Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Ecology ; 100(3): e02591, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30582633

RESUMO

Environmental filtering and dispersal limitation can both maintain diversity in plant communities by aggregating conspecifics, but parsing the contribution of each process has proven difficult empirically. Here, we assess the contribution of filtering and dispersal limitation to the spatial aggregation patterns of 456 tree species in a hyperdiverse Amazonian forest and find distinct functional trait correlates of interspecific variation in these processes. Spatial point process model analysis revealed that both mechanisms are important drivers of intraspecific aggregation for the majority of species. Leaf drought tolerance was correlated with species topographic distributions in this aseasonal rainforest, showing that future increases in drought severity could significantly impact community structure. In addition, seed mass was associated with the spatial scale and density of dispersal-related aggregation. Taken together, these results suggest environmental filtering and dispersal limitation act in concert to influence the spatial and functional structure of diverse forest communities.


Assuntos
Florestas , Árvores , Fenótipo , Folhas de Planta , Floresta Úmida , Clima Tropical
2.
Ann Bot ; 117(2): 349-61, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26715468

RESUMO

BACKGROUND AND AIMS: There is abundant evidence that leaf mechanical traits deter feeding by insect herbivores, but little is known about which particular traits contribute to defence across feeding guilds. We investigated the contribution of multiple mechanical traits from shear, punch and tear tests to herbivore deterrence across feeding guilds. METHODS: Visible damage from miners and external chewers was measured and sucker feeding density estimated in mature leaves of 20 species of forest shrubs and small trees. Cafeteria trials were undertaken using a generalist chewer (larvae of Epiphyas postvittana, Lepidoptera). Damage was compared with leaf mechanical traits and associated nutrient and chemical defence traits. KEY RESULTS: Damage by external chewers in the field and by E. postvittana correlated negatively with mechanical traits. Hierarchical partitioning analysis indicated that the strongest independent contribution to chewing damage was by the material trait of specific work to shear, with 68 % of total variance explained by the combination of specific work to shear (alone explaining 54 %) and tannin activity in a regression model. Mining damage did not correlate with mechanical traits, probably because miners can avoid tissues that generate high strength and toughness in mature leaves. Mechanical traits correlated more strongly with chewing damage in the field than chemical defences (total phenolics and tannin activity) and nutrients (nitrogen and water), but nutrients correlated strongly with diet selection in the cafeteria trial. Surprisingly, sucker feeding density correlated positively with mechanical traits and negatively with nutrients. CONCLUSIONS: Mechanical traits of mature leaves influenced insect feeding guilds differentially, reflecting differences in life history and feeding modes. For external chewers, energy (work) to fracture in shearing tests, at both structural and material levels, was strongly predictive of damage. Knowing which leaf mechanical traits influence insect feeding, and in which guilds, is important to our wider understanding of plant-herbivore interactions.


Assuntos
Herbivoria , Folhas de Planta/fisiologia , Animais , Lepidópteros , Folhas de Planta/química , Taninos/análise , Vitória
3.
Ann Bot ; 117(1): 209-14, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26530215

RESUMO

BACKGROUND AND AIMS: The influence of leaf mechanical properties on local ecosystem processes, such as trophic transfer, decomposition and nutrient cycling, has resulted in a growing interest in including leaf mechanical resistance in large-scale databases of plant functional traits. 'Specific work to shear' and 'force to tear' are two properties commonly used to describe mechanical resistance (toughness or strength) of leaves. Two methodologies have been widely used to measure them across large datasets. This study aimed to assess correlations and standardization between the two methods, as measured by two widely used apparatuses, in order to inter-convert existing data in those global datasets. METHODS: Specific work to shear (W(SS)) and force to tear (FT) were measured in leaves of 72 species from south-eastern Australia. The measurements were made including and excluding midribs. Relationships between the variables were tested by Spearman correlations and ordinary least square regressions. KEY RESULTS: A positive and significant correlation was found between the methods, but coefficients varied according to the inclusion or exclusion of the midrib in the measurements. Equations for prediction varied according to leaf venation pattern. A positive and significant (r = 0·90, P < 0·0001) correlation was also found between W(SS) values for fresh and rehydrated leaves, which is considered to be of practical relevance. CONCLUSIONS: In the context of broad-scale ecological hypotheses and used within the constraints recommended here, leaf mechanical resistance data obtained with both methodologies could be pooled together into a single coarser variable, using the equations provided in this paper. However, more detailed datasets of FT cannot be safely filled in with estimations based on W(SS), or vice versa. In addition, W(SS) values of green leaves can be predicted with good accuracy from W(SS) of rehydrated leaves of the same species.


Assuntos
Bases de Dados como Assunto , Folhas de Planta/fisiologia , Característica Quantitativa Herdável , Fenômenos Biomecânicos , Modelos Lineares , Estatísticas não Paramétricas
4.
Am J Bot ; 101(3): 437-47, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24638164

RESUMO

PREMISE OF THE STUDY: Slow-growing understory cycads invest heavily in defenses to protect the few leaves they produce annually. The Neotropical cycad Zamia stevensonii has chemical and mechanical barriers against insect herbivores. Mechanical barriers, such as leaf toughness, can be established only after the leaf has expanded. Therefore, chemical defenses may be important during leaf expansion. How changes in leaf traits affect the feeding activity of cycad specialist insects is unknown. We investigated leaf defenses and incidence of specialist herbivores on Z. stevensonii during the first year after leaf flush. METHODS: Herbivore incidence, leaf production, and leaf traits that might affect herbivory-including leaf age, lamina thickness, resistance-to-fracture, work-to-fracture, trichome density, and chlorophyll, water, and toxic azoxyglycoside (AZG) content-were measured throughout leaf development. Principal component analysis and generalized linear models identified characteristics that may explain herbivore incidence. KEY RESULTS: Synchronized leaf development in Z. stevensonii is characterized by quick leaf expansion and delayed greening. Specialist herbivores feed on leaves between 10 and 100 d after flush and damage ∼37% of all leaflets produced. Young leaves are protected by AZGs, but these defenses rapidly decrease as leaves expand. Leaves older than 100 d are protected by toughness. CONCLUSIONS: Because AZG concentrations drop before leaves become sufficiently tough, there is a vulnerable period during which leaves are susceptible to herbivory by specialist insects. This slow-growing gymnosperm invests heavily in constitutive defenses against highly specialized herbivores, underlining the convergence in defensive syndromes by major plant lineages.


Assuntos
Besouros/fisiologia , Glicosídeos/metabolismo , Interações Hospedeiro-Parasita , Zamiaceae/fisiologia , Animais , Clorofila/metabolismo , Glicosídeos/análise , Herbivoria , Modelos Lineares , Fenótipo , Folhas de Planta/química , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Chuva , Zamiaceae/química , Zamiaceae/crescimento & desenvolvimento
5.
Ann Bot ; 112(4): 685-99, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23532047

RESUMO

BACKGROUND AND AIMS: Leaf life span is widely recognized as a key life history trait associated with herbivory resistance, but rigorous comparative data are rare for seedlings. The goal of this study was to examine how light environment affects leaf life span, and how ontogenetic development during the first year may influence leaf fracture toughness, lamina density and stem density that are relevant for herbivory resistance, leaf life span and seedling survival. METHODS: Data from three experiments encompassing 104 neotropical woody species were combined. Leaf life span, lamina and vein fracture toughness, leaf and stem tissue density and seedling survival were quantified for the first-year seedlings at standardized ontogenetic stages in shade houses and common gardens established in gaps and shaded understorey in a moist tropical forest in Panama. Mortality of naturally recruited seedlings till 1 year later was quantified in 800 1-m² plots from 1994 to 2011. KEY RESULTS: Median leaf life span ranged widely among species, always greater in shade (ranging from 151 to >1790 d in the understorey and shade houses) than in gaps (115-867 d), but with strong correlation between gaps and shade. Leaf and stem tissue density increased with seedling age, whereas leaf fracture toughness showed only a weak increase. All these traits were positively correlated with leaf life span. Leaf life span and stem density were negatively correlated with seedling mortality in shade, while gap mortality showed no correlation with these traits. CONCLUSIONS: The wide spectrum of leaf life span and associated functional traits reflects variation in shade tolerance of first-year seedlings among coexisting trees, shrubs and lianas in this neotropical forest. High leaf tissue density is important in enhancing leaf toughness, a known physical defence, and leaf life span. Both seedling leaf life span and stem density should be considered as key functional traits that contribute to seedling survival in tropical forest understoreys.


Assuntos
Folhas de Planta/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento , Animais , Herbivoria , Luz , Clima Tropical
6.
Ecology ; 104(1): e3872, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36121050

RESUMO

Hunting impacts tropical vertebrate populations, causing declines of species that function as seed dispersers and predators, or that browse seedlings and saplings. Whether and how the resulting reductions in seed dispersal, seed predation, and browsing translate to changes in the tree composition is poorly understood. Here, we assess the effect of defaunation on the functional composition of communities of tree recruits in tropical rainforests in French Guiana. We selected eight sites along a gradient of defaunation, caused by differences in hunting pressure, in otherwise intact old-growth forests in French Guiana. We measured shifts in functional composition by comparing leaf and fruit traits and wood density between tree recruits (up to 5 cm diameter at breast height) and adults, and tested whether and how these compositional shifts related to defaunation. We found a positive relationship with defaunation for shifts in specific leaf area, a negative relationship for shifts of leaf toughness and wood density, and a weak relationship for shifts in fruit traits. Our results suggest that the loss of vertebrates affects ecological processes such as seed dispersal and browsing, of which browsing remains understudied. Even though these changes sometimes seem minor, together they result in major shifts in forest composition. These changes have long-term ramifications that may alter forest dynamics for generations.


Assuntos
Florestas , Árvores , Animais , Guiana Francesa , Vertebrados , Folhas de Planta , Clima Tropical , Ecossistema
7.
Front Plant Sci ; 13: 852167, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35668813

RESUMO

Seed size is a key trait for understanding and predicting ecological processes in a plant community. In a tropical forest, trees and lianas are major components driving ecosystem function and biogeochemical processes. However, seed ecological research on both components remains limited, particularly phylogenetic patterns and relationships with other traits. Here, we compiled a unique dataset of seed size (seed mass and geometrical size metrics) based on collections of more than 5,200 seeds of 196 woody plant species, covering >98 and 70% of tree and liana stems, respectively, located on a 30-ha plot in a tropical evergreen forest in central Thailand. We aimed to (1) develop allometric equations among seed size metrics to predict seed mass; (2) examine phylogenetic influence on seed size variation; and (3) examine relationships among seed traits and several other functional plant traits. Our allometric equations relating seed mass, seed volume, and width were well-fitted with data (R 2 = 0.94, 0.87 respectively). A phylogenetic signal test found that seed size was randomly distributed across the phylogeny. To study the functional trait relationships, we separately tested seed size data of the tree and liana communities (146 and 50 species, respectively), against mean body size of frugivores, successional niches, leaf, and structural traits. For the tree community, seed size was significantly related to mean body size of frugivores, which we believe is a basic driver of seed size because it is related to the gape width affecting dispersal effectiveness. Nearly all leaf traits were significantly positively correlated with seed size (p < 0.03). The significant positive correlation of leaf area and greenness suggested the high-energy demand of large-seeded species. We found a strong positive correlation between seed size and leaf toughness, suggesting a coordination between seed size and leaf defense. However, all these patterns disappeared in the same analysis applied to the liana community. Liana seed size variation was lower than that of trees, perhaps because lianas grow in relatively more uniform conditions in the forest canopy. Frugivore size was the strongest driver of seed size variation. Our study shows a surprising contrast between trees and lianas that is worth further investigation.

8.
Mar Environ Res ; 182: 105785, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36308799

RESUMO

Seagrass-herbivore interactions play a principal role in regulating the structure and function of coastal food webs, which were affected by nutrient enrichment. Seawater nutrient enrichment might change seagrass palatability by altering seagrass physical and chemical traits, consequently modulating herbivory patterns, but this remains elusive. In this study, the dominant tropical seagrass Thalassia hemprichii was cultured in different ammonium concentrations to examine the response of seagrass nutritional quality, deterrent secondary metabolites, and leaf toughness, as well as the subsequent effect of the changed physical (e.g., leaf toughness) and chemical traits (e.g., nitrogen content; total phenol) on the grazing activity of the herbivorous snail Cerithidea rhizophorarum. Ammonium enrichment enhanced seagrass nutritional quality and decreased physical defence. Low ammonium enrichment increased total phenol content, while high ammonium enrichment reduced it. Both low and high ammonium enrichment enhanced the grazing intensity of C. rhizophorarum on seagrass. Interestingly, nutritional quality mostly determined the herbivory preference of C. rhizophorarum on the intact seagrass having physical structure, with a chemical deterrent (total phenol) playing a secondary role. In contrast, chemical deterrent mainly determined the grazing intensity on agar seagrass food which was made artificially to exclude physical structure. This indicated that seagrass leaf physical structure might hinder phenol compounds from deterring herbivores. Overall, the results presented here demonstrate that ammonium enrichment remarkably increased seagrass palatability and subsequently induced higher susceptibility to herbivory, which might induce seagrass loss.


Assuntos
Alismatales , Herbivoria , Herbivoria/fisiologia , Alismatales/fisiologia , Cadeia Alimentar , Valor Nutritivo , Fenóis
9.
Ecol Evol ; 6(5): 1430-46, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26865953

RESUMO

Studies of leaf traits often focus on tradeoffs between growth and resource conservation, but little is known about variation in the mechanical traits that influence resource conservation. This study investigates how leaf mechanical traits vary across matorral vegetation in central Chile, how they correlate with environmental factors, and how these trends compare at a broader geographic scale. Leaf toughness, strength, stiffness, and associated traits were measured in five matorral types in central Chile, and relationships with soil N and P and climate variables were assessed. Trends with soil and climate were then analyzed across shrubland and woodland in Chile, Western Australia, and New Caledonia. Chilean species varied in leaf mechanics and associated traits, both within and among matorral types, with more species in sclerophyll matorral having strong, tough, and stiff leaves than in arid and littoral matorral. Overall, leaves with high leaf dry mass per area were stiffer, tougher, stronger, thicker, denser, with more fiber, lignin, phenolics and fiber per unit protein and less protein: tannin activity and N and P per mass, forming a broad sclerophylly syndrome. Mechanical traits of matorral species were not correlated with soil N or P, or predictably with climate variables, except flexural stiffness (EI W) which correlated positively with annual reference evapotranspiration (ET 0). However, soil P made strong independent contributions to variation in leaf mechanics across shrublands and woodlands of Chile, Western Australia, and New Caledonia, either separately (strength) or together with ET 0 (toughness) explaining 46-90% of variation. Hence ET 0 was predictive of EI W in Chilean matorral, whereas soil P was highly predictive of variation in leaf strength, and combined with ET 0 was highly predictive of toughness, at a broader geographic scale. The biological basis of these relationships, however, may be complex.

10.
Rev. biol. trop ; 68(supl 2)set. 2020.
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1507638

RESUMO

Introducción: En los sistemas fluviales colombianos ha sido poco estudiada la fragmentación del material alóctono por parte de los insectos acuáticos. Uno de los organismos trituradores más abundantes en las corrientes tropicales de América es el tricóptero del género Phylloicus (Calamoceratidae). Objetivo: El presente estudio tuvo como objetivo evaluar el efecto de los atributos químicos (nitrógeno, fósforo y lignina) y físicos (dureza) de las hojas de tres especies ribereñas (Ficus tonduzii, Zygia longifolia y Clusia multiflora) dominantes en la parte media del río Gaira, sobre la preferencia de hojas y el crecimiento de larvas de Phylloicus sp. Métodos: Se realizaron experimentos de multiselección de alimento en campo, en los que se ubicaron cámaras experimentales dentro del río por 21 días. Para la valoración de la calidad foliar se recolectaron hojas del río, las cuales se secaron y se pulverizaron para realizar los análisis químicos. Resultados: No se presentaron diferencias significativas en los porcentajes de lignina y fósforo entre las hojas de las tres especies de árboles, pero si en su dureza y en el contenido de nitrógeno. Las hojas de C. multiflora fueron más suaves (180.1± 53.9 g) que las de F. tonduzii (285.3 ± 88.4 g) y Z. longifolia (232.3 ± 60.8 g), pero sin diferencias entre las dos últimas especies. Las hojas de Z. longifolia también tuvieron más nitrógeno (1.9 ± 0.0%) que las de hojas de las otras especies (1 ± 0.0 %). En cuanto a la preferencia de hojas, las larvas de Phylloicus sp. utilizaron en mayor proporción las hojas de C. multiflora. Aunque las hojas de C. multiflora no tuvieron diferencias significativas en el contenido de lignina y fósforo, presentaron valores menores de dureza, lo que podría hacerlas más palatables para Phylloicus sp. Por otra parte, el crecimiento específico diario de las larvas fue mayor cuando usaron hojas de F. tonduzii. Conclusiones: Nuestros resultados parecen indicar que las hojas más preferidas no son necesariamente las de mejor calidad nutricional y sugieren que la dureza de las hojas es la variable más importante en la selección de la hojarasca por parte de las larvas de Phylloicus sp.


Introduction: Fragmentation of allochthonous material by aquatic insects is a functional process that has been little studied in Colombian rivers. One of the most abundant shredder genus in American tropical stream ecosystems is the caddisfly genus Phylloicus (Calamoceratidae). Objective: In this study we evaluate the effect of chemical (nitrogen, phosphorus and lignin) and physical (toughness) attributes of leaves of three dominant tree species (Ficus tonduzii, Zygia longifolia and Clusia multiflora) in the riverine area of the middle section of the Gaira river, on leaf preferences and larval growth of a species of Phylloicus. Methods: Multiple food selection field experiments were performed, in which experimental chambers were located in the river for twenty-one days. For the assessment of leaf quality, leaves were collected in the river, dried and pulverized to perform chemical analyzes. Results: There were no significant differences in lignin and phosphorous percentages between the leaves of the three species, but nitrogen content and leaf toughness differed among them. The leaves of C. multiflora were softer (180.1± 53.9 g) than those of F. tonduzii (285.3 ± 88.4 g) and Z. longifolia (232.3 ± 60.8 g), but without differences between the last two species. The Z. longifolia leaves also had more nitrogen (1.9 ± 0.0 %) than those of the other species (1 ± 0.0 %). Regarding leaf selection, Phylloicus sp. larvae used in greater proportion the leaves of C. multiflora. Although lignin and phosphorous differences were not significant, the leaves of C. multiflora had lower toughness, which could make them more palatable for Phylloicus sp. On the other hand, the daily specific growth of the larvae was higher when they used leaves of F. tonduzii. Conclusions: Our findings seem to indicate that the most preferred leaves were not necessarily those of better nutritional quality and suggest that leaf toughness was the most important variable in the selection of leaf litter by the larvae of Phylloicus sp.

11.
New Phytol ; 154(2): 399-407, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-33873438

RESUMO

• We tested the hypothesis that unavoidably soft young leaves, which are therefore vulnerable to herbivory, should rely heavily on chemical defense to avoid overconsumption by herbivores. • Along with area lost to herbivores, parameters related to chemical and mechanical defense were monitored in two evergreen Mediterranean sclerophylls (Arbutus unedo and Arbutus andrachne) during spring and early summer, when newly growing and old leaves co-occur on the same branches. • During the lag phase of growth, young leaves were soft, rich in phenolics and gallotannins (up to 50% and 14% w/w, respectively) and highly astringent. During this period, the main consumer, a cricket (Poecilimon sp., Phaneropterinae) fed almost exclusively on the much tougher old leaves, which were low in phenolics (16%), gallotannins (6%) and astringency. During the rapid phase of leaf expansion, toughness increased and phenolics, gallotannins and astringency dropped to levels characteristic of old leaves. At that time, a shift in insect preferences towards young leaves was evident. Nitrogen content was independent of leaf age. • We conclude that leaf toughness is less important than chemical composition in the Arbutus-Poecilimon system, where gallotannins may play a decisive role.

12.
Oecologia ; 123(2): 158-167, 2000 May.
Artigo em Inglês | MEDLINE | ID: mdl-28308719

RESUMO

Although sclerophylly is widespread through the world and is often the dominant leaf-form in mediterranean climates, the mechanical properties of sclerophyllous leaves are poorly understood. The term "sclerophyllous" means hard-leaved, but biologists also use terms such as tough, stiff and leathery to describe sclerophyllous leaves. The latter term has no precise definition that allows quantification. However, each of the former terms is well-defined in materials engineering, although they may be difficult or sometimes inappropriate to measure in leaves because of their size, shape or composite and anisotropic nature. Two of the most appropriate and practically applicable mechanical properties of sclerophyllous leaves are "strength" and "toughness", which in this study were applied using punching, tearing and shearing tests to 19 species of tree and shrub at Wilson's Promontory, Australia. The results of these tests were compared with leaf specific mass (LSM) and a sclerophylly index derived from botanists' ranks. Principal components analysis was used to reduce the set of mechanical properties to major axes of variation. Component 1 correlated strongly with the botanists' ranks. Overall, leaves ranked as sclerophyllous by botanists were both tough and strong in terms of punching and tearing tests. In addition, tough and strong leaves typically had high toughness and strength per unit leaf thickness. There was also a significant correlation between component 1 and LSM. Although more detailed surveys are required, we argue that sclerophylly should be defined in terms of properties that have precise meanings and are measurable, such as toughness and strength, and that relate directly to mechanical properties as implicit in the term.

13.
Oecologia ; 85(2): 247-249, 1990 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28312563

RESUMO

The idea of trade-offs among antiherbivore defences in plants is examined using data from a South American blackberry (Rubus bogotensis). Two distinct morphs of R. bogotensis, one with glandular trichomes and one without, were compared with respect to leaf toughness, number of prickles and prickle length. The two morphs were sympatric and grew under similar environmental conditions. The morph lacking trichomes had significantly tougher leaves and also tended to have more and longer prickles. Bioassay showed that Ithomiid larvae fed to a lesser extent on tough leaves than on more tender ones. Correlations between antiherbivore defences within each phenotype revealed three significant or almost significant negative relationships. The comparisons support the hypothesis that trade-offs exist among antiherbivore defences.

14.
AoB Plants ; 62014 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-25301820

RESUMO

Response to global change is dependent on the level of biological organization (e.g. the ecologically relevant spatial scale) in which species are embedded. For example, individual responses can affect population-level responses, which, in turn, can affect community-level responses. Although relationships are known to exist among responses to global change across levels of biological organization, formal investigations of these relationships are still uncommon. I conducted an exploratory analysis to identify how nitrogen addition and warming by open top chambers might affect plants across spatial scales by estimating treatment effect size at the leaf level, the plant level and the community level. Moreover, I investigated if the presence of Pityopsis aspera, an experimentally introduced plant species, modified the relationship between spatial scale and effect size across treatments. I found that, overall, the spatial scale significantly contributes to differences in effect size, supporting previous work which suggests that mechanisms driving biotic response to global change are scale dependent. Interestingly, the relationship between spatial scale and effect size in both the absence and presence of experimental invasion is very similar for nitrogen addition and warming treatments. The presence of invasion, however, did not affect the relationship between spatial scale and effect size, suggesting that in this system, invasion may not exacerbate or attenuate climate change effects. This exercise highlights the value of moving beyond integration and scaling to the practice of directly testing for scale effects within single experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA