Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Saudi Pharm J ; 28(4): 403-408, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32273798

RESUMO

Thymoquinone is the most biologically active constituent of Nigella sativa (black seed). A monoterpene compound chemically known as 2-methyl-5-isopropyl-1, 4-quinone. In this study, the gender-dependent pharmacokinetic behavior of thymoquinone in rats was investigated. Thymoquinone was administered orally (20 mg/kg) and intravenously (5 mg/kg) to male and female rats and blood samples were collected at specific time points. Plasma concentration-time curves were plotted and pharmacokinetic parameters were determined using the non-compartmental analysis. In addition, simulations of steady state concentrations of thymoquinone in male and female rats were performed using GastroPlus PK software. After oral administration, the maximum plasma concentration (Cmax) of thymoquinone was 4.52 ±â€¯0.092 µg/ml in male rats and 5.22 ±â€¯0.154 µg/ml in female rats (p = 0.002). Similarly, after intravenous administration, the Cmax was 8.36 ±â€¯0.132 µg/ml in males and 9.51 ±â€¯0.158 µg/ml in females (p = 0.550). The area under the plasma concentration-time curve (AUC)0-∞ following oral dosing was 47.38 ±â€¯0.821 µg/ml·h in females and 43.63 ±â€¯0.953 µg/ml·h in males (p = 0.014). Pharmacokinetics and plasma concentration vs. time profiles for multiple oral doses of thymoquinone in rats were predicted using a simulation model to compare the simulation results with the experimental plasma pharmacokinetic data. The differences observed in thymoquinone pharmacokinetics between male and female rats after a single dose were not evident for the simulated steady-state parameters. The findings suggest that the gender difference does not seem to play a significant role in thymoquinone disposition at steady state.

2.
Toxicol Rep ; 6: 1164-1175, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31763180

RESUMO

Autism is the category used within the newest edition of the diagnostic and statistical manual of neurodevelopmental disorders. Autism is a spectrum of disorder where a variety of behavioural patterns observed in autistic patients, such as stereotypes and repetitive behavior, hyperexcitability, depression-like symptoms, and memory and cognitive dysfunctions. Neuropathological hallmarks that associated with autism are mitochondrial dysfunction, oxidative stress, neuroinflammation, Neuro-excitation, abnormal synapse formation, overexpression of glial cells in specific brain regions like cerebellum, cerebral cortex, amygdala, and hippocampus. ICV injection of propionic acid (PPA) (4 µl/0.26 M) mimics autistic-like behavioral and biochemical alterations in rats. Literature findings reveal that there is a link between autism neuronal mitochondrial coenzyme-Q10 (CoQ10) and ETC-complexes dysfunctions are the keys pathogenic events for autism. Therefore, in the current study, we explore the neuroprotective interventions of Solanesol (SNL) 40 and 60 mg/kg alone and in combination with standard drugs Aripiprazole (ARP) 5 mg/kg, Citalopram (CTP) 10 mg/kg, Memantine (MEM) 5 mg/kg and Donepezil (DNP) 3 mg/kg to overcome behavioral and biochemical alterations in PPA induced experimental model of Autism. Chronic treatment with SNL 60 mg/kg in combination with standard drug shows a marked improvement in locomotion, muscle coordination, long-term memory and the decrease in depressive behavior. While, chronic treatment of SNL alone and in combination with standard drug aripiprazole, citalopram, donepezil, and memantine shows the Neuroprotective potential by enhancing the cognitive deficits, biochemical alterations along with reducing the level of inflammatory mediators and oxidative stress.

3.
Toxicol Rep ; 3: 336-345, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28959554

RESUMO

EGCG (Epigallocatechin-3-gallate) is the major active principle catechin found in green tea. Skepticism regarding the safety of consuming EGCG is gaining attention, despite the fact that it is widely being touted for its potential health benefits, including anti-cancer properties. The lack of scientific data on safe dose levels of pure EGCG is of concern, while EGCG has been commonly studied as a component of GTE (Green tea extract) and not as a single active constituent. This study has been carried out to estimate the maximum tolerated non-toxic dose of pure EGCG and to identify the treatment related risk factors. In a fourteen day consecutive treatment, two different administration modalities were compared, offering an improved [i.p (intraperitoneal)] and limited [p.o (oral)] bioavailability. A trend of dose and route dependant hepatotoxicity was observed particularly with i.p treatment and EGCG increased serum lipid profile in parallel to hepatotoxicity. Fourteen day tolerable dose of EGCG was established as 21.1 mg/kg for i.p and 67.8 mg/kg for p.o. We also observed that, EGCG induced effects by both treatment routes are reversible, subsequent to an observation period for further fourteen days after cessation of treatment. It was demonstrated that the severity of EGCG induced toxicity appears to be a function of dose, route of administration and period of treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA