Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Mol Pharm ; 20(8): 4297-4306, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37491730

RESUMO

Adsorption of gut relevant biomolecules onto particles after oral administration of solid oral dosage forms is expected to form a "gastrointestinal corona", which could influence solution-mediated solid-state transformations on exposure of drug particles to gastrointestinal fluids. Low-frequency Raman (LFR) spectroscopy was used in this study to investigate in situ solid-state phase transformations under biorelevant temperature and pH conditions along with the presence of biomolecules. Melt-quenched amorphous indomethacin was used as a model solid particulate, and its solid-state behavior was evaluated at 37 °C and pH 1.2-6.8 with or without the presence of typical bile salt/phospholipid mixtures emulating fed-state conditions. Overall, a change in the solid-state transformation pathway from amorphous to crystalline drug was observed, where an intermediate ε-form that initially formed at pH 6.8 was suppressed by the addition of endogenous gastrointestinal biomolecules. These solid-state changes were corroborated using time-resolved synchrotron small- and wide-angle X-ray scattering (SAXS/WAXS). Additionally, the bile salt and phospholipid mixture partly prevented the otherwise strong aggregation between drug particles at more acidic conditions (pH ≤ 4.5) and helped to shift the balance against the intrinsic hydrophobicity of indomethacin as well as the plasticization effect brought about by the physiological temperature (i.e., the stickiness arising from the supercooled liquid state at 37 °C). The overall results highlight the importance of evaluating the impact that endogenous biomolecules may have on the solid-state characteristics of drug molecules in dissolution media, where analytical tools such as LFR spectroscopy can serve as an attractive avenue for accessing time-resolved solid-state information on time-scales that are difficult to achieve with other techniques such as X-ray diffraction.


Assuntos
Indometacina , Fosfolipídeos , Preparações Farmacêuticas , Difração de Raios X , Cristalização , Espalhamento a Baixo Ângulo , Solubilidade , Indometacina/química
2.
Mol Pharm ; 19(7): 2316-2326, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35503753

RESUMO

Slurry studies are useful for exhaustive polymorph and solid-state stability screening of drug compounds. Raman spectroscopy is convenient for monitoring crystallization in such slurries, as the measurements can be performed in situ even in aqueous environments. While the mid-frequency region (400-4000 cm-1) is dominated by intramolecular vibrations and has traditionally been used for such studies, the low-frequency spectral region (<200 cm-1) probes solid-state related lattice vibrations and is potentially more valuable for understanding subtle and/or complex crystallization behavior. The aim of the study was to investigate low-frequency Raman spectroscopy for in situ monitoring of crystallization of an amorphous pharmaceutical in slurries for the first time and directly compare the results with those simultaneously obtained with mid-frequency Raman spectroscopy. Amorphous indomethacin (IND) slurries were prepared at pH 1.2 and continuously monitored in situ at 5 and 25 °C with both low- and mid-frequency Raman spectroscopy. At 25 °C, both spectral regions profiled amorphous IND in slurries as converting directly from the amorphous form toward the α crystalline form. In contrast, at 5 °C, principal component analysis revealed a divergence in the detected conversion profiles: the mid-frequency Raman suggested a direct conversion to the α crystalline form, but the low-frequency region showed additional transition points. These were attributed to the appearance of minor amounts of the ε-form. The additional solid-state sensitivity of the low-frequency region was attributed to the better signal-to-noise ratio and more consistent spectra in this region. Finally, the low-frequency Raman spectrum of the ε-form of IND is reported for the first time.


Assuntos
Indometacina , Análise Espectral Raman , Cristalização , Indometacina/química , Análise de Componente Principal , Análise Espectral Raman/métodos , Água
3.
Mol Pharm ; 19(11): 4311-4319, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36170046

RESUMO

This work explores the potential use of spatially offset low-frequency anti-Stokes Raman spectroscopy (SOLFARS) to detect subsurface composition below an emissive surface. A range of bilayer tablets were used to evaluate this approach. Bilayer tablets differed in both the underlying layer composition (active pharmaceutical ingredient to excipient ratio, celecoxib: α-lactose monohydrate) and the upper layer thickness of the fluorescent coating (polyvinylpyrrolidone mixture with sunset yellow FCF dye). Two low- (<300 cm-1) plus mid- (300 to 1800 cm-1) frequency Raman instrumental setups, with lateral displacements for spatial analysis of solid dosage forms, using different excitation wavelengths were explored. The 532 nm system was used to illustrate how the low-frequency anti-Stokes Raman approach works with samples exhibiting extreme fluorescence/background emission interference, and the 785 nm system was used to demonstrate the performance when less extreme fluorescence/emission is present. Qualitative and quantitative chemometric analyses were performed to evaluate the performance of individual spectral domains and their combinations for the determination of the composition of the subsurface layer as well as the coating layer thickness. Overall, the commonly used midfrequency region (300-1800 cm-1) proved superior when using 785 nm incident laser for quantifying the coating thickness (amorphous materials), whereas a combined Stokes and anti-Stokes low-frequency region was found to be superior for quantifying underlying crystalline materials. When exploring individual spectral regions for subsurface composition using spatially offset measurements, the anti-Stokes LFR spectral window performed best. The anti-Stokes low-frequency range also demonstrated an advantage for models composed of data exhibiting high levels of fluorescence (e.g., data collected using 532 nm incident laser), as the Stokes scattering was masked by fluorescence. Transmission measurements were also explored for comparison and showed the best applicability for both upper and lower layer analysis, attributed to the inherently larger bulk sampling volume of this setup. From a practical perspective, these results highlight the potential adjustments that can be made to already existing (in-line) Raman setups to facilitate similar analysis in pharmaceutical industry-based settings.


Assuntos
Lasers , Análise Espectral Raman , Análise Espectral Raman/métodos , Comprimidos , Luz
4.
Molecules ; 27(3)2022 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35163982

RESUMO

Two new peroxosolvates of drug-like compounds were synthesized and studied by a combination of X-ray crystallographic, Raman spectroscopic methods, and periodic DFT computations. The enthalpies of H-bonds formed by hydrogen peroxide (H2O2) as a donor and an acceptor of protons were compared with the enthalpies of analogous H-bonds formed by water (H2O) in isomorphic (isostructural) hydrates. The enthalpies of H-bonds formed by H2O2 as a proton donor turned out to be higher than the values of the corresponding H-bonds formed by H2O. In the case of H2O2 as a proton acceptor in H-bonds, the ratio appeared reversed. The neutral O∙∙∙H-O/O∙∙∙H-N bonds formed by the lone electron pair of the oxygen atom of water were the strongest H-bonds in the considered crystals. In the paper, it was found out that the low-frequency Raman spectra of isomorphous crystalline hydrate and peroxosolvate of N-(5-Nitro-2-furfurylidene)-1-aminohydantoin are similar. As for the isostructural hydrate and peroxosolvate of the salt of protonated 2-amino-nicotinic acid and maleic acid monoanion, the Raman spectra are different.

5.
Mol Pharm ; 18(3): 1408-1418, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33586988

RESUMO

In an earlier investigation, amorphous celecoxib was shown to be sensitive to compression-induced destabilization. This was established by evaluating the physical stability of uncompressed/compressed phases in the supercooled state (Be̅rzins . Mol. Pharmaceutics, 2019, 16(8), 3678-3686). In this study, we investigated the ramifications of compression-induced destabilization in the glassy state as well as the impact of compression on the dissolution behavior. Slow and fast melt-quenched celecoxib disks were compressed with a range of compression pressures (125-500 MPa) and dwell times (0-60 s). These were then monitored for crystallization using low-frequency Raman spectroscopy when kept under dry (∼20 °C; <5% RH) and humid (∼20 °C; 97% RH) storage conditions. Faster crystallization was observed from the samples, which were compressed using more severe compression parameters. Furthermore, crystallization was also affected by the cooling rate used to form the amorphous phases; slow melt-quenched samples exhibited higher sensitivity to compression-induced destabilization. The behavior of the melt-quench disks, subjected to different compression conditions, was continuously monitored during dissolution using low-frequency Raman and UV/vis for the solid-state form and dissolution properties, respectively. Surprisingly the compressed samples exhibited higher apparent dissolution (i.e., higher area under the dissolution curve and initial celecoxib concentration in solution) than the uncompressed samples; however, this is attributed to biaxial fracturing throughout the compressed compacts yielding a greater effective surface area. Differences between the slow and fast melt quenched samples showed some trends similar to those observed for their storage stability.


Assuntos
Celecoxib/química , Varredura Diferencial de Calorimetria/métodos , Química Farmacêutica/métodos , Cristalização/métodos , Composição de Medicamentos/métodos , Estabilidade de Medicamentos , Transição de Fase/efeitos dos fármacos , Solubilidade/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Análise Espectral Raman/métodos , Difração de Raios X/métodos
6.
Mol Pharm ; 18(3): 1264-1276, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33406363

RESUMO

Detection of the solid-state forms of pharmaceutical compounds is important from the drug performance point of view. Low-frequency Raman (LFR) spectroscopy has been demonstrated to be very sensitive in detecting the different solid-state forms of pharmaceutically relevant compounds. The potential of LFR spectroscopy to probe the in situ isothermal dehydration was studied using piroxicam monohydrate (PXM) and theophylline monohydrate (TPMH) as the model drugs. The dehydration of PXM and TPMH at four different temperatures (95, 100, 105, and 110 °C and 50, 60, 70, and 80 °C, respectively) was monitored in both the low- (20-300 cm-1) and mid-frequency (335-1800 cm-1) regions of the Raman spectra. Principal component analysis and multivariate curve resolution were applied for the analysis of the Raman data. Spectral differences observed in both regions highlighted the formation of specific anhydrous forms of piroxicam and theophylline from their respective monohydrates. The formation of the anhydrous forms was detected on different timescales (approx. 2 min) between the low and mid-frequency Raman regions. This finding highlights the differing nature of the vibrations being detected between these two spectral regions. Computational simulations performed were also in agreement with the experimental results, and allowed elucidating the origin of different spectral features.


Assuntos
Preparações Farmacêuticas/química , Cristalização/métodos , Piroxicam/química , Análise Espectral Raman/métodos , Temperatura , Teofilina/química
7.
Mol Pharm ; 18(10): 3882-3893, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34529437

RESUMO

Compression-induced destabilization was investigated in various celecoxib amorphous solid dispersions containing hydroxypropyl methylcellulose (HPMC), poly(vinylpyrrolidone)/vinyl acetate copolymer (PVP/VA), or poly(vinylpyrrolidone) (PVP) at a concentration range of 1-10% w/w. Pharmaceutically relevant (125 MPa pressure with a minimal dwell time) and extreme (500 MPa pressure with a 60 s dwell time) compression conditions were applied to these systems, and the changes in their physical stability were monitored retrospectively (i.e., in the supercooled state) using dynamic differential scanning calorimetry (DSC) and low-frequency Raman (LFR) measurements over a broad temperature range (-90 to 200 and -150 to 140 °C, respectively). Both techniques revealed similar changes in the crystallization behavior between samples, where the application of a higher compression force of 500 MPa resulted in a more pronounced destabilization effect that was progressively mitigated with increasing polymer content. However, other aspects such as more favorable intermolecular interactions did not appear to have any effect on reducing this undesirable effect. Additionally, for the first time, LFR spectroscopy was used as a viable technique to determine the secondary or local glass-transition temperature, Tg,ß, a major indicator of the physical stability of neat amorphous pharmaceutical systems.


Assuntos
Celecoxib/química , Composição de Medicamentos , Estabilidade de Medicamentos , Varredura Diferencial de Calorimetria , Cristalização , Derivados da Hipromelose/química , Povidona/química , Pressão , Pirrolidinas , Análise Espectral Raman , Compostos de Vinila
8.
Mol Pharm ; 17(3): 885-899, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32011151

RESUMO

Techniques enabling in situ monitoring of drug solubilization and changes in the solid-state of the drug during the digestion of milk and milk-based formulations are valuable for predicting the effectiveness of such formulations in improving the oral bioavailability of poorly water-soluble drugs. We have recently reported the use of low-frequency Raman scattering spectroscopy (region of analysis <200 cm-1) as an analytical approach to probe solubilization of drugs during digestion in milk using ferroquine (SSR97193) as the model compound. This study investigates the wider utilization of this technique to probe the solubilization behavior of other poorly water-soluble drugs (halofantrine, lumefantrine, and clofazimine) in not only milk but also infant formula in the absence or presence of bile salts during in vitro digestion. Multivariate analysis was used to interpret changes to the spectra related to the drug as a function of digestion time, through tracking changes in the principal component (PC) values characteristic to the drug signals. Characteristic low-frequency Raman bands for all of the drugs were evident after dispersing the solid drugs in suspension form in milk and infant formula. The drugs were generally solubilized during the digestion of the formulations as observed previously for ferroquine and correlated with behavior determined using small-angle X-ray scattering (SAXS). A greater extent of drug solubilization was also generally observed in the infant formula compared to milk. However, in the case of the drug clofazimine, the correlation between low-frequency Raman scattering and SAXS was not clear, which may arise due to background interference from clofazimine being an intense red dye, which highlights a potential limitation of this new approach. Overall, the in situ monitoring of drug solubilization in milk and milk-based formulations during digestion can be achieved using low-frequency Raman scattering spectroscopy, and the information obtained from studying this spectral region can provide better insights into drug solubilization compared to the mid-frequency Raman region.


Assuntos
Aminoquinolinas/química , Composição de Medicamentos/métodos , Compostos Ferrosos/química , Fórmulas Infantis/química , Lipólise , Metalocenos/química , Leite/química , Análise Espectral Raman/métodos , Água/química , Administração Oral , Aminoquinolinas/farmacocinética , Animais , Disponibilidade Biológica , Clofazimina/química , Clofazimina/farmacocinética , Digestão , Sistemas de Liberação de Medicamentos/métodos , Compostos Ferrosos/farmacocinética , Lumefantrina/química , Lumefantrina/farmacocinética , Metalocenos/farmacocinética , Fenantrenos/química , Fenantrenos/farmacocinética , Espalhamento a Baixo Ângulo , Solubilidade , Suspensões , Difração de Raios X
9.
Chem Pharm Bull (Tokyo) ; 68(2): 155-160, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32009083

RESUMO

Combination tablets containing multiple active pharmaceutical ingredients (APIs) are expected to improve patient convenience by decreasing the number of tablets to be taken; thus, numerous formulations containing multiple APIs have recently been developed. To allow for dose adjustments based on patient conditions, many tablets have a bisection line to allow equal division of tablets. However, there have been no investigations regarding content uniformity among divided combination tablets. Therefore, in this study, the content uniformity of combination tablets after division was investigated using near IR and low-frequency (LF) Raman spectroscopy imaging as well as the Japanese Pharmacopoeia (JP) content uniformity tests. As model drugs, five tablets of three combination drugs containing 3-(3,4-dihydroxyphenyl)-L-alanine (L-DOPA) and benserazide hydrochloride (BNS) as APIs for treating Parkinson's disease were bisected; the resultant 10 samples were subjected to the JP content uniformity tests. We found that acceptance values of L-DOPA and BNS were 11.0-21.9% and 13.3-17.5%, respectively, with some non-conformity to the maximum allowed acceptance value (15.0%) as per the current JP. Image analyses by near IR showed that L-DOPA, BNS, lactose, and corn starch were uniformly distributed in each tablet; moreover, LF Raman spectroscopy imaging also supported the result that L-DOPA, BNS, and lactose were evenly distributed. Therefore, drug content in the tablets was uniform; thus, careful manipulation was recommended in the tablet bisection. However, the results of bisection line specifications and hardness tests revealed that the ease of division differed depending on the tablets, which warrants attention.


Assuntos
Antiparkinsonianos/análise , Benserazida/análise , Levodopa/análise , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Análise Espectral Raman/métodos , Combinação de Medicamentos , Comprimidos
10.
Mol Pharm ; 16(8): 3678-3686, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31246479

RESUMO

A series of melt-quenched disks of amorphous celecoxib were obtained using two different cooling rates (>100 °C/min and ∼25-30 °C/min) and subjected to different compression pressures (125, 250, and 500 MPa) and dwell times (0, 30, and 60 s). The kinetics of crystallization for these differently prepared melt-quenched disks were probed using a number of methods. Low-frequency Raman spectroscopy was used to monitor isothermal crystallization kinetics, whereas dynamic differential scanning calorimetry served as a complimentary technique to identify changes in form. Although both compression parameters destabilized the amorphous celecoxib, the dwell time was found to have a more critical overall effect. Additionally, the sample history was affirmed to be a factor for limiting the magnitude of compression-induced destabilization.


Assuntos
Celecoxib/química , Química Farmacêutica/métodos , Composição de Medicamentos/métodos , Varredura Diferencial de Calorimetria , Cristalização , Estabilidade de Medicamentos , Transição de Fase , Pressão , Solubilidade , Análise Espectral Raman , Temperatura de Transição
11.
Chemphyschem ; 19(22): 3116-3121, 2018 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-30178918

RESUMO

The pharmaceutical industry is in need of new techniques to identify the chirality of solids due to regulatory and safety concerns regarding the biological activity of enantiomers. In this study, we present for the first time the application of low-frequency Raman spectroscopy as a new and sensitive method for analyzing the chiral purity of crystals. Using this method, we were able to identify small amounts, as low as 1 % w/w, of an enantiomer in racemic crystals. To demonstrate the capabilities of the method, we used a model system based on chiral crystals of enantiopure, racemic crystals and their mixtures in various ratios. We found that the low-frequency Raman spectra of racemic and enantiopure crystals are significantly different, reflecting the different hydrogen bond networks. Moreover, a comparison of the sensitivity of enantiomeric excess in chiral crystals to that of circular dichroism and X-ray diffraction measurements showed that low-frequency Raman attains high sensitivity comparable to chiral optical methods used for solutions. Overall, our proposed approach of using Raman spectroscopy for determining enantiomeric excess in crystals is simple, fast, and offers a high degree of chiral sensitivity.

12.
Nano Lett ; 16(2): 1435-44, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26797083

RESUMO

van der Waals homo- and heterostructures assembled by stamping monolayers together present optoelectronic properties suitable for diverse applications. Understanding the details of the interlayer stacking and resulting coupling is crucial for tuning these properties. We investigated the low-frequency interlayer shear and breathing Raman modes (<50 cm(-1)) in twisted bilayer MoS2 by Raman spectroscopy and first-principles modeling. Twisting significantly alters the interlayer stacking and coupling, leading to notable frequency and intensity changes of low-frequency modes. The frequency variation can be up to 8 cm(-1) and the intensity can vary by a factor of ∼5 for twisting angles near 0° and 60°, where the stacking is a mixture of high-symmetry stacking patterns and is thus sensitive to twisting. For twisting angles between 20° and 40°, the interlayer coupling is nearly constant because the stacking results in mismatched lattices over the entire sample. It follows that the Raman signature is relatively uniform. Note that for some samples, multiple breathing mode peaks appear, indicating nonuniform coupling across the interface. In contrast to the low-frequency interlayer modes, high-frequency intralayer Raman modes are much less sensitive to interlayer stacking and coupling. This research demonstrates the effectiveness of low-frequency Raman modes for probing the interfacial coupling and environment of twisted bilayer MoS2 and potentially other two-dimensional materials and heterostructures.

13.
Appl Spectrosc ; : 37028241270637, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39094000

RESUMO

The development of non-contact in situ techniques for monitoring cure kinetics has the potential to greatly improve both resin formulation and processing. We have recently shown that low-frequency Raman spectroscopy is a viable method for assessing resin structural cure kinetics and complements the traditional chemical conversion determined from the fingerprint region of the spectrum. In this work, we further evaluate the relationship between structural and chemical conversion by investigating two chemically identical yet rheologically different interpenetrating polymer network resin formulations. Rheological analysis demonstrates a relationship between structural conversion and storage modulus, which is not observed in the chemical conversion data. We show that one can produce master cure kinetics curves with comparable kinetic constants using both the chemical and structural conversion methodologies. Parametric analysis of the structural conversion, chemical conversion, and photorheological conversion was combined with a semi-empirical model for the storage shear modulus as a function of the extent of cure.

14.
Appl Spectrosc ; : 37028241275670, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39308428

RESUMO

Artemisinin (ART) is a most promising antimalarial agent. However, its low aqueous solubility limits its oral absorption, resulting in low bioavailability. In this study, we have successfully discovered a novel cocrystal with 2-methyl resorcinol (ART-2MRE) providing improved solubility compared with a previously reported cocrystal with resorcinol (ART-RES). Single crystal X-ray structure analysis revealed that the ART-2MRE cocrystal was composed of ART and 2MRE in a molar ratio of 2 : 1. Though the ART-2MRE and ART-RES cocrystals were found to have similarities in their crystal structures, with one layer of a cocrystal former and two layers of ART arranged in alternating rows, the ART-2MRE cocrystal showed higher dissolution rate than ART-RES cocrystal. In situ real-time low-frequency (LF) Raman monitoring and powder X-ray diffraction (PXRD) measurements of the crystals during the dissolution test proved useful to investigate the dissolution behavior of the cocrystals. Low-frequency Raman monitoring revealed that as dissolution progressed, there was a continuous shift from the peak unique to the ART-2MRE cocrystal to the peak unique to the ART stable form. Similar observations were obtained in PXRD measurements as well. Furthermore, experiments were conducted by adding a polymer to the dissolution test solution to investigate the dissolution behavior under supersaturation, indicating the possibility of differences in the dissolution behavior between the ART-2MRE cocrystal and ART-RES cocrystal. Understanding the dissolution behavior from cocrystals is essential in developing cocrystals.

15.
Materials (Basel) ; 17(16)2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39203176

RESUMO

Transition metal dichalcogenides (TMDs) are drawing significant attention due to their intriguing photoelectric properties, and these interesting properties are closely related to the number of layers. Obtaining layer-controlled and high-quality TMD is still a challenge. In this context, we use the salt-assisted chemical vapor deposition to grow multilayered MoSe2 flake and characterize it by Raman spectroscopy, second harmonic generation, and photon luminescence. Spectroscopic analysis is an effective way to characterize the stacking order and optoelectronic properties of two-dimensional materials. Notably, the corresponding mapping reflects the film quality and homogeneity. We found that the grown continuous monolayer, bilayer, and trilayer of MoSe2 sheets with different stacking orders exhibit distinctive features. For bilayer MoSe2, the most stable stacking configurations are the AA' and AB order. And the uniformity of the spectroscopy maps demonstrates the high quality of the stacked MoSe2 sheets.

16.
Appl Spectrosc ; 78(2): 186-196, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38111257

RESUMO

Attenuated total reflection infrared (ATR-IR, 4000-400 cm-1), ATR-far-IR (ATR-FIR, 400-50 cm-1), and Raman spectra (4000-10 cm-1) were measured for calcium carbonate, three kinds of minerals (calcite, aragonite, and quartz), two kinds of rocks (obsidian and pumice), and four kinds of biogenic minerals, i.e., coral (aragonite), Ruditapes philippinarum (aragonite), Meretrix lusoria (aragonite), and Corbicula japonica (aragonite), to investigate the polymorphism of minerals and biogenic minerals, differences in the crystal structure among aragonite and aragonite biogenic minerals, water in the minerals and biogenic minerals, Boson peaks of obsidian and pumice, very small amounts of carotenoids in the three kinds of shells, and so on. In this study, we put some emphasis on the low-frequency region of IR (FIR) and Raman spectra. ATR-FIR spectra were measured down to 50 cm-1 and Raman spectra were obtained down to 10 cm-1. Second derivative spectra were calculated for the FIR spectra. It has been found from the present study that the FIR spectra are the most powerful for exploring polymorphism and differences in the crystal structure among aragonite and aragonite biogenic minerals. A Boson peak, which is a characteristic low-frequency Raman band for amorphous materials, was observed at around 40 cm-1 in the Raman spectra of obsidian and pumice. The Boson peak of pumice is located at a lower frequency by 12 cm-1 than that of obsidian, indicating that the mean atomic volume of pumice is larger than that of obsidian. The present study has revealed that IR spectra are useful to investigate the amounts and structure of fluid and bound water. Moreover, it has also been found that Raman spectra can detect a very tiny amount of carotenoids in the shells due to the resonance Raman effect.

17.
Pharmaceutics ; 15(5)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37242768

RESUMO

The solid-state landscape of carbamazepine during its dehydration was explored using Raman spectroscopy in the low- (-300 to -15, 15 to 300) and mid- (300 to 1800 cm-1) frequency spectral regions. Carbamazepine dihydrate and forms I, III, and IV were also characterized using density functional theory with periodic boundary conditions and showed good agreement with experimental Raman spectra with mean average deviations less than 10 cm-1. The dehydration of carbamazepine dihydrate was examined under different temperatures (40, 45, 50, 55, and 60 °C). Principal component analysis and multivariate curve resolution were used to explore the transformation pathways of different solid-state forms during the dehydration of carbamazepine dihydrate. The low-frequency Raman domain was able to detect the rapid growth and subsequent decline of carbamazepine form IV, which was not as effectively observed by mid-frequency Raman spectroscopy. These results showcased the potential benefits of low-frequency Raman spectroscopy for pharmaceutical process monitoring and control.

18.
Pharmaceutics ; 15(7)2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37514141

RESUMO

The use of low-frequency Raman spectroscopy (LFRS; ω < 150 cm-1) is booming in the pharmaceutical industry. Specific processing of spectra is required to use the wealth of information contained in this spectral region. Spectra processing and the use of LFRS for analyzing phase transformations in molecular materials are detailed herein from investigations on the devitrification of ibuprofen. LFRS was used to analyze the dehydration mechanism of two hydrates (theophylline and caffeine) of the xanthine family. Two mechanisms of solid-state transformation in theophylline were determined depending on the relative humidity (RH) and temperature. At room temperature and 1% RH, dehydration is driven by the diffusion mechanism, while under high RH (>30%), kinetic laws are typical of nucleation and growth mechanism. By increasing the RH, various metastability driven crystalline forms were obtained mimicking successive intermediate states between hydrate form and anhydrous form achieved under high RH. In contrast, the dehydration kinetics of caffeine hydrate under various RH levels can be described by only one master curve corresponding to a nucleation mechanism. Various metastability driven states were achieved depending on the RH, which can be described as intermediate between forms I and II of anhydrous caffeine.

19.
Pharmaceutics ; 15(6)2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37376158

RESUMO

Transdermal administration can be considered as an interesting route to overcome the side-effects inherent to oral intake. Designing topical formulations with maximum drug efficiency requires the optimization of the permeation and the stability of the drug. The present study focuses on the physical stability of amorphous drugs within the formulation. Ibuprofen is commonly used in topical formulations and then was selected as a model drug. Additionally, its low Tg allows easy, unexpected recrystallization at room temperature with negative consequence on skin penetration. In this study, the physical stability of amorphous ibuprofen was investigated in two types of formulations: (i) in terpenes-based deep eutectic solvents (DES) and (ii) in arginine-based co-amorphous blends. The phase diagram of ibuprofen:L-menthol was mainly analyzed by low-frequency Raman spectroscopy, leading to the evidence of ibuprofen recrystallization in a wide range of ibuprofen concentration. By contrast, it was shown that amorphous ibuprofen is stabilized when dissolved in thymol:menthol DES. Forming co-amorphous arginine-ibuprofen blends by melting is another route for stabilizing amorphous ibuprofen, while recrystallization was detected in the same co-amorphous mixtures obtained by cryo-milling. The mechanism of stabilization is discussed from determining Tg and analyzing H-bonding interactions by Raman investigations in the C=O and O-H stretching regions. It was found that recrystallization of ibuprofen was inhibited by the inability to form dimers inherent to the preferential formation of heteromolecular H-bonding, regardless of the glass transition temperatures of the various mixtures. This result should be important for predicting ibuprofen stability within other types of topical formulations.

20.
Pharmaceutics ; 15(2)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36839712

RESUMO

Mesoporous silica (MPS) carriers are considered as a promising strategy to increase the solubility of poorly soluble drugs and to stabilize the amorphous drug delivery system. The development by the authors of a solvent-free method (milling-assisted loading, MAL) made it possible to manipulate the physical state of the drug within the pores. The present study focuses on the effects of the milling intensity and the pore architecture (chemical surface) on the physical state of the confined drug and its release profile. Ibuprofen (IBP) and SBA-15 were used as the model drug and the MPS carrier, respectively. It was found that decreasing the milling intensity promotes nanocrystallization of confined IBP. Scanning electron microscopy and low-frequency Raman spectroscopy investigations converged into a bimodal description of the size distribution of particles, by decreasing the milling intensity. The chemical modification of the pore surface with 3-aminopropyltriethoxisylane also significantly promoted nanocrystallization, regardless of the milling intensity. Combined analyses of drug release profiles obtained on composites prepared from unmodified and modified SBA-15 with various milling intensities showed that the particle size of composites has the greatest influence on the drug release profile. Tuning drug concentration, milling intensity, and chemical surface make it possible to easily customize drug delivery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA