Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.951
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(31): e2321929121, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39047035

RESUMO

Colorectal cancer and Crohn's disease patients develop pyogenic liver abscesses due to failures of immune cells to fight off bacterial infections. Here, we show that mice lacking iron regulatory protein 2 (Irp2), globally (Irp2-/-) or myeloid cell lineage (Lysozyme 2 promoter-driven, LysM)-specifically (Irp2ΔLysM), are highly susceptible to liver abscesses when the intestinal tissue was injured with dextran sodium sulfate treatment. Further studies demonstrated that Irp2 is required for lysosomal acidification and biogenesis, both of which are crucial for bacterial clearance. In Irp2-deficient liver tissue or macrophages, the nuclear location of transcription factor EB (Tfeb) was remarkably reduced, leading to the downregulation of Tfeb target genes that encode critical components for lysosomal biogenesis. Tfeb mislocalization was reversed by hypoxia-inducible factor 2 inhibitor PT2385 and, independently, through inhibition of lactic acid production. These experimental findings were confirmed clinically in patients with Crohn's disease and through bioinformatic searches in databases from Crohn's disease or ulcerative colitis biopsies showing loss of IRP2 and transcription factor EB (TFEB)-dependent lysosomal gene expression. Overall, our study highlights a mechanism whereby Irp2 supports nuclear translocation of Tfeb and lysosomal function, preserving macrophage antimicrobial activity and protecting the liver against invading bacteria during intestinal inflammation.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Doença de Crohn , Proteína 2 Reguladora do Ferro , Lisossomos , Macrófagos , Animais , Lisossomos/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Camundongos , Humanos , Doença de Crohn/imunologia , Doença de Crohn/metabolismo , Proteína 2 Reguladora do Ferro/metabolismo , Proteína 2 Reguladora do Ferro/genética , Camundongos Knockout , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Fígado/imunologia , Fígado/patologia
2.
Cell Mol Life Sci ; 81(1): 24, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38212432

RESUMO

The accumulation of metabolites in the intervertebral disc is considered an important cause of intervertebral disc degeneration (IVDD). Lactic acid, which is a metabolite that is produced by cellular anaerobic glycolysis, has been proven to be closely associated with IVDD. However, little is known about the role of lactic acid in nucleus pulposus cells (NPCs) senescence and oxidative stress. The aim of this study was to investigate the effect of lactic acid on NPCs senescence and oxidative stress as well as the underlying mechanism. A puncture-induced disc degeneration (PIDD) model was established in rats. Metabolomics analysis revealed that lactic acid levels were significantly increased in degenerated intervertebral discs. Elimination of excessive lactic acid using a lactate oxidase (LOx)-overexpressing lentivirus alleviated the progression of IVDD. In vitro experiments showed that high concentrations of lactic acid could induce senescence and oxidative stress in NPCs. High-throughput RNA sequencing results and bioinformatic analysis demonstrated that the induction of NPCs senescence and oxidative stress by lactic acid may be related to the PI3K/Akt signaling pathway. Further study verified that high concentrations of lactic acid could induce NPCs senescence and oxidative stress by interacting with Akt and regulating its downstream Akt/p21/p27/cyclin D1 and Akt/Nrf2/HO-1 pathways. Utilizing molecular docking, site-directed mutation and microscale thermophoresis assays, we found that lactic acid could regulate Akt kinase activity by binding to the Lys39 and Leu52 residues in the PH domain of Akt. These results highlight the involvement of lactic acid in NPCs senescence and oxidative stress, and lactic acid may become a novel potential therapeutic target for the treatment of IVDD.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Ratos , Animais , Degeneração do Disco Intervertebral/metabolismo , Núcleo Pulposo/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases/metabolismo , Disco Intervertebral/metabolismo , Senescência Celular
3.
Nano Lett ; 24(15): 4691-4701, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38588212

RESUMO

Tumor cells exhibit heightened glucose (Glu) consumption and increased lactic acid (LA) production, resulting in the formation of an immunosuppressive tumor microenvironment (TME) that facilitates malignant proliferation and metastasis. In this study, we meticulously engineer an antitumor nanoplatform, denoted as ZLGCR, by incorporating glucose oxidase, LA oxidase, and CpG oligodeoxynucleotide into zeolitic imidazolate framework-8 that is camouflaged with a red blood cell membrane. Significantly, ZLGCR-mediated consumption of Glu and LA not only amplifies the effectiveness of metabolic therapy but also reverses the immunosuppressive TME, thereby enhancing the therapeutic outcomes of CpG-mediated antitumor immunotherapy. It is particularly important that the synergistic effect of metabolic therapy and immunotherapy is further augmented when combined with immune checkpoint blockade therapy. Consequently, this engineered antitumor nanoplatform will achieve a cooperative tumor-suppressive outcome through the modulation of metabolism and immune responses within the TME.


Assuntos
Neoplasias , Microambiente Tumoral , Humanos , Imunoterapia , Radioimunoterapia , Glucose , Glucose Oxidase , Imunossupressores , Ácido Láctico , Neoplasias/terapia , Linhagem Celular Tumoral
4.
J Lipid Res ; 65(10): 100629, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39182605

RESUMO

Neuroinflammation, marked by the release of proinflammatory cytokines and resulting neuronal death, is a multifaceted process extending beyond traditional inflammatory pathways. Microglia, primary cells in the inflammatory response, rapidly activate during neuroinflammation and produce proinflammatory and cytotoxic factors that affect neuronal function. Recent evidence highlights the significant role of abnormal lipid droplet (LD) deposition in the pathogenesis of neuroinflammation. While microglia are known to influence LD aggregation during neuroinflammation, the regulatory mechanism within neurons is not well understood. Our study demonstrates that lipopolysaccharide-activated microglia induce the accumulation of LD in neurons, identifying microglial-derived lactic acid as a key mediator in this process. Excessive lipid accumulation threatens neuronal function, a phenomenon reversed by eliminating microglia. Our study demonstrates that lipopolysaccharide-activated microglia induce the accumulation of LD in neurons, identifying microglial-derived lactic acid as a key mediator in this process. Excessive lipid accumulation threatens neuronal function, a phenomenon reversed by eliminating microglia.

5.
Eur J Immunol ; 53(6): e2350511, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37097063

RESUMO

The metabolic milieu is emerging as a major contributing factor in the maintenance of the immunosuppressive microenvironment within tumors. In particular, the presence of lactic acid produced by highly glycolytic cancer cells is known to suppress antitumor immune cell subsets while promoting immunosuppressive cell populations, such as regulatory T cells (Tregs). Unlike conventional T cells, Tregs have a unique, potent ability to take up lactic acid to fuel both mitochondrial metabolism and gluconeogenesis, thus supporting suppressive function and proliferation. In this issue of the European Journal of Immunology [Eur. J. Immunol. 2023.53:2250258], Rao et al. uncover a novel mechanism by which lactic acid can support Treg accumulation within tumors in mice. This study shows that lactic acid, through a pH-dependent mechanism rather than lactate itself, promotes TGFß-induced differentiation of Tregs from conventional CD4+ T cells. These findings build on the already multifaceted role of lactic acid in maintaining an immunosuppressive tumor microenvironment.


Assuntos
Neoplasias , Linfócitos T Reguladores , Animais , Camundongos , Diferenciação Celular , Imunossupressores , Ácido Láctico/metabolismo , Microambiente Tumoral
6.
Eur J Immunol ; 53(6): e2250258, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36788428

RESUMO

Glucose limitation and increased lactic acid levels are consequences of the elevated glycolytic activity of tumor cells, and constitute a metabolic barrier for the function of tumor infiltrating effector immune cells. The immune-suppressive functions of regulatory T cells (Tregs) are unobstructed in lactic-acid rich environments. However, the impact of lactic acid on the induction of Tregs remains unknown. We observed increased TGFß-mediated induction of Forkhead box P3+ (FoxP3+ ) cells in the presence of extracellular lactic acid, in a glycolysis-independent, acidity-dependent manner. These CD4+ FoxP3+ cells expressed Treg-associated markers, including increased expression of CD39, and were capable of exerting suppressive functions. Corroborating these results in vivo, we observed that neutralizing the tumor pH by systemic administration of sodium bicarbonate (NaBi) decreased Treg abundance. We conclude that acidity augments Treg induction and propose that therapeutic targeting of acidity in the tumor microenvironment (TME) might reduce Treg-mediated immune suppression within tumors.


Assuntos
Neoplasias , Linfócitos T Reguladores , Humanos , Fator de Crescimento Transformador beta/metabolismo , Terapia de Imunossupressão , Fatores de Transcrição/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Microambiente Tumoral
7.
BMC Plant Biol ; 24(1): 844, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39251915

RESUMO

This study investigated the influence of different temperatures (35℃ High temperature and average indoor ambient temperature of 25℃) and lactic acid bacterial additives (Lactiplantibacillus plantarym, Lentilactobacillus buchneri, or a combination of Lactiplantibacillus plantarym and Lentilactobacillus buchneri) on the chemical composition, fermentation quality, and microbial community of alfalfa silage feed. After a 60-day ensiling period, a significant interaction between temperature and additives was observed, affecting the dry matter (DM), crude protein (CP), acid detergent fiber (ADF), and neutral detergent fiber (NDF) of the silage feed (p < 0.05). Temperature had a highly significant impact on the pH value of the silage feed (p < 0.0001). However, the effect of temperature on lactic acid, acetic acid, propionic acid, and butyric acid was not significant (p > 0.05), while the inoculation of additives had a significant effect on lactic acid, acetic acid, and butyric acid (p > 0.05). As for the dynamic changes of microbial community after silage, the addition of three kinds of bacteria increased the abundance of lactobacillus. Among all treatment groups, the treatment group using complex bacteria had the best fermentation effect, indicating that the effect of complex lactic acid bacteria was better than that of single bacteria in high temperature fermentation. In summary, this study explained the effects of different temperatures and lactic acid bacterial additives on alfalfa fermentation quality and microbial community, and improved our understanding of the mechanism of alfalfa related silage at high temperatures.


Assuntos
Medicago sativa , Silagem , Temperatura , Medicago sativa/microbiologia , Silagem/microbiologia , Fermentação , Microbiota , Lactobacillales , Ácido Láctico/metabolismo
8.
Mol Genet Genomics ; 299(1): 24, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38438804

RESUMO

The search for probiotics and exploration of their functions are crucial for livestock farming. Recently, porcine-derived lactic acid bacteria (LAB) have shown great potential as probiotics. However, research on the evaluation of porcine-derived LAB as potential probiotics through genomics-based analysis is relatively limited. The present study analyzed four porcine-derived LAB strains (Lactobacillus johnsonii L16, Latilactobacillus curvatus ZHA1, Ligilactobacillus salivarius ZSA5 and Ligilactobacillus animalis ZSB1) using genomic techniques and combined with in vitro tests to evaluate their potential as probiotics. The genome sizes of the four strains ranged from 1,897,301 bp to 2,318,470 bp with the GC contents from 33.03 to 41.97%. Pan-genomic analysis and collinearity analysis indicated differences among the genomes of four strains. Carbohydrate active enzymes analysis revealed that L. johnsonii L16 encoded more carbohydrate active enzymes than other strains. KEGG pathway analysis and in vitro tests confirmed that L. johnsonii L16 could utilize a wide range of carbohydrates and had good utilization capacity for each carbohydrate. The four strains had genes related to acid tolerance and were tolerant to low pH, with L. johnsonii L16 showing the greatest tolerance. The four strains contained genes related to bile salt tolerance and were able to tolerate 0.1% bile salt. Four strains had antioxidant related genes and exhibited antioxidant activity in in vitro tests. They contained the genes linked with organic acid biosynthesis and exhibited antibacterial activity against enterotoxigenic Escherichia coli K88 (ETEC K88) and Salmonella 6,7:c:1,5, wherein, L. johnsonii L16 and L. salivarius ZSA5 had gene clusters encoding bacteriocin. Results suggest that genome analysis combined with in vitro tests is an effective approach for evaluating different strains as probiotics. The findings of this study indicate that L. johnsonii L16 has the potential as a probiotic strain among the four strains and provide theoretical basis for the development of probiotics in swine production.


Assuntos
Lactobacillales , Suínos , Animais , Lactobacillales/genética , Genômica , Agricultura , Antibacterianos , Antioxidantes , Escherichia coli , Carboidratos
9.
Mol Genet Genomics ; 299(1): 31, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38472540

RESUMO

Lactic acid bacteria (LAB) can be used as a probiotic or starter culture in dairy, meat, and vegetable fermentation. Therefore, their isolation and identification are essential. Recent advances in omics technologies and high-throughput sequencing have made the identification and characterization of bacteria. This study firstly aimed to demonstrate the sensitivity of the Vitek MS (MALDI-TOF) system in the identification of lactic acid bacteria and, secondly, to characterize bacteria using various bioinformatics approaches. Probiotic potency-related genes and secondary metabolite biosynthesis gene clusters were examined. The Vitek MS (MALDI-TOF) system was able to identify all of the bacteria at the genus level. According to whole genome sequencing, the bacteria were confirmed to be Lentilactobacillus buchneri, Levilactobacillus brevis, Lactiplantibacillus plantarum, Levilactobacillus namurensis. Bacteria had most of the probiotic potency-related genes, and different toxin-antitoxin systems such as PemIK/MazEF, Hig A/B, YdcE/YdcD, YefM/YoeB. Also, some of the secondary metabolite biosynthesis gene clusters, some toxic metabolite-related genes, and antibiotic resistance-related genes were detected. In addition, Lentilactobacillus buchneri Egmn17 had a type II-A CRISPR/Cas system. Lactiplantibacillus plantarum Gmze16 had a bacteriocin, plantaricin E/F.


Assuntos
Lactobacillales , Lactobacillus , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Bactérias , Sequenciamento Completo do Genoma , Genômica
10.
Small ; : e2406782, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39344630

RESUMO

Transforming glycerol (GLY, biodiesel by-product) into lactic acid (LA, biodegradable polymer monomer) through sustainable electrocatalysis presents an effective strategy to reduce biodiesel production costs and consequently enhance its applications. However, current research faces a trade-off between achieving industrially-relevant current density (>300 mA cm-2) and high LA selectivity (>80%), limiting technological advancement. Herein, a Au3Ag1 alloy electrocatalyst is developed that demonstrates exceptional LA selectivity (85%) under high current density (>400 mA cm-2). The current density can further reach 1022 mA cm-2 at 1.2 V versus RHE, superior to most previous reports for GLY electrooxidation. It is revealed that the Au3Ag1 alloy can enhance GLY adsorption and reactive oxygen species (OH*) generation, thereby significantly boosting activity. As a proof of concept, a homemade flow electrolyzer is constructed, achieving remarkable LA productivity of 68.9 mmol h-1 at the anode, coupled with efficient H2 production of 3.5 L h-1 at the cathode. To further unveil the practical possibilities of this technology, crude GLY extracted from peanut oil into LA is successfully transformed, while simultaneously producing H2 at the cathode. This work showcases a sustainable method for converting biodiesel waste into high-value products and hydrogen fuel, promoting the broader application of biodiesel.

11.
Small ; : e2402317, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38988143

RESUMO

Here, the poly (l-lactic acid) (PLLA) membrane with multi-structured networks (MSN) is successfully prepared by electrospinning technology for the first time. It is composed of micron-sized ribbon-structured fibers and ultrafine nanofibers with a diameter of tens of nanometers, and they are connected to form the new network structure. Thanks to the special fiber morphology and structure, the interception and electrostatic adsorption ability for against atmospheric particulate matter (PM) are significantly enhanced, and the resistance to airflow is reduced due to the "slip effect" caused by ultrafine nanofibers. The PLLA MSN membrane shows excellent filtration performance with ultra-high filtration efficiency (>99.9% for PM2.5 and >99.5% for PM0.3) and ultra-low pressure drop (≈20 Pa). It has demonstrated filtration performance that even exceeds current non-biodegradable polymer materials, laying the foundation for future applications of biodegradable PLLA in the field of air filtration. In addition, this new structure also provides a new idea for optimizing the performance of other polymer materials.

12.
Small ; 20(43): e2404741, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39031679

RESUMO

Catalytic therapy has shown great potential for clinical application. However, conventional catalytic therapies rely on reactive oxygen species (ROS) as "therapeutic drugs," which have limitations in effectively inhibiting tumor recurrence and metastasis. Here, a biomimetic heterojunction catalyst is developed that can actively target orthotopic rectal cancer after oral administration. The heterojunction catalyst is composed of quatrefoil star-shaped BiVO4 (BVO) and ZnIn2S4 (ZIS) nanosheets through an in situ direct growth technique. Poly-norepinephrine and macrophage membrane coatings afford the biomimetic heterojunction catalyst (BVO/ZIS@M), which has high rectal cancer targeting and retention abilities. The coupled optical fiber intervention technology activates the multicenter coordination of five catalytic reactions of heterojunction catalysts, including two reduction reactions (O2→·O2 - and CO2→CO) and three oxidation reactions (H2O→·OH, GSH→GSSG, and LA→PA). These catalytic reactions not only induce immunogenic death in tumor cells through the efficient generation of ROS/CO and the consumption of GSH but also specifically lead to the use of lactic acid (LA) as an electron donor to improve catalytic activity and disrupt the LA-mediated immunosuppressive microenvironment, mediating synergistic catalysis and immunotherapy for orthotopic rectal cancer. Therefore, this optical fiber intervention triggered the combination of heterojunction catalytic therapy and immunotherapy, which exhibits prominent antitumor effects.


Assuntos
Fibras Ópticas , Neoplasias Retais , Neoplasias Retais/terapia , Neoplasias Retais/patologia , Animais , Camundongos , Humanos , Linhagem Celular Tumoral , Catálise , Espécies Reativas de Oxigênio/metabolismo , Administração Oral
13.
Yeast ; 41(4): 192-206, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38081785

RESUMO

While flocculation has demonstrated its efficacy in enhancing yeast robustness and ethanol production, its potential application for lactic acid fermentation remains largely unexplored. Our study examined the differences between flocculating and nonflocculating Saccharomyces cerevisiae strains in terms of their metabolic dynamics when incorporating an exogenous lactic acid pathway, across varying cell densities and in the presence of lignocellulose-derived byproducts. Comparative gene expression profiles revealed that cultivating a nonflocculant strain at higher cell density yielded a substantial upregulation of genes associated with glycolysis, energy metabolism, and other key pathways, resulting in elevated levels of fermentation products. Meanwhile, the flocculating strain displayed an inherent ability to sustain high glycolytic activity regardless of the cell density. Moreover, our investigation revealed a significant reduction in glycolytic activity under chemical stress, potentially attributable to diminished ATP supply during the energy investment phase. Conversely, the formation of flocs in the flocculating strain conferred protection against toxic chemicals present in the medium, fostering more stable lactic acid production levels. Additionally, the distinct flocculation traits observed between the two examined strains may be attributed to variations in the nucleotide sequences of the flocculin genes and their regulators. This study uncovers the potential of flocculation for enhanced lactic acid production in yeast, offering insights into metabolic mechanisms and potential gene targets for strain improvement.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Fermentação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ácido Láctico/metabolismo , Glicólise , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Floculação
14.
Metab Eng ; 83: 150-159, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38621518

RESUMO

Microbial CO2 fixation into lactic acid (LA) is an important approach for low-carbon biomanufacturing. Engineering microbes to utilize CO2 and sugar as co-substrates can create efficient pathways through input of moderate reducing power to drive CO2 fixation into product. However, to achieve complete conservation of organic carbon, how to engineer the CO2-fixing modules compatible with native central metabolism and merge the processes for improving bioproduction of LA is a big challenge. In this study, we designed and constructed a solar formic acid/pentose (SFAP) pathway in Escherichia coli, which enabled CO2 fixation merging into sugar catabolism to produce LA. In the SFAP pathway, adequate reducing equivalents from formate oxidation drive glucose metabolism shifting from glycolysis to the pentose phosphate pathway. The Rubisco-based CO2 fixation and sequential reduction of C3 intermediates are conducted to produce LA stoichiometrically. CO2 fixation theoretically can bring a 20% increase of LA production compared with sole glucose feedstock. This SFAP pathway in the integration of photoelectrochemical cell and an engineered Escherichia coli opens an efficient way for fixing CO2 into value-added bioproducts.


Assuntos
Escherichia coli , Formiatos , Ácido Láctico , Engenharia Metabólica , Escherichia coli/metabolismo , Escherichia coli/genética , Formiatos/metabolismo , Ácido Láctico/metabolismo , Ácido Láctico/biossíntese , Dióxido de Carbono/metabolismo
15.
Metab Eng ; 85: 133-144, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39067842

RESUMO

A bio-based production of chemical building blocks from renewable, sustainable and non-food substrates is one key element to fight climate crisis. Lactic acid, one such chemical building block is currently produced from first generation feedstocks such as glucose and sucrose, both requiring land and water resources. In this study we aimed for lactic acid production from methanol by utilizing Komagataella phaffii as a production platform. Methanol, a single carbon source has potential as a sustainable substrate as technology allows (electro)chemical hydrogenation of CO2 for methanol production. Here we show that expression of the Lactiplantibacillus plantarum derived lactate dehydrogenase leads to L-lactic acid production in Komagataella phaffii, however, production resulted in low titers and cells subsequently consumed lactic acid again. Gene expression analysis of the methanol-utilizing genes AOX1, FDH1 and DAS2 showed that the presence of lactic acid downregulates transcription of the aforementioned genes, thereby repressing the methanol-utilizing pathway. For activation of the methanol-utilizing pathway in the presence of lactic acid, we constructed strains deficient in transcriptional repressors Nrg1, Mig1-1, and Mig1-2 as well as strains with overrepresentation of transcriptional activators Mxr1 and Mit1. While loss of transcriptional repressors had no significant impact on lactic acid production, overexpression of both transcriptional activators, MXR1 and MIT1, increased lactic acid titers from 4 g L-1 to 17 g L-1 in bioreactor cultivations.


Assuntos
Ácido Láctico , Metanol , Ácido Láctico/metabolismo , Ácido Láctico/biossíntese , Metanol/metabolismo , Transativadores/genética , Transativadores/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo
16.
Metab Eng ; 84: 23-33, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38788894

RESUMO

Metabolic engineering for high productivity and increased robustness is needed to enable sustainable biomanufacturing of lactic acid from lignocellulosic biomass. Lactic acid is an important commodity chemical used for instance as a monomer for production of polylactic acid, a biodegradable polymer. Here, rational and model-based optimization was used to engineer a diploid, xylose fermenting Saccharomyces cerevisiae strain to produce L-lactic acid. The metabolic flux was steered towards lactic acid through the introduction of multiple lactate dehydrogenase encoding genes while deleting ERF2, GPD1, and CYB2. A production of 93 g/L of lactic acid with a yield of 0.84 g/g was achieved using xylose as the carbon source. To increase xylose utilization and reduce acetic acid synthesis, PHO13 and ALD6 were also deleted from the strain. Finally, CDC19 encoding a pyruvate kinase was overexpressed, resulting in a yield of 0.75 g lactic acid/g sugars consumed, when the substrate used was a synthetic lignocellulosic hydrolysate medium, containing hexoses, pentoses and inhibitors such as acetate and furfural. Notably, modeling also provided leads for understanding the influence of oxygen in lactic acid production. High lactic acid production from xylose, at oxygen-limitation could be explained by a reduced flux through the oxidative phosphorylation pathway. On the contrast, higher oxygen levels were beneficial for lactic acid production with the synthetic hydrolysate medium, likely as higher ATP concentrations are needed for tolerating the inhibitors therein. The work highlights the potential of S. cerevisiae for industrial production of lactic acid from lignocellulosic biomass.


Assuntos
Ácido Láctico , Lignina , Engenharia Metabólica , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ácido Láctico/metabolismo , Ácido Láctico/biossíntese , Lignina/metabolismo , Biomassa , Xilose/metabolismo , Xilose/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
Appl Environ Microbiol ; 90(9): e0112024, 2024 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-39136492

RESUMO

The persistent challenge of phages in dairy fermentations requires the development of starter cultures with enhanced phage resistance. Recently, three plasmid-encoded lactococcal antiphage systems, named Rhea, Aristaios, and Kamadhenu, were discovered. These systems were found to confer high levels of resistance against various Skunavirus members. In the present study, their effectiveness against phage infection was confirmed in milk-based medium, thus validating their potential to ensure reliable dairy fermentations. We furthermore demonstrated that Rhea and Kamadhenu do not directly hinder phage genome replication, transcription, or associated translation. Conversely, Aristaios was found to interfere with phage transcription. Two of the antiphage systems are encoded on pMRC01-like conjugative plasmids, and the Kamadhenu-encoding plasmid was successfully transferred by conjugation to three lactococcal strains, each of which acquired substantially enhanced phage resistance against Skunavirus members. Such advances in our knowledge of the lactococcal phage resistome and the possibility of mobilizing these protective functions to bolster phage protection in sensitive strains provide practical solutions to the ongoing phage problem in industrial food fermentations.IMPORTANCEIn the current study, we characterized and evaluated the mechanistic diversity of three recently described, plasmid-encoded lactococcal antiphage systems. These systems were found to confer high resistance against many members of the most prevalent and problematic lactococcal phage genus, rendering them of particular interest to the dairy industry, where persistent phage challenge requires the development of starter cultures with enhanced phage resistance characteristics. Our acquired knowledge highlights that enhanced understanding of lactococcal phage resistance systems and their encoding plasmids can provide rational and effective solutions to the enduring issue of phage infections in dairy fermentation facilities.


Assuntos
Bacteriófagos , Plasmídeos , Plasmídeos/genética , Bacteriófagos/genética , Bacteriófagos/fisiologia , Fermentação , Leite/microbiologia , Leite/virologia , Lactococcus lactis/virologia , Lactococcus lactis/genética , Lactococcus/virologia , Lactococcus/genética , Microbiologia de Alimentos
18.
Appl Environ Microbiol ; 90(3): e0144523, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38411084

RESUMO

Galacto-N-biose (GNB) is an important core structure of glycan of mucin glycoproteins in the gastrointestinal (GI) mucosa. Because certain beneficial bacteria inhabiting the GI tract, such as bifidobacteria and lactic acid bacteria, harbor highly specialized GNB metabolic capabilities, GNB is considered a promising prebiotic for nourishing and manipulating beneficial bacteria in the GI tract. However, the precise interactions between GNB and beneficial bacteria and their accompanying health-promoting effects remain elusive. First, we evaluated the proliferative tendency of beneficial bacteria and their production of beneficial metabolites using gut bacterial strains. By comparing the use of GNB, glucose, and inulin as carbon sources, we found that GNB enhanced acetate production in Lacticaseibacillus casei, Lacticaseibacillus rhamnosus, Lactobacillus gasseri, and Lactobacillus johnsonii. The ability of GNB to promote acetate production was also confirmed by RNA-seq analysis, which indicated the upregulation of gene clusters that catalyze the deacetylation of N-acetylgalactosamine-6P and biosynthesize acetyl-CoA from pyruvate, both of which result in acetate production. To explore the in vivo effect of GNB in promoting acetate production, antibiotic-treated BALB/cA mice were administered with GNB with L. rhamnosus, resulting in a fecal acetate content that was 2.7-fold higher than that in mice administered with only L. rhamnosus. Moreover, 2 days after the last administration, a 3.7-fold higher amount of L. rhamnosus was detected in feces administered with GNB with L. rhamnosus than in feces administered with only L. rhamnosus. These findings strongly suggest the prebiotic potential of GNB in enhancing L. rhamnosus colonization and converting L. rhamnosus into higher acetate producers in the GI tract. IMPORTANCE: Specific members of lactic acid bacteria, which are commonly used as probiotics, possess therapeutic properties that are vital for human health enhancement by producing immunomodulatory metabolites such as exopolysaccharides, short-chain fatty acids, and bacteriocins. The long residence time of probiotic lactic acid bacteria in the GI tract prolongs their beneficial health effects. Moreover, the colonization property is also desirable for the application of probiotics in mucosal vaccination to provoke a local immune response. In this study, we found that GNB could enhance the beneficial properties of intestinal lactic acid bacteria that inhabit the human GI tract, stimulating acetate production and promoting intestinal colonization. Our findings provide a rationale for the addition of GNB to lactic acid bacteria-based functional foods. This has also led to the development of therapeutics supported by more rational prebiotic and probiotic selection, leading to an improved healthy lifestyle for humans.


Assuntos
Lactobacillales , Probióticos , Humanos , Animais , Camundongos , Prebióticos , Lactobacillales/genética , Dissacaridases , Probióticos/metabolismo , Acetatos , Bactérias
19.
Appl Environ Microbiol ; 90(10): e0098624, 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39324818

RESUMO

High-throughput metagenomic sequence technology was employed to evaluate changes in microbial community composition and carbohydrate-active enzymes encoding gene enrichment status in Elymus nutans silages to altitudinal gradients in the world's highest alpine region of Qinghai-Tibetan Plateau (QTP). E. nutans were collected from three different altitudes in QTP: 2,600 m (low altitude), 3600 m (moderate altitude), and 4,600 m [high (H) altitude], and ensiled for 7, 14, 30, and 60 d. Results indicated an improvement in silage quality with the increasing altitude, although the acetic acid concentration and dry matter loss were greater in H altitude silages after 30 d of ensiling. Harmful bacteria or potential pathogens predominated in the microbial community on d 7 and 14 of fermentation, while genera belonging to lactic acid bacteria gradually became the main microorganisms with the increasing altitude on d 30 and 60 of ensiling. The abundance of carbohydrate-active enzymes genes responsible for macromolecular carbohydrate degradation in silage increased with increasing altitude, and those genes were mainly carried by Lactiplantibacillus and Pediococcus at 30 and 60 d of ensiling. The abundance of key enzymatic genes associated with glycolysis and organic acid production in carbohydrate metabolism pathway was higher in H altitude silages, and Lactiplantibacillus and Pediococcus were also the main hosts after 30 d of silage fermentation, except for the fact that acetic acid production was also related to genera Leuconostoc, Latilactobacillus, and Levilactobacillus. IMPORTANCE: The fermentation quality of Elymus nutans silage was getting better with the increase of altitude in the Qinghai-Tibetan Plateau. The abundance of hosts carrying carbohydrate-active enzymes genes and key enzyme genes related to organic acid production increased with increasing altitude during the later stages of fermentation. Lactiplantibacillus and Pediococcus were the core microorganisms responsible for both polysaccharide hydrolysis and silage fermentation in the late stage of ensiling. This study provided insights on the influence of different altitudes on the composition and function of silage microbiome in the Qinghai-Tibetan Plateau, and provided a reference approach for improving the quality and controllability of silage production in high altitude areas of the Qinghai-Tibetan Plateau.


Assuntos
Altitude , Bactérias , Elymus , Microbiota , Silagem , Silagem/microbiologia , Silagem/análise , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Elymus/microbiologia , Elymus/genética , Fermentação , Tibet , Ácido Acético/metabolismo
20.
Appl Environ Microbiol ; 90(3): e0227623, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38319095

RESUMO

Consumer demand for plant cheeses is increasing, but challenges of improving both flavor and quality remain. This study investigated the microbiological and physicochemical impact of seed germination and fermentation with Bacillus velezensis and Bacillus amyloliquefaciens on the ripening of plant cheese analogs. Chlorine treatment or addition of Lactiplantibacillus plantarum and Lactococcus lactis controlled microbial growth during seed germination. Lp. plantarum and Lc. lactis also served as starter cultures for the acidification of soy and lupine milk and were subsequently present in the unripened plant cheese as dominant microbes. Acidification also inhibited the growth and metabolic activity of bacilli but Bacillus spores remained viable throughout ripening. During plant cheese ripening, Lc. lactis was inactivated before Lp. plantarum and the presence of bacilli during seed germination delayed Lc. lactis inactivation. Metagenomic sequencing of full-length 16S rRNA gene amplicons confirmed that the relative abundance of the inoculated strains in each ripened cheese sample exceeded 99%. Oligosaccharides including raffinose, stachyose, and verbascose were rapidly depleted in the initial stage of ripening. Both germination and the presence of bacilli during seed germination had impact on polysaccharide hydrolysis during ripening. Bacilli but not seed germination enhanced proteolysis of plant cheese during ripening. In conclusion, the use of germination with lactic acid bacteria in combination with Bacillus spp. exhibited the potential to improve the quality of ripened plant cheeses with a positive effect on the reduction of hygienic risks. IMPORTANCE: The development of novel plant-based fermented food products for which no traditional templates exist requires the development of starter cultures. Although the principles of microbial flavor formation in plant-based analogs partially overlap with dairy fermentations, the composition of the raw materials and thus likely the selective pressure on the activity of starter cultures differs. Experiments that are described in this study explored the use of seed germination, the use of lactic acid bacteria, and the use of bacilli to reduce hygienic risks, to acidify plant milk, and to generate taste-active compounds through proteolysis and fermentative conversion of carbohydrates. The characterization of fermentation microbiota by culture-dependent and culture-independent methods also confirmed that the starter cultures used were able to control microbial communities throughout 90 d of ripening. Taken together, the results provide novel tools for the development of plant-based analogs of fermented dairy products.


Assuntos
Bacillus , Queijo , Lactobacillales , Lactococcus lactis , Animais , Germinação , Queijo/microbiologia , RNA Ribossômico 16S/genética , Sementes , Lactobacillales/genética , Bacillus/genética , Microbiologia de Alimentos , Lactococcus lactis/genética , Leite/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA