Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 476
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(13): e2220792120, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36940321

RESUMO

Selenium sulfide (SeS2) features higher electronic conductivity than sulfur and higher theoretical capacity and lower cost than selenium, attracting considerable interest in energy storage field. Although nonaqueous Li/Na/K-SeS2 batteries are attractive for their high energy density, the notorious shuttle effect of polysulfides/polyselenides and the intrinsic limitations of organic electrolyte have hindered the deployment of this technology. To circumvent these issues, here we design an aqueous Cu-SeS2 battery by encapsulating SeS2 in a defect-enriched nitrogen-doped porous carbon monolith. Except the intrinsic synergistic effect between Se and S in SeS2, the porous structure of carbon matrix has sufficient internal voids to buffer the volume change of SeS2 and provides abundant pathways for both electrons and ions. In addition, the synergistic effect of nitrogen doping and topological defect not only enhances the chemical affinity between reactants and carbon matrix but also offers catalytic active sites for electrochemical reactions. Benefiting from these merits, the Cu-SeS2 battery delivers superior initial reversible capacity of 1,905.1 mAh g-1 at 0.2 A g-1 and outstanding long-span cycling performance over 1,000 cycles at 5 A g-1. This work applies variable valence charge carriers to aqueous metal-SeS2 batteries, providing valuable inspiration for the construction of metal-chalcogen batteries.

2.
Small ; 20(12): e2307408, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37940624

RESUMO

Nitrogen-doped titanium carbides (MXene) films exhibit extraordinary volumetric capacitance when high-concentration sulfuric acid electrolyte is utilized owing to the enhancement of pseudocapacitance. However, the energy storage mechanism of nitrogen-doped MXene is unclear due to the complex electrode structure and electrolyte ions' behavior. Here, based on pristine MXene (Ti3C2O2), three different MXene structures are constructed by introducing metal vacancy sites and doped nitrogen atoms, namely, defective MXene (Ti2.9C2O2), nitrogen-doped MXene (Ti3C2O1.9N0.1), and nitrogen-doped MXene with metal vacancy sites (Ti2.9C2O1.9N0.1). Then, the density functional theory (DFT)-based calculations coupled with the effective screening medium reference interaction site method (ESM-RISM) are applied to reveal the electrochemical behavior at the electrode/electrolyte interfacial area. Through analyzing the electronic structure, electrical double-layer capacitance (EDLC), and equilibrium potential of the pseudocapacitance reaction, the specific effect of structural changes on their performance can be clarified: metal vacancy sites can reduce the potential difference of gap layer (Outer Helmholtz plane) at charged state and increase the electronic capacity of Ti, which can be used to explain the high pseudocapacitance, low charge transfer resistance and high-rate capacity properties of nitrogen-doped MXene observed in experiments.

3.
Small ; : e2311861, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38708808

RESUMO

Low-range light absorption and rapid recombination of photo-generated charge carriers have prevented the occurrence of effective and applicable photocatalysis for decades. Quantum dots (QDs) offer a solution due to their size-controlled photon properties and charge separation capabilities. Herein, well-dispersed interstitial nitrogen-doped TiO2 QDs with stable oxygen vacancies (N-TiO2-x-VO) are fabricated by using a low-temperature, annealing-assisted hydrothermal method. Remarkably, electrostatic repulsion prevented aggregation arising from negative charges accumulated in situ on the surface of N-TiO2-x-VO, enabling complete solar spectrum utilization (200-800 nm) with a 2.5 eV bandgap. Enhanced UV-vis photocatalytic H2 evolution rate (HER) reached 2757 µmol g-1 h-1, 41.6 times higher than commercial TiO2 (66 µmol g-1 h-1). Strikingly, under visible light, HER rate was 189 µmol g-1 h-1. Experimental and simulated studies of mechanisms reveal that VO can serve as an electron reservoir of photo-generated charge carriers on N-doped active sites, and consequently, enhance the separation rate of exciton pairs. Moreover, the negative free energy (-0.35 V) indicates more favorable thermodynamics for HER as compared with bulk TiO2 (0.66 V). This research work paves a new way of developing efficient photocatalytic strategies of HER that are applicable in the sustainable carbon-zero energy supply.

4.
Small ; 20(34): e2401221, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38593294

RESUMO

Nitrogen doping has been recognized as an important strategy to enhance the oxygen reduction reaction (ORR) activity of carbon-encapsulated transition metal catalysts (TM@C). However, previous reports on nitrogen doping have tended to result in a random distribution of nitrogen atoms, which leads to disordered electrostatic potential differences on the surface of carbon layers, limiting further control over the materials' electronic structure. Herein, a gradient nitrogen doping strategy to prepare nitrogen-deficient graphene and nitrogen-rich carbon nanotubes encapsulated cobalt nanoparticles catalysts (Co@CNTs@NG) is proposed. The unique gradient nitrogen doping leads to a gradual increase in the electrostatic potential of the carbon layer from the nitrogen-rich region to the nitrogen-deficient region, facilitating the directed electron transfer within these layers and ultimately optimizing the charge distribution of the material. Therefore, this strategy effectively regulates the density of state and work function of the material, further optimizing the adsorption of oxygen-containing intermediates and enhancing ORR activity. Theoretical and experimental results show that under controlled gradient nitrogen doping, Co@CNTs@NG exhibits significantly ORR performance (Eonset = 0.96 V, E1/2 = 0.86 V). At the same time, Co@CNTs@NG also displays excellent performance as a cathode material for Zn-air batteries, with peak power density of 132.65 mA cm-2 and open-circuit voltage (OCV) of 1.51 V. This work provides an effective gradient nitrogen doping strategy to optimize the ORR performance.

5.
Small ; 20(21): e2310327, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38098433

RESUMO

The unique catalytic activities of high-entropy alloys (HEAs) emerge from the complex interaction among different elements in a single-phase solid solution. As a "green" nanofabrication technique, inert gas condensation (IGC) combined with laser source opens up a highly efficient avenue to develop HEA nanoparticles (NPs) for catalysis and energy storage. In this work, the novel N-doped non-noble HEA NPs are designed and successfully prepared by IGC. The N-doping effects of HEA NPs on oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) are systematically investigated. The results show that N-doping is conducive to improving the OER, but unfavorable for HER activity. The FeCoNiCrN NPs achieve an overpotential of 269.7 mV for OER at a current density of 10 mA cm-2 in 1.0 M KOH solution, which is among the best reported values for non-noble HEA catalysts. The effects of the differences in electronegativity, ionization energy and electron affinity energy among mixed elements in N-doped HEAs are discussed as inducing electron transfer efficiency. Combined with X-ray photoelectron spectroscopy and the extended X-ray absorption fine structure analysis, an element-design strategy in N-doped HEAs electrocatalysts is proposed to improve the intrinsic activity and ameliorate water splitting performance.

6.
Chemphyschem ; : e202400221, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39121096

RESUMO

We investigate the combination of nitrogen doping and vacancies in highly ordered pyrolytic graphite (HOPG), to engineer defect sites with adjustable electronic properties. We combine scanning tunneling microscopy and spectroscopy and density functional theory calculations to reveal the synergistic effects of nitrogen and vacancies in HOPG. Our findings reveal a remarkable shift of the vacancy-induced resonance peak from an unoccupied state in pristine HOPG to an occupied state in nitrogen-doped HOPG. This shift directly correlates with the shift of the charge neutrality point resulting from the n-doping induced by substitutional nitrogen. These results open new avenues for defect engineering in graphite or graphene and achieving novel functionalities for chemical activity or electronic properties.

7.
Environ Res ; 257: 119295, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38824983

RESUMO

Doping with nitrogen atoms can improve the catalytic activity of activated carbon cathodes in electro-Fenton systems, but currently there is a lack of understanding of the catalytic mechanism, which limits the further development of high-performance activated carbon cathodes. Here, a multi-scale exploration was conducted using density functional theory and experimental methods to investigate the mechanism of different nitrogen doping types promoting the redox performance of activated carbon cathodes and the degradation of phenol. The density functional theory results indicate that the introduction of nitrogen atoms enhances the binding ability between carbon substrates and oxygen-containing substances, promotes the localization of surrounding electrons, and makes it easier for O2 to bind with protons and catalyze the hydrogenation reaction of *OOH. Due to its weak binding ability with oxygen-containing substances, AC is difficult to form H2O2, resulting in a tendency towards the 4e-ORR pathway. The binding energy between graphite-N carbon substrate and pyridine-N carbon substrate with *OOH is closer to the volcano top, so graphite n and pyridine n can better promote the selectivity of activated carbon for 2e-ORR. In addition, the calculation results also indicate that pyrrole-N and graphite-N are more capable of catalyzing the reaction energy barrier between ·OH and phenol. Finally, the simulation results were used to guide the modification of nitrogen doped activated carbon and experimental verification was carried out. The degradation results of phenol confirmed the efficient synergistic effect between different types of nitrogen doping, and the NAC-800 electrode exhibited efficient and stable characteristics. This work provides a guiding strategy for further developing stable and highly selective activated carbon cathode materials.


Assuntos
Eletrodos , Peróxido de Hidrogênio , Nitrogênio , Fenol , Nitrogênio/química , Peróxido de Hidrogênio/química , Fenol/química , Catálise , Carvão Vegetal/química , Oxirredução , Ferro/química
8.
Int J Mol Sci ; 25(14)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39062827

RESUMO

The doping of porous carbon materials with nitrogen is an effective approach to enhance the electrochemical performance of electrode materials. In this study, nitrogen-doped porous carbon derived from peanut shells was prepared as an electrode for supercapacitors. Melamine, urea, urea phosphate, and ammonium dihydrogen phosphate were employed as different nitrogen dopants. The optimized electrode material PA-1-1 prepared by peanut shells, with ammonium dihydrogen phosphate as a nitrogen dopant, exhibited a N content of 3.11% and a specific surface area of 602.7 m2/g. In 6 M KOH, the PA-1-1 electrode delivered a high specific capacitance of 208.3 F/g at a current density of 1 A/g. Furthermore, the PA-1-1 electrode demonstrated an excellent rate performance with a specific capacitance of 170.0 F/g (retention rate of 81.6%) maintained at 20 A/g. It delivered a capacitance of PA-1-1 with a specific capacitance retention of 98.8% at 20 A/g after 5000 cycles, indicating excellent cycling stability. The PA-1-1//PA-1-1 symmetric supercapacitor exhibited an energy density of 17.7 Wh/kg at a power density of 2467.0 W/kg. This work not only presents attractive N-doped porous carbon materials for supercapacitors but also offers a novel insight into the rational design of biochar carbon derived from waste peelings.


Assuntos
Arachis , Carbono , Capacitância Elétrica , Eletrodos , Nitrogênio , Arachis/química , Nitrogênio/química , Porosidade , Carbono/química , Técnicas Eletroquímicas/métodos , Triazinas/química
9.
Molecules ; 29(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38731515

RESUMO

Every late autumn, fluttering poplar leaves scatter throughout the campus and city streets. In this work, poplar leaves were used as the raw material, while H3PO4 and KOH were used as activators and urea was used as the nitrogen source to prepare biomass based-activated carbons (ACs) to capture CO2. The pore structures, functional groups and morphology, and desorption performance of the prepared ACs were characterized; the CO2 adsorption, regeneration, and kinetics were also evaluated. The results showed that H3PO4 and urea obviously promoted the development of pore structures and pyrrole nitrogen (N-5), while KOH and urea were more conductive to the formation of hydroxyl (-OH) and ether (C-O) functional groups. At optimal operating conditions, the CO2 adsorption capacity of H3PO4- and KOH-activated poplar leaves after urea treatment reached 4.07 and 3.85 mmol/g, respectively, at room temperature; both showed stable regenerative behaviour after ten adsorption-desorption cycles.

10.
Molecules ; 29(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38792100

RESUMO

Carbonization of biomass residues followed by activation has great potential to become a safe process for the production of various carbon materials for various applications. Demand for commercial use of biomass-based carbon materials is growing rapidly in advanced technologies, including in the energy sector, as catalysts, batteries and capacitor electrodes. In this study, carbon materials were synthesized from hardwood using two carbonization methods, followed by activation with H3PO4, KOH and NaOH and doping with nitrogen. Their chemical composition, porous structure, thermal stability and structural order of samples were studied. It was shown that, despite the differences, the synthesized carbon materials are active catalysts for oxygen reduction reactions. Among the investigated carbon materials, NaOH-activated samples exhibited the lowest Tafel slope values, of -90.6 and -88.0 mV dec-1, which are very close to the values of commercial Pt/C at -86.6 mV dec-1.

11.
Environ Geochem Health ; 46(4): 121, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483644

RESUMO

Selective adsorption of heavy metal ions from industrial effluent is important for healthy ecosystem development. However, the selective adsorption of heavy metal pollutants by biochar using lignin as raw material is still a challenge. In this paper, the lignin carbon material (N-BLC) was synthesized by a one-step hydrothermal carbonization method using paper black liquor (BL) as raw material and triethylene diamine (TEDA) as nitrogen source. N-BLC (2:1) showed excellent selectivity for Cr(VI) in the binary system, and the adsorption amounts of Cr(VI) in the binary system were all greater than 150 mg/g, but the adsorption amounts of Ca(II), Mg(II), and Zn(II) were only 19.3, 25.5, and 6.3 mg/g, respectively. The separation factor (SF) for Cr(VI) adsorption was as high as 120.0. Meanwhile, FTIR, elemental analysis and XPS proved that the surface of N-BLC (2:1) contained many N- and O- containing groups which were favorable for the removal of Cr(VI). The adsorption of N-BLC (2:1) followed the Langmuir model and its maximum theoretical adsorption amount was 618.4 mg/g. After 5th recycling, the adsorption amount of Cr(VI) by N-BLC (2:1) decreased about 15%, showing a good regeneration ability. Therefore, N-BLC (2:1) is a highly efficient, selective and reusable Cr(VI) adsorbent with wide application prospects.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Adsorção , Carbono , Cromo/análise , Concentração de Íons de Hidrogênio , Cinética , Lignina , Nitrogênio , Poluentes Químicos da Água/análise
12.
Angew Chem Int Ed Engl ; 63(2): e202315302, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38009464

RESUMO

Nitrogen-doped cavities are pervasive in graphenic materials, and represent key sites for catalytic and electrochemical activity. However, their structures are generally heterogeneous. In this study, we present the synthesis of a well-defined molecular cutout of graphene featuring N-doped cavity. The graphitization of a macrocyclic pyridinic precursor was achieved through photochemical cyclodehydrochlorination. In comparison to its counterpart with pyridinic nitrogen at the edges, the pyridinic nitrogen atoms in this nanographene cavity exhibit significantly reduced basicity and selective binding to Ag+ ion. Analysis of the protonation and coordination equilibria revealed that the tri-N-doped cavity binds three protons, but only one Ag+ ion. These distinct protonation and coordination behaviors clearly illustrate the space confinement effect imparted by the cavities.

13.
Beilstein J Org Chem ; 20: 1207-1212, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38887575

RESUMO

Cyclo-meta-phenylenes doped with nitrogen atoms at the periphery were designed and synthesized. The syntheses of the macrocyclic structures were achieved with one-pot Suzuki-Miyaura coupling to arrange phenylene rings and pyridinylene rings in an alternating fashion. Analyses with UV-vis spectroscopy showed changes in the photophysical properties with nitrogen doping, and X-ray crystallographic analyses experimentally revealed the presence of biased charges on the peripheral nitrogen atoms.

14.
Small ; 19(12): e2205725, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36585360

RESUMO

1D carbon nanotubes have been widely applied in many fields, such as catalysis, sensing and energy storage. However, the long tunnel-like pores and relatively low specific surface area of carbon nanotubes often restrict their performance in certain applications. Herein, a dual-silica template-mediated method to prepare nitrogen-doped mesoporous carbon nanotubes (NMCTs) through co-depositing polydopamine (both carbon and nitrogen precursors) and silica nanoparticles (the porogen for mesopore formation) on a silica nanowire template is proposed. The obtained NMCTs have a hierarchical pore structure of large open mesopores and tubular macropores, a high specific surface area (1037 m2 g-1 ), and homogeneous nitrogen doping. The NMCT-45 (prepared at an interval time of 45 min) shows excellent performance in supercapacitor applications with a high capacitance (373.6 F g-1 at 1.0 A g-1 ), excellent rate capability, high energy density (11.6 W h kg-1 at a power density of 313 W kg-1 ), and outstanding cycling stability (98.2% capacity retention after 10 000 cycles at 10 A g-1 ). Owing to the unique tubular morphology, hierarchical porosity and homogeneous N-doping, the NMCT also has tremendous potential in electrochemical catalysis and sensing applications.

15.
Small ; 19(9): e2206611, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36519665

RESUMO

Rationally designing efficient catalysts is the key to promote the kinetics of oxygen electrode reactions in lithium-oxygen (Li-O2 ) battery. Herein, nitrogen-doped Ti3 C2 MXene prepared via hydrothermal method (N-Ti3 C2 (H)) is studied as the efficient Li-O2 battery catalyst. The nitrogen doping increases the disorder degree of N-Ti3 C2 (H) and provides abundant active sites, which is conducive to the uniform formation and decomposition of discharge product Li2 O2 . Besides, density functional theory calculations confirm that the introduction of nitrogen can effectively modulate the 3d orbital occupation of Ti in N-Ti3 C2 (H), promote the electron exchange between Ti 3d orbital and O 2p orbital, and accelerate oxygen electrode reactions. Specifically, the N-Ti3 C2 (H) based Li-O2 battery delivers large discharge capacity (11 679.8 mAh g-1 ) and extended stability (372 cycles). This work provides a valuable strategy for regulating 3d orbital occupancy of transition metal in MXene to improve the catalytic activity of oxygen electrode reactions in Li-O2 battery.

16.
Small ; 19(44): e2303790, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37381642

RESUMO

Hard carbon is generally accepted as the choice of anode material for sodium-ion batteries. However, integrating high capacity, high initial Coulombic efficiency (ICE), and good durability in hard carbon materials remains challenging. Herein, N-doped hard carbon microspheres (NHCMs) with abundant Na+ adsorption sites and tunable interlayer distance are constructed based on the amine-aldehyde condensation reaction using m-phenylenediamine and formaldehyde as the precursors. The optimized NHCM-1400 with a considerable N content (4.64%) demonstrates a high ICE (87%), high reversible capacity with ideal durability (399 mAh g-1 at 30 mA g-1 and 98.5% retention over 120 cycles), and decent rate capability (297 mAh g-1 at 2000 mA g-1 ). In situ characterizations elucidate the adsorption-intercalation-filling sodium storage mechanism of NHCMs. Theoretical calculation reveals that the N-doping decreases the Na+ adsorption energy on hard carbon.

17.
Small ; 19(46): e2304265, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37469204

RESUMO

Bismuth (Bi) has attracted attention as a promising anode for sodium-ion batteries (SIBs) owing to its suitable potential and high theoretical capacity. However, the large volumetric changes during cycling leads to severe degradation of electrochemical performance and limits its practical application. Herein, Bi nanoflowers are encapsulated in N-doped carbon frameworks to construct a novel Bi@NC composite via a facile solvothermal method and carbonization strategy. The well-designed composite structure endows the Bi@NC with uniformly dispersed Bi nanoflowers to alleviate the attenuation while the N-doped carbon frameworks improve the conductivity and ion transport of the whole electrode. As for sodium-ion half-cell, the electrode exhibits a high specific capacity (384.8 mAh g-1 at 0.1 A g-1 ) and excellent rate performance (341.5 mAh g-1 at 10 A g-1 ), and the capacity retention rate still remains at 94.9% after 5000 cycles at 10 A g-1 . Furthermore, the assembled full-cell with Na3 V2 (PO4 )3 cathode and Bi@NC anode can deliver a high capacity of 251.5 mAh g-1 at 0.1 A g-1 , and its capacity attenuates only 0.009% in each cycle after 2000 times at 5.0 A g-1 . This work offers a convenient, low-cost, and eco-friendliness approach for high-performance electrodes in the field of sodium ion electrochemical storage technology.

18.
Small ; : e2308066, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057129

RESUMO

Porous carbons are important electrode materials for supercapacitors. One of the challenges associated with supercapacitors is improving their energy density without relying on pseudocapacitance, which is based on fast redox reactions that often shorten device lifetimes. A possible solution involves achieving high total capacitance (Ctot ), which comprises Helmholtz capacitance (CH ) and possibly quantum capacitance (CQ ), in high-surface carbon materials comprising minimally stacked graphene walls. In this work, a templating method is used to synthesize 3D mesoporous graphenes with largely identical pore structures (≈2100 m2 g-1 with an average pore size of ≈7 nm) but different concentrations of oxygen-containing functional groups (0.3-6.7 wt.%) and nitrogen dopants (0.1-4.5 wt.%). Thus, the impact of the heteroatom functionalities on Ctot is systematically investigated in an organic electrolyte excluding the effect of pore structures. It is found that heteroatom functionalities determine Ctot , resulting in the cyclic voltammetry curves being rectangular or butterfly-shaped. The nitrogen functionalities are found to significantly enhance Ctot owing to increased CQ .

19.
Chemistry ; 29(19): e202203787, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36585826

RESUMO

Zinc-air batteries (ZABs) have been considered as one of the most promising energy storage devices to solve the problem of energy crisis and environmental pollution. In this work, we reported the synthesis of nitrogen-doped MnO2 (N-MnO2 ) to replace the noble metal electrocatalysts for air cathode in ZABs. The doped N atoms here introduced more Mn3+ and oxygen vacancies for MnO2 , enhancing charge transfer property and accelerating surface intermediate product during the oxygen reduction reaction (ORR). Hence, the best N-MnO2 achieved remarkable electrocatalytic activities towards ORR (half-wave potential of 0.797 V vs. RHE), and reversible oxygen overpotential of around 0.842 V, which is better than or comparable to the Pt/C and Mn-based catalysts reported recently. Moreover, the homemade ZABs based on N-MnO2 showed the maximum power density of 132.8 mW cm-2 and excellent cyclic stability.

20.
Chemistry ; 29(6): e202203110, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36305483

RESUMO

Azulene, a simple polar polycyclic aromatic hydrocarbon with connected electron donor and acceptor (DA), ignites the hope of designing second-order nonlinear optical (NLO) molecular materials from pure nonpolar carbon nanomaterials. In this work, a butterfly-shaped nanographene (π-DA-π) was designed by incorporating azulene between two coronenes. One more electron in a N atom or one electron fewer in a B atom with respect to a C atom can polarize charge distribution in carbon nanomaterials, and further doping of B and N in the designed butterfly-shaped nanographene changes the system from π-DA-π to D-π-A, leading to strong NLO responses. For example, the largest static first hyperpolarizability even reaches 173.89×10-30  esu per heavy atom. The synergetic role of B, N and azulene in the nanographene is scrutinized, and such a doping strategy is found to provide an effective means for the design of carbon-based functional materials. The strong second-order NLO responses of these butterfly-shaped carbon-based nanographenes under external fields, for example, sum frequency generation and difference frequency generation, could inspire future experimental exploration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA