at weeks 0 and 4, and adverse skin reactions were monitored. Skin samples were collected with biocompatible microneedle patches. Changes in expression of biomarkers for skin aging and pigmentation were analyzed using qRT-PCR. RESULTS: No adverse events were reported. In the anti-aging study, after 4 weeks, skin roughness significantly improved in 17 out of 20 participants. qRT-PCR showed significantly increased expression of skin-aging related biomarkers: PINK1 in 16/20 participants, COL1A1 in 17/20 participants, and MSN in 16/20 participants. In the anti-pigmentation study, after 4 weeks, skin lightness significantly improved in 16/20 participants. qRT-PCR showed significantly increased expression of skin-pigmentation-related biomarkers: SOD1 in 15/20 participants and Vitamin D Receptor (VDR) in 15/20 participants. No significant change in TFAP2A was observed. CONCLUSION: Skin sampling and mRNA analysis for biomarkers provides a novel, objective, quantitative method for measuring changes in the dermis and evaluating the efficacy of cosmetics. This approach complements existing evaluation methods and has potential application in assessing the effectiveness of medical devices, medications, cosmeceuticals, healthy foods, and beauty devices.


Assuntos
Cosméticos , Transtornos da Pigmentação , Envelhecimento da Pele , Humanos , Pele/diagnóstico por imagem , Pigmentação da Pele , Biomarcadores
5.
Arch Pharm (Weinheim) ; 357(8): e2400202, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38752780

RESUMO

Cancer, characterized by uncontrolled cell growth and metastasis, is responsible for nearly one in six deaths and represents a severe threat to public health worldwide. Chemotherapy can substantially improve the quality of life and survival of patients with cancer, but anticancer chemotherapeutics are associated with a range of adverse effects. Moreover, almost all currently available anticancer chemotherapeutics could develop drug resistance over a period of time of application in cancer patients and ultimately lead to cancer relapse and death in 90% of patients, creating an urgent need to develop new anticancer agents. Fused pyrimidines trait the inextricable part of DNA and RNA and are vital in numerous biological processes. Fused pyrimidines can act on various biological cancer targets and have the potential to address drug resistance. In addition, more than 20 fused pyrimidines have already been approved for clinical treatment of different cancers and occupy a prominent place in the current therapeutic arsenal, revealing that fused pyrimidines are privileged scaffolds for the development of novel anticancer chemotherapeutics. The purpose of this review is to summarize the current scenario of fused pyrimidines with in vivo anticancer therapeutic potential along with their acute toxicity, metabolic profiles as well as pharmacokinetic properties, toxicity and mechanisms of action developed from 2020 to the present to facilitate further rational exploitation of more effective candidates.


Assuntos
Antineoplásicos , Neoplasias , Pirimidinas , Pirimidinas/farmacologia , Pirimidinas/química , Pirimidinas/síntese química , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Animais , Resistencia a Medicamentos Antineoplásicos
6.
Molecules ; 29(17)2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39274895

RESUMO

Orthoflaviviruses, including zika (ZIKV), West Nile (WNV), and dengue (DENV) virus, induce severely debilitating infections and contribute significantly to the global disease burden, yet no clinically approved antiviral treatments exist. This review offers a comprehensive analysis of small-molecule drug development targeting orthoflaviviral infections, with a focus on NS2B-NS3 inhibition. We systematically examined clinical trials, preclinical efficacy studies, and modes of action for various viral replication inhibitors, emphasizing allosteric and orthosteric drugs inhibiting NS2B-NS3 protease with in vivo efficacy and in vitro-tested competitive NS2B-NS3 inhibitors with cellular efficacy. Our findings revealed that several compounds with in vivo preclinical efficacy failed to show clinical antiviral efficacy. NS3-NS4B inhibitors, such as JNJ-64281802 and EYU688, show promise, recently entering clinical trials, underscoring the importance of developing novel viral replication inhibitors targeting viral machinery. To date, the only NS2B-NS3 inhibitor that has undergone clinical trials is doxycycline, however, its mechanism of action and clinical efficacy as viral growth inhibitor require additional investigation. SYC-1307, an allosteric inhibitor, exhibits high in vivo efficacy, while temoporfin and methylene blue represent promising orthosteric non-competitive inhibitors. Compound 71, a competitive NS2B-NS3 inhibitor, emerges as a leading preclinical candidate due to its high cellular antiviral efficacy, minimal cytotoxicity, and favorable in vitro pharmacokinetic parameters. Challenges remain in developing competitive NS2B-NS3 inhibitors, including appropriate biochemical inhibition assays as well as the selectivity and conformational flexibility of the protease, complicating effective antiviral treatment design.


Assuntos
Antivirais , Proteínas não Estruturais Virais , Antivirais/farmacologia , Antivirais/química , Humanos , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Animais , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Inibidores de Proteases/uso terapêutico , Ensaios Clínicos como Assunto , Serina Endopeptidases/metabolismo , Replicação Viral/efeitos dos fármacos , Vírus da Dengue/efeitos dos fármacos , Zika virus/efeitos dos fármacos , Vírus do Nilo Ocidental/efeitos dos fármacos
7.
AAPS PharmSciTech ; 25(4): 66, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519779

RESUMO

Oral submucous fibrosis (OSF) is a chronic progressive disease associated with increased collagen deposition and TGF-ß1 release. The current therapy and management have been a limited success due to low efficacy and adverse drug reactions. This study aimed to evaluate epigallocatechin 3-gallate (EGCG) encapsulated nanoparticles loaded mucoadhesive hydrogel nanocomposite (HNC) for OSF. Developed HNC formulations were evaluated for their permeation behaviour using in vitro as well as ex vivo studies, followed by evaluation of efficacy and safety by in vivo studies using areca nut extract-induced OSF in rats. The disease condition in OSF-induced rats was assessed by mouth-opening and biochemical markers. The optimized polymeric nanoparticles exhibited the required particle size (162.93 ± 13.81 nm), positive zeta potential (22.50 ± 2.94 mV) with better mucoadhesive strength (0.40 ± 0.002 N), and faster permeation due to interactions of the positively charged surface with the negatively charged buccal mucosal membrane. HNC significantly improved disease conditions by reducing TGF-ß1 and collagen concentration without showing toxicity and reverting the fibroid buccal mucosa to normal. Hence, the optimized formulation can be further tested to develop a clinically alternate therapeutic strategy for OSF.


Assuntos
Catequina/análogos & derivados , Fibrose Oral Submucosa , Ratos , Animais , Fibrose Oral Submucosa/tratamento farmacológico , Fibrose Oral Submucosa/induzido quimicamente , Fator de Crescimento Transformador beta1/efeitos adversos , Hidrogéis , Mucosa Bucal , Colágeno
8.
J Med Virol ; 95(6): e28863, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37310127

RESUMO

The ongoing COVID-19 has not only caused millions of deaths worldwide, but it has also led to economic recession and the collapse of public health systems. The vaccines and antivirals developed in response to the pandemic have improved the situation markedly; however, the pandemic is still not under control with recurring surges. Thus, it is still necessary to develop therapeutic agents. In our previous studies, we designed and synthesized a series of novel 2-anilinoquinazolin-4(3H)-one derivatives, and demonstrated inhibitory activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and MERS-CoV in vitro. We then conducted in vivo studies using modified compounds that are suitable for oral administration. These compounds demonstrated no toxicity in rats and inhibited viral entry. Here, we investigated the in vivo efficacy of these drug candidates against SARS-CoV-2. Three candidate drugs, 7-chloro-2-((3,5-dichlorophenyl)amino)quinazolin-4(3H)-one (1), N-(7-chloro-4-oxo-3,4-dihydroquinazolin-2-yl)-N-(3,5-dichlorophenyl)acetamide (2), and N-(7-chloro-4-oxo-3,4-dihydroquinazolin-2-yl)-N-(3,5-difluorophenyl)acetamide (3) were administered orally to hACE2 transgenic mice at a dose of 100 mg/kg. All three drugs improved survival rate and reduced the viral load in the lungs. These results show that the derivatives possess in vivo antiviral efficacy similar to that of molnupiravir, which is currently being used to treat COVID-19. Overall, our data suggest that 2-anilinoquinazolin-4(3H)-one derivatives are promising as potential oral antiviral drug candidates against SARS-CoV-2 infection.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , SARS-CoV-2 , Animais , Humanos , Camundongos , Ratos , Acetamidas , Enzima de Conversão de Angiotensina 2/genética , Antivirais/farmacologia , Antivirais/uso terapêutico , COVID-19/genética , COVID-19/terapia , Modelos Animais de Doenças , Camundongos Transgênicos , Quinazolinas/farmacologia , Quinazolinas/uso terapêutico , SARS-CoV-2/genética
9.
Mol Pharm ; 20(7): 3570-3577, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37307328

RESUMO

Selective delivery of chemotherapy to the tumor site while sparing healthy cells and tissues is an attractive approach for cancer treatment. Carriers such as peptides can facilitate selective tumor targeting and payload delivery. Peptides with specific affinity for the overexpressed cell-surface receptors in cancer cells are conjugated to chemotherapy to afford peptide-drug conjugates (PDCs) that show selective uptake by cancer cells. Using a 10-mer linear peptide (WxEAAYQrFL) called 18-4 that targets and binds breast cancer cells, we designed a peptide 18-4-doxorubicin (Dox) conjugate with high specific toxicity toward triple-negative breast cancer (TNBC) MDA-MB-231 cells and 30-fold lower toxicity to normal breast MCF10A epithelial cells. Here, we elucidate the in vivo activity of this potent and tumor-selective peptide 18-4-Dox conjugate in mice bearing orthotopic MDA-MB-231 tumors. Mice treated with four weekly injections of the conjugate showed significantly lower tumor volumes compared to mice treated with free Dox at an equivalent Dox dose. Immunohistochemical (IHC) analysis of mice tissues revealed that treatment with a low dose of PDC (2.5 mg/kg of Dox equiv) reduced the expression of proliferation markers (PCNA and Ki-67) and increased apoptosis (evidenced by increased caspase-3 expression). At the same dose of free Dox (2.5 mg/kg), the expression of these markers was similar to that of saline treatment. Accordingly, significantly more Dox accumulated in tumors of conjugate-treated mice (7-fold) compared to the Dox-treated mice, while lower levels of Dox were observed in the liver, heart, and lungs of peptide-Dox conjugate-treated mice (up to 3-fold less) than Dox-treated mice. The IHC analysis of keratin 1 (K1), the receptor for peptide 18-4, revealed K1 upregulation in tumors and low levels in normal mammary fat pad and liver tissues from mice, suggesting preferential uptake of PDCs by TNBC to be K1 receptor-mediated. Taken together, our data support the use of a PDC approach to deliver chemotherapy selectively to the TNBC to inhibit tumor growth.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Feminino , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Queratina-1 , Sistemas de Liberação de Medicamentos , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Peptídeos/uso terapêutico , Linhagem Celular Tumoral , Neoplasias da Mama/tratamento farmacológico
10.
Bioorg Med Chem Lett ; 93: 129425, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37557926

RESUMO

This work describes about the synthesis and evaluation of substituted benzofuran piperazines as potential anticancer agents. The synthesized candidates have been evaluated for their cell proliferation inhibition properties in six murine and human cancer cell lines. In vitro evaluation of apoptosis and cell cycle analysis with the lead candidate 1.19 reveals that necrosis might be an important pathway for the candidate compounds to cause cell death. Further, in vivo evaluation of the lead compound shows that this candidate is well tolerated in healthy mice. Additionally, an in vivo anticancer efficacy study in mice using a MDA-MB-231 xenograft model with the lead compound provides good anti-cancer efficacy.


Assuntos
Antineoplásicos , Benzofuranos , Humanos , Animais , Camundongos , Antineoplásicos/farmacologia , Piperazinas/farmacologia , Linhagem Celular , Benzofuranos/farmacologia , Benzofuranos/uso terapêutico , Proliferação de Células , Apoptose , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Relação Estrutura-Atividade
11.
Int J Mol Sci ; 24(16)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37628971

RESUMO

Staphylococcus aureus causes a wide range of infections, and it is one of the leading pathogens responsible for deaths associated with antimicrobial resistance, the rapid spread of which among S. aureus urges the discovery of new antibiotics. The evaluation of in vivo efficacy of novel drug candidates is usually performed using animal models. Recently, zebrafish (Danio rerio) embryos have become increasingly attractive in early drug discovery. Herein, we established a zebrafish embryo model of S. aureus infection for evaluation of in vivo efficacy of novel potential antimicrobials. A local infection was induced by microinjecting mCherry-expressing S. aureus Newman followed by treatment with reference antibiotics via microinjection into different injection sites as well as via waterborne exposure to study the impact of the administration route on efficacy. We successfully used the developed model to evaluate the in vivo activity of the natural product sorangicin A, for which common mouse models were not successful due to fast degradation in plasma. In conclusion, we present a novel screening platform for assessing in vivo activity at the antibiotic discovery stage. Furthermore, this work provides consideration for the choice of an appropriate administration route based on the physicochemical properties of tested drugs.


Assuntos
Produtos Biológicos , Infecções Estafilocócicas , Animais , Camundongos , Staphylococcus aureus , Peixe-Zebra , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Modelos Animais de Doenças , Infecções Estafilocócicas/tratamento farmacológico
12.
Antimicrob Agents Chemother ; 66(12): e0060722, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36409128

RESUMO

Previous studies suggest that 3',5'-dihydro-2'H-spiro[indoline-3,1'-isoquinolin]-2-ones (DSIIQs [spiroquindolones]) are multitarget antiplasmodial agents that combine the actions of spiroindolone and naphthylisoquinoline antimalarial agents. In this study, 12 analogues of compound (±)-5 (moxiquindole), the prototypical spiroquindolone, were synthesized and tested for antiplasmodial activity. Compound (±)-11 (a mixture of compounds 11a and 11b), the most potent analogue, displayed low-nanomolar activity against P. falciparum chloroquine-sensitive 3D7 strain (50% inhibitory concentration [IC50] for 3D7 = 21 ± 02 nM) and was active against all major erythrocytic stages of the parasite life cycle (ring, trophozoite, and schizont); it also inhibited hemoglobin metabolism and caused extensive vacuolation in parasites. In drug-resistant parasites, compound (±)-11 exhibited potent activity (IC50 for Dd2 = 58.34 ± 2.04 nM) against the P. falciparum multidrug-resistant Dd2 strain, and both compounds (±)-5 and (±)-11 displayed significant cross-resistance against the P. falciparum ATP4 mutant parasite Dd2 SJ733 but not against the Dd2 KAE609 strain. In mice, both compounds (±)-5 and (±)-11 displayed dose-dependent reduction of parasitemia with suppressive 50% effective dose (ED50) values of 0.44 and 0.11 mg/kg of body weight, respectively. The compounds were also found to be curative in vivo and are thus worthy of further investigation.


Assuntos
Antimaláricos , Malária Falciparum , Tetra-Hidroisoquinolinas , Animais , Camundongos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Oxindóis/farmacologia , Oxindóis/uso terapêutico , Plasmodium falciparum , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Malária Falciparum/tratamento farmacológico , Tetra-Hidroisoquinolinas/farmacologia , Tetra-Hidroisoquinolinas/uso terapêutico
13.
Antimicrob Agents Chemother ; 66(8): e0236121, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35852367

RESUMO

Chemotherapy is the key intervention to control visceral leishmaniasis (VL), a neglected tropical disease. Current regimens include not only a few drugs but also present several drawbacks, including moderate to severe toxicity, cost, long-term administration, patient compliance, and growing drug resistance. Thus, the need for better treatment options against VL is a priority. In an endeavor to find an orally active and affordable antileishmanial agent, we evaluated the therapeutic potential of compounds belonging to the (2Z,2'Z)-3,3'-(ethane-1,2-diylbis(azanediyl))bis(1-(4-halophenyl)-6-hydroxyhex-2-en-1-ones) series, identified as inhibitor(s) of Leishmania donovani dipeptidylcarboxypeptidase, a novel drug target. Among them, compound 3c exhibited best in vivo antileishmanial efficacy via both intraperitoneal and oral routes. Therefore, the present study led to the identification of compound 3c as the lead candidate for treating VL.


Assuntos
Antiprotozoários , Leishmania donovani , Leishmaniose Visceral , Administração Oral , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Resistência a Medicamentos , Humanos , Leishmaniose Visceral/tratamento farmacológico
14.
Antimicrob Agents Chemother ; 66(12): e0092122, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36448795

RESUMO

CUO246, a novel DNA gyrase/topoisomerase IV inhibitor, is active in vitro against a broad range of Gram-positive, fastidious Gram-negative, and atypical bacterial pathogens and retains activity against quinolone-resistant strains in circulation. The frequency of selection for single step mutants of wild-type S. aureus with reduced susceptibility to CUO246 was <4.64 × 10-9 at 4× and 8× MIC and remained low when using an isogenic QRDR mutant (<5.24 × 10-9 at 4× and 8× MIC). Biochemical assays indicated that CUO246 had potent inhibitory activity against both DNA gyrase (GyrAB) and topoisomerase IV (ParCE). Furthermore, CUO246 showed rapid bactericidal activity in time-kill assays and potent in vivo efficacy against S. aureus in a neutropenic murine thigh infection model. These results suggest that CUO246 may be useful in treating infections by various causative agents of acute skin and skin structure infections, respiratory tract infections, and sexually transmitted infections.


Assuntos
DNA Girase , DNA Topoisomerase IV , Animais , Camundongos , DNA Girase/genética , DNA Topoisomerase IV/genética , Inibidores da Topoisomerase II/farmacologia , DNA Bacteriano , Staphylococcus aureus , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
15.
Antimicrob Agents Chemother ; 66(9): e0076222, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36040172

RESUMO

Accumulating evidence suggests that drug repurposing has drawn attention as an anticipative strategy for controlling tuberculosis (TB), considering the dwindling drug discovery and development pipeline. In this study, we explored the antigout drug febuxostat and evaluated its antibacterial activity against Mycobacterium species. Based on MIC evaluation, we found that febuxostat treatment significantly inhibited mycobacterial growth, especially that of Mycobacterium tuberculosis (Mtb) and its phylogenetically close neighbors, M. bovis, M. kansasii, and M. shinjukuense, but these microorganisms were not affected by allopurinol and topiroxostat, which belong to a similar category of antigout drugs. Febuxostat concentration-dependently affected Mtb and durably mediated inhibitory functions (duration, 10 weeks maximum), as evidenced by resazurin microtiter assay, time-kill curve analysis, phenotypic susceptibility test, and the Bactec MGIT 960 system. Based on these results, we determined whether the drug shows antimycobacterial activity against Mtb inside murine bone marrow-derived macrophages (BMDMs). Notably, febuxostat markedly suppressed the intracellular growth of Mtb in a dose-dependent manner without affecting the viability of BMDMs. Moreover, orally administered febuxostat was efficacious in a murine model of TB with reduced bacterial loads in both the lung and spleen without the exacerbation of lung inflammation, which highlights the drug potency. Taken together, unexpectedly, our data demonstrated that febuxostat has the potential for treating TB.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Alopurinol , Animais , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Febuxostat/farmacologia , Febuxostat/uso terapêutico , Camundongos , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia
16.
Bioorg Med Chem ; 75: 117071, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36332597

RESUMO

ALK is an attractive therapeutic target for the treatment of non-small cell lung cancer. As an emerging element in medicinal chemistry, boron has achieved great success in the discovery of antitumor drugs and antibacterial agents. Through construction of a BCC (boron-containing compound) compound library and broad kinase screening, we found the ALK inhibitor hit compound 10a. Structural optimization by CADD and isosterism revealed that lead compound 10k has improved activity (ALKL1196M IC50 = 8.4 nM, NCI-H2228 cells IC50 = 520 nM) and better in vitro metabolic stability (human liver microsomes, T1/2 = 238 min). Compound 10k showed good in vivo efficacy in a nude mouse NCI-H2228 lung cancer xenograft model with a TGI of 52 %. Molecular simulation analysis results show that the hydroxyl group on the oxaborole forms a key hydrogen bond with Asn1254 or Asp1270, and this binding site provides a new idea for drug design. This is the first publicly reported lead compound for a boron-containing ALK inhibitor.

17.
Bioorg Med Chem ; 71: 116949, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35926326

RESUMO

RAS protein plays a key role in cellular proliferation and differentiation. RAS gene mutation is a known driver of oncogenic alternation in human cancer. RAS inhibition is an effective therapeutic treatment for solid tumors, but RAS protein has been classified as an undruggable target. Recent reports have demonstrated that a covalent binder to KRAS protein at a mutated cysteine residue (G12C) is effective for the treatment of solid tumors. Here, we report a series of 1-{2,7-diazaspiro[3.5]nonan-2-yl}prop-2-en-1-one derivatives as potent covalent inhibitors against KRAS G12C identified throughout structural optimization of an acryloyl amine moiety to improve in vitro inhibitory activity. From an X-ray complex structural analysis, the 1-{2,7-diazaspiro[3.5]nonan-2-yl}prop-2-en-1-one moiety binds in the switch-II pocket of KRAS G12C. Further optimization of the lead compound (5c) led to the successful identification of 1-[7-[6-chloro-8-fluoro-7-(5-methyl-1H-indazol-4-yl)-2-[(1-methylpiperidin-4-yl)amino]quinazolin-4-yl]-2,7-diazaspiro[3.5]nonan-2-yl]prop-2-en-1-one (7b), a potent compound with high metabolic stabilities in human and mouse liver microsomes. Compound 7b showed a dose-dependent antitumor effect on subcutaneous administration in an NCI-H1373 xenograft mouse model.


Assuntos
Alcanos/farmacologia , Neoplasias , Proteínas Proto-Oncogênicas p21(ras) , Animais , Proliferação de Células , Humanos , Camundongos , Mutação , Neoplasias/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/farmacologia , Proteínas ras/genética , Proteínas ras/metabolismo
18.
Proc Natl Acad Sci U S A ; 116(27): 13517-13522, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31209048

RESUMO

As bacterial resistance to traditional antibiotics continues to emerge, new alternatives are urgently needed. Antimicrobial peptides (AMPs) are important candidates. However, how AMPs are designed with in vivo efficacy is poorly understood. Our study was designed to understand structural moieties of cationic peptides that would lead to their successful use as antibacterial agents. In contrast to the common perception, serum binding and peptide stability were not the major reasons for in vivo failure in our studies. Rather, our systematic study of a series of peptides with varying lysines revealed the significance of low cationicity for systemic in vivo efficacy against Gram-positive pathogens. We propose that peptides with biased amino acid compositions are not favored to associate with multiple host factors and are more likely to show in vivo efficacy. Thus, our results uncover a useful design strategy for developing potent peptides against multidrug-resistant pathogens.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias Gram-Positivas/efeitos dos fármacos , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Aminoácidos/química , Animais , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Simulação por Computador , Desenho de Fármacos , Farmacorresistência Bacteriana Múltipla , Camundongos , Testes de Sensibilidade Microbiana
19.
AAPS PharmSciTech ; 24(1): 19, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36526920

RESUMO

This study aims to design and characterize berberine-loaded wafers for the treatment of chemotherapy-induced oral mucositis. Wafers were prepared by lyophilization of hydrogels of various ratios of chitosan (CS)/sodium alginate (SA) as well as CS/hydroxypropyl methylcellulose (HPMC). In vitro release, in vitro mucoadhesion, porosity, and swelling studies were conducted to select the optimized formulations. Moreover, scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and mechanical properties studies were also performed for further characterization. The efficacy of optimized berberine-loaded wafers in the treatment of oral mucositis was investigated in a 5FU-induced oral mucositis rat model. F2-CS-SA and F6-CS-HPMC wafers exhibited sustained release profile and excellent mucoadhesion strength. Therefore, these wafers were selected as the optimized formulations. SEM confirmed the porous structure of these wafers and is in agreement with the results of porosity and swelling studies. XRD and FTIR studies indicated that berberine was incorporated into the wafer matrix in the amorphous form. In vivo studies demonstrated that topical application of berberine-loaded optimized wafers reduced significantly the severity of 5FU-induced oral mucositis and decreased the expression of inflammatory markers (TNF-α and IL-1ß). The results of in vitro and in vivo studies revealed that berberine-loaded F2-CS-SA and F6-CS-HPMC wafers can be effective in the treatment of chemotherapy-related oral mucositis.


Assuntos
Antineoplásicos , Berberina , Quitosana , Estomatite , Ratos , Animais , Alginatos/química , Quitosana/química , Derivados da Hipromelose/química , Estomatite/induzido quimicamente , Estomatite/tratamento farmacológico , Espectroscopia de Infravermelho com Transformada de Fourier , Fluoruracila
20.
Artigo em Inglês | MEDLINE | ID: mdl-33468459

RESUMO

Drug-resistant bacterial pathogens are a serious threat to global health, and antibacterial lysins are at the forefront of innovative treatments for these life-threatening infections. While lysins' general mechanism of action is well understood, the design principles that might enable engineering of performance-enhanced variants are still being formulated. Here, we report a detailed analysis of molecular determinants underlying the in vivo efficacy of lysostaphin, a canonical anti-MRSA (methicillin-resistant Staphylococcus aureus) lysin. Systematic analysis of bacterial binding, growth inhibition, lysis kinetics, and in vivo therapeutic efficacy revealed that binding affinity, and not inherent catalytic firepower, is the dominant driver of lysostaphin efficacy. This insight enabled electrostatic affinity tuning of lysostaphin to produce a single point mutant that manifested dramatically enhanced processivity and lysis kinetics and trended toward improved in vivo efficacy. More generally, these studies provide important insights into the complex relationships between lysin electrostatics, bacterial targeting, cell lysis efficiency, and in vivo efficacy. The lessons learned may enable engineering of other high-performance antibacterial biocatalysts.


Assuntos
Lisostafina , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Cinética , Lisostafina/metabolismo , Lisostafina/farmacologia , Staphylococcus aureus Resistente à Meticilina/metabolismo , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA